Abstract

Although commercial linear array transducers are widely used in clinical ultrasound, their application in photoacoustic tomography (PAT) is still limited due to the limited-view problem that restricts the image quality. In this paper, we propose a simple approach to address the limited-view problem in 2D by using two linear array transducers to receive PAT signal from different orientations. The positions of the two transducers can be adjusted to fit the specific geometry of an imaging site. This approach is made possible by using a new calibration method, where the relative position between the two transducers can be calibrated using ultrasound by transmitting ultrasound wave with one transducer while receiving with the other. The calibration results are then applied in the subsequent PAT imaging to incorporate the detected acoustic signals from both transducers and thereby increase the detection view. In this calibration method, no calibration phantom is required which largely simplifies and shortens the process. The efficacy of the calibration and improvement on the PAT image quality are demonstrated through phantom studies and in vivo imaging.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast full-view photoacoustic imaging by combined scanning with a linear transducer array

Diwu Yang, Da Xing, Sihua Yang, and Liangzhong Xiang
Opt. Express 15(23) 15566-15575 (2007)

Photoacoustic and ultrasonic coimage with a linear transducer array

Yaguang Zeng, Da Xing, Yi Wang, Bangzhen Yin, and Qun Chen
Opt. Lett. 29(15) 1760-1762 (2004)

Coherent-weighted three-dimensional image reconstruction in linear-array-based photoacoustic tomography

Depeng Wang, Yuehang Wang, Yang Zhou, Jonathan F. Lovell, and Jun Xia
Biomed. Opt. Express 7(5) 1957-1965 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref] [PubMed]
  2. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref] [PubMed]
  3. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  4. J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16(9), 090505 (2011).
    [Crossref] [PubMed]
  5. J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17(5), 050506 (2012).
    [Crossref] [PubMed]
  6. J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. V. Wang, and Q. Zhu, “A real-time photoacoustic tomography system for small animals,” Opt. Express 17(13), 10489–10498 (2009).
    [Crossref] [PubMed]
  7. C. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
    [Crossref] [PubMed]
  8. Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
    [Crossref] [PubMed]
  9. S. Preisser, N. L. Bush, A. G. Gertsch-Grover, S. Peeters, A. E. Bailey, J. C. Bamber, M. Frenz, and M. Jaeger, “Vessel orientation-dependent sensitivity of optoacoustic imaging using a linear array transducer,” J. Biomed. Opt. 18(2), 026011 (2013).
    [Crossref] [PubMed]
  10. J. L. Su, R. R. Bouchard, A. B. Karpiouk, J. D. Hazle, and S. Y. Emelianov, “Photoacoustic imaging of prostate brachytherapy seeds,” Biomed. Opt. Express 2(8), 2243–2254 (2011).
    [Crossref] [PubMed]
  11. D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express 15(23), 15566–15575 (2007).
    [Crossref] [PubMed]
  12. J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2013).
    [Crossref] [PubMed]
  13. L. Nie, D. Xing, Q. Zhou, D. Yang, and H. Guo, “Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging,” Med. Phys. 35(9), 4026–4032 (2008).
    [Crossref] [PubMed]
  14. B. T. Cox, S. R. Arridge, and P. C. Beard, “Photoacoustic tomography with a limited-aperture planar sensor and a reverberant cavity,” Inverse Probl. 23(6), S95–S112 (2007).
    [Crossref]
  15. B. Huang, J. Xia, K. Maslov, and L. V. Wang, “Improving limited-view photoacoustic tomography with an acoustic reflector,” J. Biomed. Opt. 18(11), 110505 (2013).
    [Crossref] [PubMed]
  16. G. Li, J. Xia, K. I. Maslov, and L. V. Wang, “Broadening the detection view of high-frequency linear-array-based photoacoustic computed tomography by using planar acoustic reflectors,” Proc. SPIE 8943, 89430H (2014).
    [Crossref]
  17. D. Wu, C. Tao, and X. Liu, “Photoacoustic tomography extracted from speckle noise in acoustically inhomogeneous tissue,” Opt. Express 21(15), 18061–18067 (2013).
    [Crossref] [PubMed]
  18. S. Ma, S. Yang, and H. Guo, “Limited-view photoacoustic imaging based on linear-array detection and filtered mean-backprojection-iterative reconstruction,” J. Appl. Phys. 106(12), 123104 (2009).
    [Crossref]
  19. C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
    [Crossref] [PubMed]
  20. A. A. Goshtasby, Image Registration: Principles, Tools and Methods (Springer, 2012).
  21. M. Tabei, T. D. Mast, and R. C. Waag, “A k-space method for coupled first-order acoustic propagation equations,” J. Acoust. Soc. Am. 111(1), 53–63 (2002).
    [Crossref] [PubMed]
  22. B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “K-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
    [Crossref] [PubMed]
  23. B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
    [Crossref] [PubMed]
  24. L. L. Pan, Photoacoustic Imaging for Prostate Brachytherapy (University of British Columbia, 2014).
  25. Laser Institute of America, “American National Standard for Safe Use of Lasers ANSI Z136.1-2000,” (2000).

