Abstract

An experimental study of a static helium gas gap heat switch concept for laser amplification is presented. High single pass gains with large co-sintered ceramic Yb:YAG disks are recorded in the 80-200K temperature range on a diode pumped active mirror amplifier.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures

Antonio Lucianetti, Daniel Albach, and Jean-Christophe Chanteloup
Opt. Express 19(13) 12766-12780 (2011)

14 J / 2 Hz Yb3+:YAG diode pumped solid state laser chain

Thierry Gonçalvès-Novo, Daniel Albach, Bernard Vincent, Mikayel Arzakantsyan, and Jean-Christophe Chanteloup
Opt. Express 21(1) 855-866 (2013)

Large size crystalline vs. co-sintered ceramic Yb3+:YAG disk performance in diode pumped amplifiers

Daniel Albach and Jean-Christophe Chanteloup
Opt. Express 23(1) 570-579 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Hein, S. Podleska, M. Siebold, M. Schnepp, M. Hornung, G. Quednau, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode pumped chirped pulse amplification to the joule level and beyond,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., (Optical Society of America, 2005), paper 762.
  2. A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).
  3. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008).
    [Crossref] [PubMed]
  4. J.-C. Chanteloup, D. Albach, A. Lucianetti, T. Novo, and B. Vincent, “6.6 J / 2 Hz Yb:YAG diode-pumped laser chain activation,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuE4.
  5. J. Koerner, J. Hein, M. Kahle, H. Liebetrau, M. Kaluza, and M. Siebold, “High efficiency nanosecond pulse amplification based on diode-pumped cryogenic-cooled Yb:YAG,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuE2.
  6. M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
    [Crossref]
  7. T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain,” Opt. Express 21(1), 855–866 (2013).
    [Crossref] [PubMed]
  8. M. Siebold, M. Loeser, G. Harzendorf, H. Nehring, I. Tsybin, F. Roeser, D. Albach, and U. Schramm, “High-energy diode-pumped D2O-cooled multislab Yb:YAG and Yb:QX-glass lasers,” Opt. Lett. 39(12), 3611–3614 (2014).
    [Crossref] [PubMed]
  9. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. De Vido, J. M. Smith, T. J. Butcher, C. Hernandez-Gomez, R. J. S. Greenhalgh, and J. L. Collier, “DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser,” Opt. Express 23(15), 19542–19551 (2015).
    [Crossref] [PubMed]
  10. M. Divoky, S. Tokita, S. Hwang, T. Kawashima, H. Kan, A. Lucianetti, T. Mocek, and J. Kawanaka, “1-J operation of monolithic composite ceramics with Yb:YAG thin layers: multi-TRAM at 10-Hz repetition rate and prospects for 100-Hz operation,” Opt. Lett. 40(6), 855–858 (2015).
    [Crossref] [PubMed]
  11. G. I. Peters and L. Allen, “Amplified spontaneous emission 0.1.threshold condition,” J. Phys. A 4(2), 238–243 (1971).
    [Crossref]
  12. L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8(4), 2031–2047 (1973).
    [Crossref]
  13. J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photonics J. 3(2), 245–248 (2011).
    [Crossref]
  14. D. Albach, T. Novo, B. Vincent, and J. Chanteloup, “Beyond the current 10J energy level for the Lucia laser system with a cryogenically cooled second amplifier head,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AW4A.16.
  15. D. Albach, G. LeTouzé, and J.-C. Chanteloup, “Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers,” Opt. Express 19(9), 8413–8422 (2011).
    [Crossref] [PubMed]
  16. D. Albach, J.-C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express 17(5), 3792–3801 (2009).
    [Crossref] [PubMed]
  17. S. Guch., “Parasitic suppression in large aperture disk lasers employing liquid edge claddings,” Appl. Opt. 15(6), 1453–1457 (1976).
    [Crossref] [PubMed]
  18. K. Ertel, C. Hooker, S. J. Hawkes, B. T. Parry, and J. L. Collier, “ASE suppression in a high energy Titanium sapphire amplifier,” Opt. Express 16(11), 8039–8049 (2008).
    [Crossref] [PubMed]
  19. T. Gonçalvès-Novo, B. Vincent, and J. Chanteloup, “From 10 to 30 joules with the Lucia laser system: update on current performance and cryogenic amplifier development,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) (OSA, 2013), paper ATu3A.19.
    [Crossref]
  20. H. Yagi, J. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121(1), 88–94 (2006).
    [Crossref]
  21. D. Albach, T. Gonçalvès-Novo, and J.-C. Chanteloup, “Experimental cross evaluation of large size ceramic and crystalline Yb3+:YAG laser gain media performance at high average power,” Plasma Fusion Res. 8(0), 3405049 (2013).
    [Crossref]
  22. A. Ikesue, O. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
    [Crossref]
  23. K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).
  24. J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett. 35(21), 3598–3600 (2010).
    [Crossref] [PubMed]
  25. D. Albach and J.-C. Chanteloup, “Large size crystalline vs. co-sintered ceramic Yb3+:YAG disk performance in diode pumped amplifiers,” Opt. Express 23(1), 570–579 (2015).
    [Crossref] [PubMed]
  26. A. Lucianetti, D. Albach, and J.-C. Chanteloup, “Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures,” Opt. Express 19(13), 12766–12780 (2011).
    [Crossref] [PubMed]
  27. L. Duband, “A thermal switch for use at liquid helium temperature in space-born cryogenic systems,” Cryocoolers 8, 731 (1995).
  28. G. O. Jones, “A thermal switch for use at low temperature,” J. Sci. Instrum. 28(6), 181 (1951).
    [Crossref]
  29. D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the Lucia laser system,” J. Phys. Conf. Ser. 244(3), 032015 (2010).
    [Crossref]
  30. D. Albach, J.-C. Chanteloup, and G. Le Touzé, “Amplified spontaneous emission in large size, high gain Yb3+:YAG amplifiers: numerical modeling and experimental test bench for foreseen kJ-range diode pumped solid state laser facilities,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CFQ2.
  31. J.-C. Chanteloup, M. Arzakantsyan, and S. Marrazzo, “Defining the optimal gradient doped:YAG disk for room and low temperature diode pumped solid-state laser operations,” High Power Laser Sci. Eng. 2, e35 (2014).
    [Crossref]
  32. J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser diode array for 10 Hz/1ms Yb:YAG pumping,” in Fifth International Conference on Inertial Fusion Sciences and Application (IFSA, 2007), paper 032056.
    [Crossref]
  33. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chan, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  34. D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb: YAG absorption at ambient and LF cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
    [Crossref]
  35. Spectroscopic data provided by Joachim Hein and Jörg Körner, Friedrich Schiller University Jena, Department of Optics and Quantum Electronics, Jena, Thuringia, Germany.

