Abstract

We demonstrate a simple technique to provide conventional Brillouin optical time-domain analysis sensors with mitigation for pump pulse attenuation. The technique is based on operating the sensor in loss configuration so that energy is transferred from the probe wave to the pump pulse that becomes amplified as it counter-propagates with the probe wave. Furthermore, the optical frequency of the probe wave is modulated along the fiber so that the pump pulse experiences a flat total gain spectrum that equally amplifies all the spectral components of the pulse, hence, preventing distortion. This frequency modulation of the probe brings additional advantages because it provides increased tolerance to non-local effects and to spontaneous Brillouin scattering noise, so that a probe power above the Brillouin threshold of the fiber can be safely deployed, hence, increasing the signal-to-noise ratio of the measurement. The method is experimentally demonstrated in a 100-km fiber link, obtaining a measurement uncertainty of 1 MHz at the worst-contrast position.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses

Javier Urricelqui, Mikel Sagues, and Alayn Loayssa
Opt. Express 23(23) 30448-30458 (2015)

Effects of pump pulse extinction ratio in Brillouin optical time-domain analysis sensors

Haritz Iribas, Jon Mariñelarena, Cheng Feng, Javier Urricelqui, Thomas Schneider, and Alayn Loayssa
Opt. Express 25(22) 27896-27912 (2017)

Cyclic coding for Brillouin optical time-domain analyzers using probe dithering

Haritz Iribas, Alayn Loayssa, Florian Sauser, Miguel Llera, and Sébastien Le Floch
Opt. Express 25(8) 8787-8800 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).
    [Crossref] [PubMed]
  2. S. M. Foaleng, F. Rodríguez-Barrios, S. Martín-López, M. González-Herráez, and L. Thévenaz, “Detrimental effect of self-phase modulation on the performance of Brillouin distributed fiber sensors,” Opt. Lett. 36(2), 97–99 (2011).
    [Crossref] [PubMed]
  3. Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
    [Crossref]
  4. X. Angulo-Vinuesa, S. Martín-López, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herráez, “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2° C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
    [Crossref]
  5. S. Le Floch, F. Sauser, M. Llera, and E. Rochat, “Novel Brillouin optical time-domain analyzer for extreme sensing range using high power flat frequency coded pump pulses,” J. Lightwave Technol. 33(12), 2623–2637 (2015).
    [Crossref]
  6. J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23(23), 30448–30458 (2015).
    [Crossref] [PubMed]
  7. H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W.L. Zhang, “DBA-based BOTDA using optical-comb pump and pulse coding with a single laser,” Photon. Technol. Lett. 28(10), 1142–1145 (2016).
    [Crossref]
  8. R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photon. Journal, IEEE 7(6), 1–9 (2015).
    [Crossref]
  9. A. Zadok, A. Eyal, and M. Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25(8), 2168–2174 (2007).
    [Crossref]
  10. X. Bao, J. Dhliwayo, N. Heron, D. Webb, and D. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
    [Crossref]
  11. M. van Deventer and A. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
    [Crossref]
  12. G. Agrawal, “Nonlinear phase shift,” in Nonlinear Fiber Optics (Academic, 2013), pp. 88–90.
  13. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]
  14. Y. Awaji, H. Furukawa, B. Puttnam, N. Wada, P. Chan, and R. Man, “Burst-mode optical amplifier,” in Proceeding of Optical Fiber Communications, (Optical Society of America, 2010), pp. 1–3.

2016 (1)

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W.L. Zhang, “DBA-based BOTDA using optical-comb pump and pulse coding with a single laser,” Photon. Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

2015 (4)

2012 (2)

2011 (1)

2008 (1)

2007 (1)

1995 (1)

X. Bao, J. Dhliwayo, N. Heron, D. Webb, and D. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[Crossref]

1994 (1)

M. van Deventer and A. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Agrawal, G.

G. Agrawal, “Nonlinear phase shift,” in Nonlinear Fiber Optics (Academic, 2013), pp. 88–90.

Alem, M.

Angulo-Vinuesa, X.

Ania-Castañon, J. D.

Ao, L.

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W.L. Zhang, “DBA-based BOTDA using optical-comb pump and pulse coding with a single laser,” Photon. Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Awaji, Y.

Y. Awaji, H. Furukawa, B. Puttnam, N. Wada, P. Chan, and R. Man, “Burst-mode optical amplifier,” in Proceeding of Optical Fiber Communications, (Optical Society of America, 2010), pp. 1–3.

Bao, X.

Boot, A.

M. van Deventer and A. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Chan, P.

Y. Awaji, H. Furukawa, B. Puttnam, N. Wada, P. Chan, and R. Man, “Burst-mode optical amplifier,” in Proceeding of Optical Fiber Communications, (Optical Society of America, 2010), pp. 1–3.

Chang, H. Q.

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W.L. Zhang, “DBA-based BOTDA using optical-comb pump and pulse coding with a single laser,” Photon. Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Chen, L.

Corredera, P.

Dhliwayo, J.

X. Bao, J. Dhliwayo, N. Heron, D. Webb, and D. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[Crossref]

Dong, Y.

Eyal, A.

Foaleng, S. M.

Furukawa, H.

Y. Awaji, H. Furukawa, B. Puttnam, N. Wada, P. Chan, and R. Man, “Burst-mode optical amplifier,” in Proceeding of Optical Fiber Communications, (Optical Society of America, 2010), pp. 1–3.

González-Herráez, M.

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. Webb, and D. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[Crossref]

Jackson, D.