2014 (1)

G. Li, J. Xia, K. I. Maslov, and L. V. Wang, “Broadening the detection view of high-frequency linear-array-based photoacoustic computed tomography by using planar acoustic reflectors,” Proc. SPIE 8943, 89430H (2014).
[Crossref]

2013 (5)

C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
[Crossref] [PubMed]

B. Huang, J. Xia, K. Maslov, and L. V. Wang, “Improving limited-view photoacoustic tomography with an acoustic reflector,” J. Biomed. Opt. 18(11), 110505 (2013).
[Crossref] [PubMed]

S. Preisser, N. L. Bush, A. G. Gertsch-Grover, S. Peeters, A. E. Bailey, J. C. Bamber, M. Frenz, and M. Jaeger, “Vessel orientation-dependent sensitivity of optoacoustic imaging using a linear array transducer,” J. Biomed. Opt. 18(2), 026011 (2013).
[Crossref] [PubMed]

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2013).
[Crossref] [PubMed]

D. Wu, C. Tao, and X. Liu, “Photoacoustic tomography extracted from speckle noise in acoustically inhomogeneous tissue,” Opt. Express 21(15), 18061–18067 (2013).
[Crossref] [PubMed]

2012 (2)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17(5), 050506 (2012).
[Crossref] [PubMed]

2011 (3)

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16(9), 090505 (2011).
[Crossref] [PubMed]

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

J. L. Su, R. R. Bouchard, A. B. Karpiouk, J. D. Hazle, and S. Y. Emelianov, “Photoacoustic imaging of prostate brachytherapy seeds,” Biomed. Opt. Express 2(8), 2243–2254 (2011).
[Crossref] [PubMed]

2010 (2)

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

C. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[Crossref] [PubMed]

2009 (3)

S. Ma, S. Yang, and H. Guo, “Limited-view photoacoustic imaging based on linear-array detection and filtered mean-backprojection-iterative reconstruction,” J. Appl. Phys. 106(12), 123104 (2009).
[Crossref]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. V. Wang, and Q. Zhu, “A real-time photoacoustic tomography system for small animals,” Opt. Express 17(13), 10489–10498 (2009).
[Crossref] [PubMed]

2008 (1)

L. Nie, D. Xing, Q. Zhou, D. Yang, and H. Guo, “Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging,” Med. Phys. 35(9), 4026–4032 (2008).
[Crossref] [PubMed]

2007 (3)

B. T. Cox, S. R. Arridge, and P. C. Beard, “Photoacoustic tomography with a limited-aperture planar sensor and a reverberant cavity,” Inverse Probl. 23(6), S95–S112 (2007).
[Crossref]

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “K-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[Crossref] [PubMed]

D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express 15(23), 15566–15575 (2007).
[Crossref] [PubMed]

2004 (1)

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref] [PubMed]

2002 (1)

M. Tabei, T. D. Mast, and R. C. Waag, “A k-space method for coupled first-order acoustic propagation equations,” J. Acoust. Soc. Am. 111(1), 53–63 (2002).
[Crossref] [PubMed]

Aguirre, A.

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16(9), 090505 (2011).
[Crossref] [PubMed]

C. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[Crossref] [PubMed]

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. V. Wang, and Q. Zhu, “A real-time photoacoustic tomography system for small animals,” Opt. Express 17(13), 10489–10498 (2009).
[Crossref] [PubMed]

Ambartsoumian, G.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref] [PubMed]

Anastasio, M.

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17(5), 050506 (2012).
[Crossref] [PubMed]

Anastasio, M. A.

C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
[Crossref] [PubMed]

Arridge, S. R.

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “K-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[Crossref] [PubMed]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Photoacoustic tomography with a limited-aperture planar sensor and a reverberant cavity,” Inverse Probl. 23(6), S95–S112 (2007).
[Crossref]

Bailey, A. E.