2015 (3)

2014 (2)

J.-C. Chanteloup, M. Arzakantsyan, and S. Marrazzo, “Defining the optimal gradient doped:YAG disk for room and low temperature diode pumped solid-state laser operations,” High Power Laser Sci. Eng. 2, e35 (2014).
[Crossref]

M. Siebold, M. Loeser, G. Harzendorf, H. Nehring, I. Tsybin, F. Roeser, D. Albach, and U. Schramm, “High-energy diode-pumped D2O-cooled multislab Yb:YAG and Yb:QX-glass lasers,” Opt. Lett. 39(12), 3611–3614 (2014).
[Crossref] [PubMed]

2013 (3)

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain,” Opt. Express 21(1), 855–866 (2013).
[Crossref] [PubMed]

D. Albach, T. Gonçalvès-Novo, and J.-C. Chanteloup, “Experimental cross evaluation of large size ceramic and crystalline Yb3+:YAG laser gain media performance at high average power,” Plasma Fusion Res. 8(0), 3405049 (2013).
[Crossref]

2011 (3)

2010 (2)

J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett. 35(21), 3598–3600 (2010).
[Crossref] [PubMed]

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the Lucia laser system,” J. Phys. Conf. Ser. 244(3), 032015 (2010).
[Crossref]

2009 (1)

2008 (2)

2007 (2)

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chan, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

2006 (1)

H. Yagi, J. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121(1), 88–94 (2006).
[Crossref]

2005 (2)

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb: YAG absorption at ambient and LF cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

1995 (2)

L. Duband, “A thermal switch for use at liquid helium temperature in space-born cryogenic systems,” Cryocoolers 8, 731 (1995).

A. Ikesue, O. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

1976 (1)

1973 (1)

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8(4), 2031–2047 (1973).
[Crossref]

1971 (1)

G. I. Peters and L. Allen, “Amplified spontaneous emission 0.1.threshold condition,” J. Phys. A 4(2), 238–243 (1971).
[Crossref]

1951 (1)

G. O. Jones, “A thermal switch for use at low temperature,” J. Sci. Instrum. 28(6), 181 (1951).
[Crossref]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chan, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Akiyama, J.

