Abstract

Lightning events can cause fast polarization rotations and phase changes in optical transmission fibers due to strong electrical currents and magnetic fields. Whereas these are unlikely to affect legacy transmission systems with direct detection, different mechanisms have to be considered in systems with local oscillator based coherent receivers and digital signal processing. A theoretical analysis reveals that lightning events can result in polarization rotations with speeds as fast as a few hundred kRad/s. We discuss possible mechanisms how such lightning events can affect coherent receivers with digital signal processing. In experimental investigations with a high current pulse generator and transponder prototypes, we observed post FEC errors after polarization rotation events which can be expected from lightning strikes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Window-split structured frequency domain Kalman equalization scheme for large PMD and ultra-fast RSOP in an optical coherent PDM-QPSK system

Zibo Zheng, Nan Cui, Hengying Xu, Xiaoguang Zhang, Wenbo Zhang, Lixia Xi, Yuanyuan Fang, and Liangchuan Li
Opt. Express 26(6) 7211-7226 (2018)

All-Digital Timing Recovery and Adaptive Equalization for 112 Gbit∕s POLMUX-NRZ-DQPSK Optical Coherent Receivers

Xian Zhou, Xue Chen, Weiqing Zhou, Yangyang Fan, Hai Zhu, and Zhiyu Li
J. Opt. Commun. Netw. 2(11) 984-990 (2010)

References

  • View by:
  • |
  • |
  • |

  1. N. E. Hecker, E. Gottwald, K. Kotten, C.-J. Weiske, A. Schöpflin, P. M. Krummrich, and C. Glingener, “Automated polarization control demonstrated in a 1.28 Tbit/s (16x2x40 Gbit/s) polarization multiplexed DWDM field trial,” in 27th European Conference on Optical Communication (ECOC, 2001), paper Mo.L.3.
    [Crossref]
  2. J. Wuttke, P. M. Krummrich, and J. Rösch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photonics Technol. Lett. 15(6), 882–884 (2003).
    [Crossref]
  3. P. M. Krummrich and K. Kotten, “Extremely fast (microsecond timescale) polarization changes in high speed long haul WDM transmission systems,” in Conference on Optical Fiber Communication (OFC, 2004), paper FI3.
  4. P. M. Krummrich, E.-D. Schmidt, W. Weiershausen, and A. Mattheus, “Field trial results on statistics of fast polarization changes in long haul WDM transmission systems,“ in Conference on Optical Fiber Communication (OFC, 2005), paper OThT6.
    [Crossref]
  5. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photonics Technol. Lett. 16(2), 674–676 (2004).
    [Crossref]
  6. D. S. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Unrepeated 210-km transmission with coherent detection and digital signal processing of 20-Gb/s QPSK signal,” in Conference on Optical Fiber Communication (OFC, 2005), paper OTuL4.
    [Crossref]
  7. M. Kurono, M. Kuribara, and K. Isawa, “Field measurements and a study of transient state of polarization produced in OPGW by lightning,” Electr. Eng. Jpn. 128(4), 55–64 (1999).
    [Crossref]
  8. S. M. Pietralunga, J. Colombelli, A. Fellegara, and M. Martinelli, “Fast polarization effects in optical aerial cables caused by lightning and impulse current,” IEEE Photonics Technol. Lett. 16(11), 2583–2585 (2004).
    [Crossref]
  9. V. A. Rakov and M. A. Uman, Lightning: Physics and Effects (Cambridge University Press, 2007), Chap. 5.
  10. W. R. Gamerota, J. O. Elismé, M. A. Uman, and V. A. Rakov, “Current waveforms for lightning simulation,” IEEE Trans. Electromagn. Compat. 54(4), 880–888 (2012).
    [Crossref]
  11. J. L. Cruz, M. V. Andres, and M. A. Hernandez, “Faraday effect in standard optical fibers: dispersion of the effective Verdet constant,” Appl. Opt. 35(6), 922–927 (1996).
    [Crossref] [PubMed]
  12. M. Kurono, K. Isawa, and M. Kuribara, “Transient state of polarization on optical ground wire caused by lightning and impulse current,” Proc. SPIE 2873, 242–245 (1996).
    [Crossref]