S. Preisser, N. L. Bush, A. G. Gertsch-Grover, S. Peeters, A. E. Bailey, J. C. Bamber, M. Frenz, and M. Jaeger, “Vessel orientation-dependent sensitivity of optoacoustic imaging using a linear array transducer,” J. Biomed. Opt. 18(2), 026011 (2013).
[Crossref] [PubMed]

Bamber, J. C.

S. Preisser, N. L. Bush, A. G. Gertsch-Grover, S. Peeters, A. E. Bailey, J. C. Bamber, M. Frenz, and M. Jaeger, “Vessel orientation-dependent sensitivity of optoacoustic imaging using a linear array transducer,” J. Biomed. Opt. 18(2), 026011 (2013).
[Crossref] [PubMed]

Beard, P.

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

Beard, P. C.

B. T. Cox, S. R. Arridge, and P. C. Beard, “Photoacoustic tomography with a limited-aperture planar sensor and a reverberant cavity,” Inverse Probl. 23(6), S95–S112 (2007).
[Crossref]

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “K-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[Crossref] [PubMed]

Bouchard, R. R.

Bush, N. L.

S. Preisser, N. L. Bush, A. G. Gertsch-Grover, S. Peeters, A. E. Bailey, J. C. Bamber, M. Frenz, and M. Jaeger, “Vessel orientation-dependent sensitivity of optoacoustic imaging using a linear array transducer,” J. Biomed. Opt. 18(2), 026011 (2013).
[Crossref] [PubMed]

Caballero, M. Á. A.

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2013).
[Crossref] [PubMed]

Chatni, M. R.

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17(5), 050506 (2012).
[Crossref] [PubMed]

Cox, B. T.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Photoacoustic tomography with a limited-aperture planar sensor and a reverberant cavity,” Inverse Probl. 23(6), S95–S112 (2007).
[Crossref]

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “K-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[Crossref] [PubMed]

Dima, A.

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2013).
[Crossref] [PubMed]

Emelianov, S. Y.

Frenz, M.

S. Preisser, N. L. Bush, A. G. Gertsch-Grover, S. Peeters, A. E. Bailey, J. C. Bamber, M. Frenz, and M. Jaeger, “Vessel orientation-dependent sensitivity of optoacoustic imaging using a linear array transducer,” J. Biomed. Opt. 18(2), 026011 (2013).
[Crossref] [PubMed]

Gamelin, J.

C. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[Crossref] [PubMed]

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. V. Wang, and Q. Zhu, “A real-time photoacoustic tomography system for small animals,” Opt. Express 17(13), 10489–10498 (2009).
[Crossref] [PubMed]

Gateau, J.

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2013).
[Crossref] [PubMed]

Gertsch-Grover, A. G.

S. Preisser, N. L. Bush, A. G. Gertsch-Grover, S. Peeters, A. E. Bailey, J. C. Bamber, M. Frenz, and M. Jaeger, “Vessel orientation-dependent sensitivity of optoacoustic imaging using a linear array transducer,” J. Biomed. Opt. 18(2), 026011 (2013).
[Crossref] [PubMed]

Guo, H.

S. Ma, S. Yang, and H. Guo, “Limited-view photoacoustic imaging based on linear-array detection and filtered mean-backprojection-iterative reconstruction,” J. Appl. Phys. 106(12), 123104 (2009).
[Crossref]

L. Nie, D. Xing, Q. Zhou, D. Yang, and H. Guo, “Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging,” Med. Phys. 35(9), 4026–4032 (2008).
[Crossref] [PubMed]

Guo, P.

Guo, Z.

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17(5), 050506 (2012).
[Crossref] [PubMed]

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16(9), 090505 (2011).
[Crossref] [PubMed]

Hazle, J. D.

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Huang, B.

B. Huang, J. Xia, K. Maslov, and L. V. Wang, “Improving limited-view photoacoustic tomography with an acoustic reflector,” J. Biomed. Opt. 18(11), 110505 (2013).
[Crossref] [PubMed]

Huang, C.

C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
[Crossref] [PubMed]

Huang, F.

Jaeger, M.

S. Preisser, N. L. Bush, A. G. Gertsch-Grover, S. Peeters, A. E. Bailey, J. C. Bamber, M. Frenz, and M. Jaeger, “Vessel orientation-dependent sensitivity of optoacoustic imaging using a linear array transducer,” J. Biomed. Opt. 18(2), 026011 (2013).
[Crossref] [PubMed]

Kara, S.