Albach, D.

D. Albach and J.-C. Chanteloup, “Large size crystalline vs. co-sintered ceramic Yb3+:YAG disk performance in diode pumped amplifiers,” Opt. Express 23(1), 570–579 (2015).
[Crossref] [PubMed]

M. Siebold, M. Loeser, G. Harzendorf, H. Nehring, I. Tsybin, F. Roeser, D. Albach, and U. Schramm, “High-energy diode-pumped D2O-cooled multislab Yb:YAG and Yb:QX-glass lasers,” Opt. Lett. 39(12), 3611–3614 (2014).
[Crossref] [PubMed]

T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain,” Opt. Express 21(1), 855–866 (2013).
[Crossref] [PubMed]

D. Albach, T. Gonçalvès-Novo, and J.-C. Chanteloup, “Experimental cross evaluation of large size ceramic and crystalline Yb3+:YAG laser gain media performance at high average power,” Plasma Fusion Res. 8(0), 3405049 (2013).
[Crossref]

J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photonics J. 3(2), 245–248 (2011).
[Crossref]

A. Lucianetti, D. Albach, and J.-C. Chanteloup, “Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures,” Opt. Express 19(13), 12766–12780 (2011).
[Crossref] [PubMed]

D. Albach, G. LeTouzé, and J.-C. Chanteloup, “Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers,” Opt. Express 19(9), 8413–8422 (2011).
[Crossref] [PubMed]

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the Lucia laser system,” J. Phys. Conf. Ser. 244(3), 032015 (2010).
[Crossref]

D. Albach, J.-C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express 17(5), 3792–3801 (2009).
[Crossref] [PubMed]

Allen, L.

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8(4), 2031–2047 (1973).
[Crossref]

G. I. Peters and L. Allen, “Amplified spontaneous emission 0.1.threshold condition,” J. Phys. A 4(2), 238–243 (1971).
[Crossref]

Armstrong, P.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Arzakantsyan, M.

J.-C. Chanteloup, M. Arzakantsyan, and S. Marrazzo, “Defining the optimal gradient doped:YAG disk for room and low temperature diode pumped solid-state laser operations,” High Power Laser Sci. Eng. 2, e35 (2014).
[Crossref]

T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain,” Opt. Express 21(1), 855–866 (2013).
[Crossref] [PubMed]

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the Lucia laser system,” J. Phys. Conf. Ser. 244(3), 032015 (2010).
[Crossref]

Ault, E.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Banerjee, S.

Bayramian, A.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Beach, R.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Bibeau, C.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Bisson, J.

H. Yagi, J. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121(1), 88–94 (2006).
[Crossref]

Bisson, J.-F.

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Bourdet, G.

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the Lucia laser system,” J. Phys. Conf. Ser. 244(3), 032015 (2010).
[Crossref]

Brown, D. C.

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb: YAG absorption at ambient and LF cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Butcher, T. J.

Caird, J.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Campbell, R.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Chai, B.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Chan, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chan, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Chanteloup, J.-C.

D. Albach and J.-C. Chanteloup, “Large size crystalline vs. co-sintered ceramic Yb3+:YAG disk performance in diode pumped amplifiers,” Opt. Express 23(1), 570–579 (2015).
[Crossref] [PubMed]

J.-C. Chanteloup, M. Arzakantsyan, and S. Marrazzo, “Defining the optimal gradient doped:YAG disk for room and low temperature diode pumped solid-state laser operations,” High Power Laser Sci. Eng. 2, e35 (2014).
[Crossref]

D. Albach, T. Gonçalvès-Novo, and J.-C. Chanteloup, “Experimental cross evaluation of large size ceramic and crystalline Yb3+:YAG laser gain media performance at high average power,” Plasma Fusion Res. 8(0), 3405049 (2013).
[Crossref]

T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain,” Opt. Express 21(1), 855–866 (2013).
[Crossref] [PubMed]

A. Lucianetti, D. Albach, and J.-C. Chanteloup, “Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures,” Opt. Express 19(13), 12766–12780 (2011).
[Crossref] [PubMed]

D. Albach, G. LeTouzé, and J.-C. Chanteloup, “Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers,” Opt. Express 19(9), 8413–8422 (2011).
[Crossref] [PubMed]

J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photonics J. 3(2), 245–248 (2011).
[Crossref]

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the Lucia laser system,” J. Phys. Conf. Ser. 244(3), 032015 (2010).
[Crossref]

D. Albach, J.-C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express 17(5), 3792–3801 (2009).
[Crossref] [PubMed]

Collier, J. L.