X. Bao, J. Dhliwayo, N. Heron, D. Webb, and D. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[Crossref]

Ji, X. L.

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W.L. Zhang, “DBA-based BOTDA using optical-comb pump and pulse coding with a single laser,” Photon. Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Jia, X. H.

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W.L. Zhang, “DBA-based BOTDA using optical-comb pump and pulse coding with a single laser,” Photon. Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Le Floch, S.

Li, W.

Li, Y.

Llera, M.

Loayssa, A.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photon. Journal, IEEE 7(6), 1–9 (2015).
[Crossref]

J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23(23), 30448–30458 (2015).
[Crossref] [PubMed]

López-Higuera, J.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photon. Journal, IEEE 7(6), 1–9 (2015).
[Crossref]

Man, R.

Y. Awaji, H. Furukawa, B. Puttnam, N. Wada, P. Chan, and R. Man, “Burst-mode optical amplifier,” in Proceeding of Optical Fiber Communications, (Optical Society of America, 2010), pp. 1–3.

Martín-López, S.

Mirapeix, J.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photon. Journal, IEEE 7(6), 1–9 (2015).
[Crossref]

Nuño, J.

Puttnam, B.

Y. Awaji, H. Furukawa, B. Puttnam, N. Wada, P. Chan, and R. Man, “Burst-mode optical amplifier,” in Proceeding of Optical Fiber Communications, (Optical Society of America, 2010), pp. 1–3.

Rochat, E.

Rodríguez-Barrios, F.

Ruiz-Lombera, R.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photon. Journal, IEEE 7(6), 1–9 (2015).
[Crossref]

Sagues, M.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photon. Journal, IEEE 7(6), 1–9 (2015).
[Crossref]

J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23(23), 30448–30458 (2015).
[Crossref] [PubMed]

Sauser, F.

Soto, M. A.

Thévenaz, L.

Tur, M.

Urricelqui, J.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photon. Journal, IEEE 7(6), 1–9 (2015).
[Crossref]

J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23(23), 30448–30458 (2015).
[Crossref] [PubMed]

van Deventer, M.

M. van Deventer and A. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Wada, N.

Y. Awaji, H. Furukawa, B. Puttnam, N. Wada, P. Chan, and R. Man, “Burst-mode optical amplifier,” in Proceeding of Optical Fiber Communications, (Optical Society of America, 2010), pp. 1–3.

Wang, Z. N.

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W.L. Zhang, “DBA-based BOTDA using optical-comb pump and pulse coding with a single laser,” Photon. Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Webb, D.

X. Bao, J. Dhliwayo, N. Heron, D. Webb, and D. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[Crossref]

Wu, H.

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W.L. Zhang, “DBA-based BOTDA using optical-comb pump and pulse coding with a single laser,” Photon. Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Xu, C.

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W.L. Zhang, “DBA-based BOTDA using optical-comb pump and pulse coding with a single laser,” Photon. Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Zadok, A.

Zhang, W.L.

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W.L. Zhang, “DBA-based BOTDA using optical-comb pump and pulse coding with a single laser,” Photon. Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

IEEE Photon. Journal, IEEE (1)

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photon. Journal, IEEE 7(6), 1–9 (2015).
[Crossref]

J. Lightwave Technol. (6)

Opt. Express (3)

Opt. Lett. (1)

Photon. Technol. Lett. (1)

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W.L. Zhang, “DBA-based BOTDA using optical-comb pump and pulse coding with a single laser,” Photon. Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Other (2)

G. Agrawal, “Nonlinear phase shift,” in Nonlinear Fiber Optics (Academic, 2013), pp. 88–90.

Y. Awaji, H. Furukawa, B. Puttnam, N. Wada, P. Chan, and R. Man, “Burst-mode optical amplifier,” in Proceeding of Optical Fiber Communications, (Optical Society of America, 2010), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Spectra of the optical waves present in the optical fiber and (b) frequency scanning method based on the temporal delay between probe and pump waves.
Fig. 2
Fig. 2 Experimental setup for the BOTDA sensor based on frequency modulation of the probe wave.
Fig. 3
Fig. 3 Brillouin gain distribution measured with (a) dual-probe-sideband BOTDA sensor using frequency modulation of the probe wave and (b) novel BOTDA with pulse amplification. A pulse duration of 45 ns was deployed in both measurements.
Fig. 4
Fig. 4 Mesured traces of dual-probe-sideband BOTDA (red line) and BOTDA with pulse gain (blue line) using 45-ns pulse duration.
Fig. 5
Fig. 5 BOTDA trace depicting the comparison of the measured polarization noise when the polarization scrambler is either used on the probe wave (red line) or on the pump pulse (blue line)
Fig. 6
Fig. 6 Amplification of pump pulses with 45-ns (dashed line) and 55-ns (solid line) duration. Pulses are shown at the input of the fiber (red line), output of the fiber without gain (blue line) and amplified pulses (green line).
Fig. 7
Fig. 7 Measured BFS distribution along the fiber with the pump pulses injected by the fiber’s end were the hotspot is located (red line) or by the opposite end (blue line) and detail of BFS measurement in the hotspot (inset)
Fig. 8
Fig. 8 Precision of the BFS measurement obtained along the fiber.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P P ( z ) = P P ( 0 ) exp [ 0 z η ( z ) g B ( Δ ν ) A e f f P S ( L ) exp ( α ( L z ) ) d z ] exp ( α z )
Δ ν ( z ) = ν P ν S ( z ) + B F S ( z )
Δ f ( t ) = γ L e f f 2 π d P ( t ) d t

Metrics