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “K-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[Crossref] [PubMed]

Karpiouk, A. B.

Kuchment, P.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref] [PubMed]

Li, C.

C. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[Crossref] [PubMed]

Li, G.

G. Li, J. Xia, K. I. Maslov, and L. V. Wang, “Broadening the detection view of high-frequency linear-array-based photoacoustic computed tomography by using planar acoustic reflectors,” Proc. SPIE 8943, 89430H (2014).
[Crossref]

Liu, X.

Ma, S.

S. Ma, S. Yang, and H. Guo, “Limited-view photoacoustic imaging based on linear-array detection and filtered mean-backprojection-iterative reconstruction,” J. Appl. Phys. 106(12), 123104 (2009).
[Crossref]

Maslov, K.

B. Huang, J. Xia, K. Maslov, and L. V. Wang, “Improving limited-view photoacoustic tomography with an acoustic reflector,” J. Biomed. Opt. 18(11), 110505 (2013).
[Crossref] [PubMed]

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17(5), 050506 (2012).
[Crossref] [PubMed]

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16(9), 090505 (2011).
[Crossref] [PubMed]

Maslov, K. I.

G. Li, J. Xia, K. I. Maslov, and L. V. Wang, “Broadening the detection view of high-frequency linear-array-based photoacoustic computed tomography by using planar acoustic reflectors,” Proc. SPIE 8943, 89430H (2014).
[Crossref]

Mast, T. D.

M. Tabei, T. D. Mast, and R. C. Waag, “A k-space method for coupled first-order acoustic propagation equations,” J. Acoust. Soc. Am. 111(1), 53–63 (2002).
[Crossref] [PubMed]

Maurudis, A.

C. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[Crossref] [PubMed]

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. V. Wang, and Q. Zhu, “A real-time photoacoustic tomography system for small animals,” Opt. Express 17(13), 10489–10498 (2009).
[Crossref] [PubMed]

Nie, L.

C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
[Crossref] [PubMed]

L. Nie, D. Xing, Q. Zhou, D. Yang, and H. Guo, “Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging,” Med. Phys. 35(9), 4026–4032 (2008).
[Crossref] [PubMed]

Ntziachristos, V.

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2013).
[Crossref] [PubMed]

Peeters, S.

S. Preisser, N. L. Bush, A. G. Gertsch-Grover, S. Peeters, A. E. Bailey, J. C. Bamber, M. Frenz, and M. Jaeger, “Vessel orientation-dependent sensitivity of optoacoustic imaging using a linear array transducer,” J. Biomed. Opt. 18(2), 026011 (2013).
[Crossref] [PubMed]

Percival, C.

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16(9), 090505 (2011).
[Crossref] [PubMed]

Preisser, S.

S. Preisser, N. L. Bush, A. G. Gertsch-Grover, S. Peeters, A. E. Bailey, J. C. Bamber, M. Frenz, and M. Jaeger, “Vessel orientation-dependent sensitivity of optoacoustic imaging using a linear array transducer,” J. Biomed. Opt. 18(2), 026011 (2013).
[Crossref] [PubMed]

Su, J. L.

Tabei, M.

M. Tabei, T. D. Mast, and R. C. Waag, “A k-space method for coupled first-order acoustic propagation equations,” J. Acoust. Soc. Am. 111(1), 53–63 (2002).
[Crossref] [PubMed]

Tao, C.

Treeby, B. E.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

Waag, R. C.

M. Tabei, T. D. Mast, and R. C. Waag, “A k-space method for coupled first-order acoustic propagation equations,” J. Acoust. Soc. Am. 111(1), 53–63 (2002).
[Crossref] [PubMed]

Wang, K.

C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
[Crossref] [PubMed]

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17(5), 050506 (2012).
[Crossref] [PubMed]

Wang, L. V.

G. Li, J. Xia, K. I. Maslov, and L. V. Wang, “Broadening the detection view of high-frequency linear-array-based photoacoustic computed tomography by using planar acoustic reflectors,” Proc. SPIE 8943, 89430H (2014).
[Crossref]

C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
[Crossref] [PubMed]

B. Huang, J. Xia, K. Maslov, and L. V. Wang, “Improving limited-view photoacoustic tomography with an acoustic reflector,” J. Biomed. Opt. 18(11), 110505 (2013).
[Crossref] [PubMed]

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17(5), 050506 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16(9), 090505 (2011).
[Crossref] [PubMed]

C. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[Crossref] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. V. Wang, and Q. Zhu, “A real-time photoacoustic tomography system for small animals,” Opt. Express 17(13), 10489–10498 (2009).
[Crossref] [PubMed]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref] [PubMed]

Wu, D.