Cone, R. L.

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb: YAG absorption at ambient and LF cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Dawson, J.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

De Vido, M.

Divoky, M.

M. Divoky, S. Tokita, S. Hwang, T. Kawashima, H. Kan, A. Lucianetti, T. Mocek, and J. Kawanaka, “1-J operation of monolithic composite ceramics with Yb:YAG thin layers: multi-TRAM at 10-Hz repetition rate and prospects for 100-Hz operation,” Opt. Lett. 40(6), 855–858 (2015).
[Crossref] [PubMed]

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Duband, L.

L. Duband, “A thermal switch for use at liquid helium temperature in space-born cryogenic systems,” Cryocoolers 8, 731 (1995).

Ebbers, C.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Equall, R. W.

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb: YAG absorption at ambient and LF cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Erlandson, A.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Ertel, K.

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chan, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Fei, Y.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Freitas, B.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Gonçalvès-Novo, T.

D. Albach, T. Gonçalvès-Novo, and J.-C. Chanteloup, “Experimental cross evaluation of large size ceramic and crystalline Yb3+:YAG laser gain media performance at high average power,” Plasma Fusion Res. 8(0), 3405049 (2013).
[Crossref]

T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain,” Opt. Express 21(1), 855–866 (2013).
[Crossref] [PubMed]

Greenhalgh, R. J. S.

Guch, S.

Harzendorf, G.

Hawkes, S. J.

Hernandez-Gomez, C.

Hollander, P.

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the Lucia laser system,” J. Phys. Conf. Ser. 244(3), 032015 (2010).
[Crossref]

Hooker, C.

Hwang, S.

Ikegawa, T.

Ikesue, A.

A. Ikesue, O. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Izawa, Y.

Jones, G. O.

G. O. Jones, “A thermal switch for use at low temperature,” J. Sci. Instrum. 28(6), 181 (1951).
[Crossref]

Kamata, K.

A. Ikesue, O. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Kaminskii, A. A.

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Kan, H.

Kanabe, T.

Kawanaka, J.

Kawashima, T.

Kent, R.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Kinoshita, O.

A. Ikesue, O. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Kurita, T.

Ladran, T.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

LeTouzé, G.

Liao, Z.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Loeser, M.

Lucianetti, A.

Marrazzo, S.

J.-C. Chanteloup, M. Arzakantsyan, and S. Marrazzo, “Defining the optimal gradient doped:YAG disk for room and low temperature diode pumped solid-state laser operations,” High Power Laser Sci. Eng. 2, e35 (2014).
[Crossref]

Mason, P. D.

Matsumoto, O.

Menapace, J.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Miyamoto, M.

Miyanaga, N.

Mocek, T.

M. Divoky, S. Tokita, S. Hwang, T. Kawashima, H. Kan, A. Lucianetti, T. Mocek, and J. Kawanaka, “1-J operation of monolithic composite ceramics with Yb:YAG thin layers: multi-TRAM at 10-Hz repetition rate and prospects for 100-Hz operation,” Opt. Lett. 40(6), 855–858 (2015).
[Crossref] [PubMed]

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Molander, B.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Nakatsuka, M.

Nehring, H.

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chan, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Parry, B. T.

Payne, S.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Peters, G. I.

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8(4), 2031–2047 (1973).
[Crossref]

G. I. Peters and L. Allen, “Amplified spontaneous emission 0.1.threshold condition,” J. Phys. A 4(2), 238–243 (1971).
[Crossref]

Peterson, N.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Phillips, P. J.

Pilar, J.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Randles, M.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chan, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Roeser, F.

Sato, Y.

Sawicka, M.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Schaffers, K.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Schramm, U.

Sekine, T.

Shirakawa, A.

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Siebold, M.

Sikocinski, P.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Slezak, O.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Smith, J. M.

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chan, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Sun, Y.

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb: YAG absorption at ambient and LF cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

Sutton, S.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Taira, T.

Takaichi, K.

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Tassano, J.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Telford, S.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chan, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Tokita, S.

Touzé, G.

Tsybin, I.

Ueda, K.

H. Yagi, J. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121(1), 88–94 (2006).
[Crossref]

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Utterback, E.

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

Vincent, B.

T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain,” Opt. Express 21(1), 855–866 (2013).
[Crossref] [PubMed]

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the Lucia laser system,” J. Phys. Conf. Ser. 244(3), 032015 (2010).
[Crossref]

Yagi, H.

H. Yagi, J. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121(1), 88–94 (2006).
[Crossref]

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Yanagitani, T.

H. Yagi, J. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121(1), 88–94 (2006).
[Crossref]

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Yasuhara, R.

Yoshida, H.

Yoshida, K.

A. Ikesue, O. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Appl. Opt. (1)

Cryocoolers (1)

L. Duband, “A thermal switch for use at liquid helium temperature in space-born cryogenic systems,” Cryocoolers 8, 731 (1995).

Fus. Sci. Technol. (1)

A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fus. Sci. Technol. 52, 383–387 (2007).

High Power Laser Sci. Eng. (1)

J.-C. Chanteloup, M. Arzakantsyan, and S. Marrazzo, “Defining the optimal gradient doped:YAG disk for room and low temperature diode pumped solid-state laser operations,” High Power Laser Sci. Eng. 2, e35 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chan, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb: YAG absorption at ambient and LF cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[Crossref]

IEEE Photonics J. (1)

J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photonics J. 3(2), 245–248 (2011).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Ikesue, O. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

J. Lumin. (1)

H. Yagi, J. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121(1), 88–94 (2006).
[Crossref]

J. Phys. A (1)

G. I. Peters and L. Allen, “Amplified spontaneous emission 0.1.threshold condition,” J. Phys. A 4(2), 238–243 (1971).
[Crossref]

J. Phys. Conf. Ser. (1)

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the Lucia laser system,” J. Phys. Conf. Ser. 244(3), 032015 (2010).
[Crossref]

J. Sci. Instrum. (1)

G. O. Jones, “A thermal switch for use at low temperature,” J. Sci. Instrum. 28(6), 181 (1951).
[Crossref]

Laser Phys. (1)

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Opt. Eng. (1)

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Opt. Express (7)

T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain,” Opt. Express 21(1), 855–866 (2013).
[Crossref] [PubMed]

S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. De Vido, J. M. Smith, T. J. Butcher, C. Hernandez-Gomez, R. J. S. Greenhalgh, and J. L. Collier, “DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser,” Opt. Express 23(15), 19542–19551 (2015).
[Crossref] [PubMed]

K. Ertel, C. Hooker, S. J. Hawkes, B. T. Parry, and J. L. Collier, “ASE suppression in a high energy Titanium sapphire amplifier,” Opt. Express 16(11), 8039–8049 (2008).
[Crossref] [PubMed]

D. Albach, G. LeTouzé, and J.-C. Chanteloup, “Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers,” Opt. Express 19(9), 8413–8422 (2011).
[Crossref] [PubMed]

D. Albach, J.-C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express 17(5), 3792–3801 (2009).
[Crossref] [PubMed]

D. Albach and J.-C. Chanteloup, “Large size crystalline vs. co-sintered ceramic Yb3+:YAG disk performance in diode pumped amplifiers,” Opt. Express 23(1), 570–579 (2015).
[Crossref] [PubMed]

A. Lucianetti, D. Albach, and J.-C. Chanteloup, “Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures,” Opt. Express 19(13), 12766–12780 (2011).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (1)

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8(4), 2031–2047 (1973).
[Crossref]

Plasma Fusion Res. (1)

D. Albach, T. Gonçalvès-Novo, and J.-C. Chanteloup, “Experimental cross evaluation of large size ceramic and crystalline Yb3+:YAG laser gain media performance at high average power,” Plasma Fusion Res. 8(0), 3405049 (2013).
[Crossref]

Other (8)

D. Albach, J.-C. Chanteloup, and G. Le Touzé, “Amplified spontaneous emission in large size, high gain Yb3+:YAG amplifiers: numerical modeling and experimental test bench for foreseen kJ-range diode pumped solid state laser facilities,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CFQ2.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J Laser diode array for 10 Hz/1ms Yb:YAG pumping,” in Fifth International Conference on Inertial Fusion Sciences and Application (IFSA, 2007), paper 032056.
[Crossref]

Spectroscopic data provided by Joachim Hein and Jörg Körner, Friedrich Schiller University Jena, Department of Optics and Quantum Electronics, Jena, Thuringia, Germany.