Xia, J.

G. Li, J. Xia, K. I. Maslov, and L. V. Wang, “Broadening the detection view of high-frequency linear-array-based photoacoustic computed tomography by using planar acoustic reflectors,” Proc. SPIE 8943, 89430H (2014).
[Crossref]

B. Huang, J. Xia, K. Maslov, and L. V. Wang, “Improving limited-view photoacoustic tomography with an acoustic reflector,” J. Biomed. Opt. 18(11), 110505 (2013).
[Crossref] [PubMed]

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17(5), 050506 (2012).
[Crossref] [PubMed]

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16(9), 090505 (2011).
[Crossref] [PubMed]

Xiang, L. Z.

Xing, D.

L. Nie, D. Xing, Q. Zhou, D. Yang, and H. Guo, “Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging,” Med. Phys. 35(9), 4026–4032 (2008).
[Crossref] [PubMed]

D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express 15(23), 15566–15575 (2007).
[Crossref] [PubMed]

Xu, Y.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref] [PubMed]

Yang, D.

L. Nie, D. Xing, Q. Zhou, D. Yang, and H. Guo, “Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging,” Med. Phys. 35(9), 4026–4032 (2008).
[Crossref] [PubMed]

Yang, D. W.

Yang, S.

S. Ma, S. Yang, and H. Guo, “Limited-view photoacoustic imaging based on linear-array detection and filtered mean-backprojection-iterative reconstruction,” J. Appl. Phys. 106(12), 123104 (2009).
[Crossref]

Yang, S. H.

Zhou, Q.

L. Nie, D. Xing, Q. Zhou, D. Yang, and H. Guo, “Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging,” Med. Phys. 35(9), 4026–4032 (2008).
[Crossref] [PubMed]

Zhu, Q.

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16(9), 090505 (2011).
[Crossref] [PubMed]

C. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[Crossref] [PubMed]

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. V. Wang, and Q. Zhu, “A real-time photoacoustic tomography system for small animals,” Opt. Express 17(13), 10489–10498 (2009).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

IEEE Trans. Med. Imaging (1)

C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
[Crossref] [PubMed]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

Inverse Probl. (1)

B. T. Cox, S. R. Arridge, and P. C. Beard, “Photoacoustic tomography with a limited-aperture planar sensor and a reverberant cavity,” Inverse Probl. 23(6), S95–S112 (2007).
[Crossref]

J. Acoust. Soc. Am. (2)

M. Tabei, T. D. Mast, and R. C. Waag, “A k-space method for coupled first-order acoustic propagation equations,” J. Acoust. Soc. Am. 111(1), 53–63 (2002).
[Crossref] [PubMed]

B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “K-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. Ma, S. Yang, and H. Guo, “Limited-view photoacoustic imaging based on linear-array detection and filtered mean-backprojection-iterative reconstruction,” J. Appl. Phys. 106(12), 123104 (2009).
[Crossref]

J. Biomed. Opt. (6)

B. Huang, J. Xia, K. Maslov, and L. V. Wang, “Improving limited-view photoacoustic tomography with an acoustic reflector,” J. Biomed. Opt. 18(11), 110505 (2013).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

S. Preisser, N. L. Bush, A. G. Gertsch-Grover, S. Peeters, A. E. Bailey, J. C. Bamber, M. Frenz, and M. Jaeger, “Vessel orientation-dependent sensitivity of optoacoustic imaging using a linear array transducer,” J. Biomed. Opt. 18(2), 026011 (2013).
[Crossref] [PubMed]

J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt. 16(9), 090505 (2011).
[Crossref] [PubMed]

J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17(5), 050506 (2012).
[Crossref] [PubMed]

C. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[Crossref] [PubMed]

Med. Phys. (3)

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref] [PubMed]

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2013).
[Crossref] [PubMed]

L. Nie, D. Xing, Q. Zhou, D. Yang, and H. Guo, “Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging,” Med. Phys. 35(9), 4026–4032 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

Opt. Express (3)

Proc. SPIE (1)