J. Hein, S. Podleska, M. Siebold, M. Schnepp, M. Hornung, G. Quednau, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode pumped chirped pulse amplification to the joule level and beyond,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., (Optical Society of America, 2005), paper 762.

D. Albach, T. Novo, B. Vincent, and J. Chanteloup, “Beyond the current 10J energy level for the Lucia laser system with a cryogenically cooled second amplifier head,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AW4A.16.

T. Gonçalvès-Novo, B. Vincent, and J. Chanteloup, “From 10 to 30 joules with the Lucia laser system: update on current performance and cryogenic amplifier development,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) (OSA, 2013), paper ATu3A.19.
[Crossref]

J.-C. Chanteloup, D. Albach, A. Lucianetti, T. Novo, and B. Vincent, “6.6 J / 2 Hz Yb:YAG diode-pumped laser chain activation,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuE4.

J. Koerner, J. Hein, M. Kahle, H. Liebetrau, M. Kaluza, and M. Siebold, “High efficiency nanosecond pulse amplification based on diode-pumped cryogenic-cooled Yb:YAG,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuE2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic illustration of heat transfer processes at work between faces of a helium filled cavity.
Fig. 2
Fig. 2 Thermal conductivity of Helium as a function of pressure for temperature of 160 K (plain lines) and 300 K (dashed lines) and various Helium gap thicknesses.
Fig. 3
Fig. 3 Illustration of both generations of Cr4+/Yb3+:YAG co-sintered ceramics.
Fig. 4
Fig. 4 CAD section view of the low temperature laser head.
Fig. 5
Fig. 5 Left, picture of a Yb:YAG crystal in its mount. The three thermal probes allow temperature measurement at 0, 3 and 7 mm depths. While the amplifier is operated at 1, 2 and 5 Hz, a below 5K axial gradient is observed. Helium pressure is set at 700 mbar, gap thickness at 400 µm while pump intensity reaches 5.5 kW/cm2 homogeneously distributed over the pump area illustrated in red on left picture.
Fig. 6
Fig. 6 Yb:YAG ceramic temperature versus helium pressure in a static 400 µm thick cell. Iso-mean free path (MFP) curves are displayed for 40, 4 and 0.4 µm. The first one defines the limits between transition (blue) and viscous (green) regimes as defined in section 2.1. Data points were collected while the 5.5 kW/cm2 pump intensity was delivered at 2 Hz with a 1 ms pulse duration.
Fig. 7
Fig. 7 Single pass gain temporal behavior for two 1 cm thick, 77 mm in diameter Yb:YAG disks operated in the low temperature Lucia amplifier. The 5.5 kW/cm2 pump is limited at 1 ms duration (blue area) with a 2 Hz repetition rate. The left graph pictures gain curves obtained in the crystal case while the right graph is dedicated to the co-sintered ceramic. The Helium gas gap thickness is 150+/−5 µm.
Fig. 8
Fig. 8 Maximum gain observed versus Cr4+/Yb3+:YAG co-sintered ceramic temperature. Extraction wavelength is 1030.3 nm. Pump intensity is 5.5 kW/cm2 with 1 ms pulse duration. The blue squares are the maximum values observed on Fig. 7 (right), i.e. obtained at 2 Hz with a 150+/−5 µm Helium gas gap thickness. The red disks are gain maxima obtained at 5 Hz with a 55+/−5 µm gap.
Fig. 9
Fig. 9 Maximum emission cross section (red, left scale) and wavelength allowing to reach that maximum (green, right scale) versus temperature. Reaching high cross section values around 1.10−19 cm2 requires a 1029.5 nm source. This graph was derived from data kindly shared by [35].
Fig. 10
Fig. 10 Small signal gain recorded at 1029.7 nm while pumping the Cr4+/Yb3+:YAG co-sintered ceramic at 5.5kW/cm2 intensity and single shot, 0.5, 1 and 2 Hz repetition rate. Respective temperatures are 84, 98, 117, 142 K. Helium pressure is 1 bar.
Fig. 11
Fig. 11 Left, blue: single pass gain recorded in pulse mode (10 ns / 2 Hz) with the Cr4+/Yb3+:YAG co-sintered ceramic. Right, Red: Amplified energy in a single pass.

Tables (1)

Tables Icon

Table 1 Co-sintered ceramics specifications.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k(T)= k bulk (T) ( 1+ 8 3 k bulk (T)T ep 3RT ( 1 α 1 + 1 α 2 1 ) ) 1

Metrics