G. Li, J. Xia, K. I. Maslov, and L. V. Wang, “Broadening the detection view of high-frequency linear-array-based photoacoustic computed tomography by using planar acoustic reflectors,” Proc. SPIE 8943, 89430H (2014).
[Crossref]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Other (3)

A. A. Goshtasby, Image Registration: Principles, Tools and Methods (Springer, 2012).

L. L. Pan, Photoacoustic Imaging for Prostate Brachytherapy (University of British Columbia, 2014).

Laser Institute of America, “American National Standard for Safe Use of Lasers ANSI Z136.1-2000,” (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Top view of the imaging configuration using two identical linear array transducers. (a) shows the calibration process using ultrasound imaging, in which several channels of Transducer B (highlighted in red) are transmitting and Transducer A is receiving acoustic waves. (b) shows the photoacoustic imaging where both transducers are receiving photoacoustic waves.
Fig. 2
Fig. 2 Simulation results showing the variation of the maximum pixel intensity of the reconstructed SPs by Transducer B when it rotates or translates out of the image plane of Transducer A. (a)-(b) Transducer B receives ultrasound signal at different rotation angles around x axis. (c)-(d) Transducer B receives signal at different translational location along z axis.
Fig. 3
Fig. 3 Schematic of the imaging system setup. ND:YAG: Surelite II pulsed laser. OPO: optical parametric oscillator.
Fig. 4
Fig. 4 (a) Top view of the imaging platform with ~100 degree relative angle between the two linear array transducers. (b) Virtual ultrasound image and the sketch diagram of Transducer A. SP1, SP2, SP3, SP4 represent the enabled channel No.64, No.96, No.110 and No.128 respectively (c) Reconstructed image and the sketch diagram of Transducer B. SP1', SP2', SP3′, SP4' represent the reconstructed channel No.64, No.96, No.110 and No.128, respectively. (d) The reconstructed image of Transducer B after applying the transformation.
Fig. 5
Fig. 5 PAT imaging of a phantom containing a piece of paper printed with 5 points. (a) Photograph of the printed paper phantom and sketch diagram of the transducers. (b) Reconstructed image of the phantom acquired by Transducer B. (c) Reconstructed image of the phantom acquired by Transducer A after transformation. (d) Overlapped image which combines acquired data from Transducer A and Transducer B.
Fig. 6
Fig. 6 PAT images of a sheet of paper printed with regular octagon and 3 points. (a) Diagram of the printed paper phantom and sketch diagram of the transducers. (b) Image of the printed paper reconstructed by Transducer B. (c) Image of the printed paper reconstructed by Transducer A after transformation. (d) Reconstructed image using data acquired by both transducers.
Fig. 7
Fig. 7 Combined PAT images of a sheet of paper printed with regular octagon and 3 points using two linear array transducers at (a) 180 degree (b) 120 degree (c) 90 degree. (d)-(f) The corresponding combined PAT images as the top row, except that the images obtained from different transducers are shown in different colors, gray scale and red, respectively.
Fig. 8
Fig. 8 PAT images of a leaf skeleton phantom. (a) Photograph of the leaf skeleton phantom and sketch diagram of the transducers. (b) Image of the leaf skeleton phantom reconstructed by Transducer B. (c) Image of the leaf skeleton phantom reconstructed by Transducer A after transformation. (d) Reconstructed image using data acquired by both transducers.
Fig. 9
Fig. 9 PAT imaging of a plastic tube filled with rabbit blood. (a) Photograph of rabbit blood phantom and sketch diagram of the transducers. (b) Image of the phantom acquired by Transducer B. (c) Image of the phantom acquired by Transducer A after transformation. (d) Reconstructed image using data acquired by both transducers.
Fig. 10
Fig. 10 In vivo PAT imaging of the cross-section of blood vessels and skin surface in human hand. (a) PAT image from one transducer (b) PAT image from the other transducer at ~90 degree orientation after transformation. (c) Reconstructed image using data acquired by both transducers. (d) The same combined PAT image as in (c), except that the images obtained from the two transducers are shown in different colors, (a) in gray scale and (b) in red. The circles indicate the skin surface and the arrows indicate the overlapped blood vessels.

Tables (1)

Tables Icon

Table 1 Transformation parameters obtained under different calibration approaches

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ X Y 1 ]=[ 1 0 h 0 1 k 0 0 1 ][ cosθ sinθ 0 sinθ cosθ 0 0 0 1 ][ x y 1 ]

Metrics