2012 (1)

W. R. Gamerota, J. O. Elismé, M. A. Uman, and V. A. Rakov, “Current waveforms for lightning simulation,” IEEE Trans. Electromagn. Compat. 54(4), 880–888 (2012).
[Crossref]

2004 (2)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photonics Technol. Lett. 16(2), 674–676 (2004).
[Crossref]

S. M. Pietralunga, J. Colombelli, A. Fellegara, and M. Martinelli, “Fast polarization effects in optical aerial cables caused by lightning and impulse current,” IEEE Photonics Technol. Lett. 16(11), 2583–2585 (2004).
[Crossref]

2003 (1)

J. Wuttke, P. M. Krummrich, and J. Rösch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photonics Technol. Lett. 15(6), 882–884 (2003).
[Crossref]

1999 (1)

M. Kurono, M. Kuribara, and K. Isawa, “Field measurements and a study of transient state of polarization produced in OPGW by lightning,” Electr. Eng. Jpn. 128(4), 55–64 (1999).
[Crossref]

1996 (2)

J. L. Cruz, M. V. Andres, and M. A. Hernandez, “Faraday effect in standard optical fibers: dispersion of the effective Verdet constant,” Appl. Opt. 35(6), 922–927 (1996).
[Crossref] [PubMed]

M. Kurono, K. Isawa, and M. Kuribara, “Transient state of polarization on optical ground wire caused by lightning and impulse current,” Proc. SPIE 2873, 242–245 (1996).
[Crossref]

Andres, M. V.

Colombelli, J.

S. M. Pietralunga, J. Colombelli, A. Fellegara, and M. Martinelli, “Fast polarization effects in optical aerial cables caused by lightning and impulse current,” IEEE Photonics Technol. Lett. 16(11), 2583–2585 (2004).
[Crossref]

Cruz, J. L.

Elismé, J. O.

W. R. Gamerota, J. O. Elismé, M. A. Uman, and V. A. Rakov, “Current waveforms for lightning simulation,” IEEE Trans. Electromagn. Compat. 54(4), 880–888 (2012).
[Crossref]

Fellegara, A.

S. M. Pietralunga, J. Colombelli, A. Fellegara, and M. Martinelli, “Fast polarization effects in optical aerial cables caused by lightning and impulse current,” IEEE Photonics Technol. Lett. 16(11), 2583–2585 (2004).
[Crossref]

Gamerota, W. R.

W. R. Gamerota, J. O. Elismé, M. A. Uman, and V. A. Rakov, “Current waveforms for lightning simulation,” IEEE Trans. Electromagn. Compat. 54(4), 880–888 (2012).
[Crossref]

Hernandez, M. A.

Isawa, K.

M. Kurono, M. Kuribara, and K. Isawa, “Field measurements and a study of transient state of polarization produced in OPGW by lightning,” Electr. Eng. Jpn. 128(4), 55–64 (1999).
[Crossref]

M. Kurono, K. Isawa, and M. Kuribara, “Transient state of polarization on optical ground wire caused by lightning and impulse current,” Proc. SPIE 2873, 242–245 (1996).
[Crossref]

Krummrich, P. M.

J. Wuttke, P. M. Krummrich, and J. Rösch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photonics Technol. Lett. 15(6), 882–884 (2003).
[Crossref]

Kuribara, M.

M. Kurono, M. Kuribara, and K. Isawa, “Field measurements and a study of transient state of polarization produced in OPGW by lightning,” Electr. Eng. Jpn. 128(4), 55–64 (1999).
[Crossref]

M. Kurono, K. Isawa, and M. Kuribara, “Transient state of polarization on optical ground wire caused by lightning and impulse current,” Proc. SPIE 2873, 242–245 (1996).
[Crossref]

Kurono, M.

M. Kurono, M. Kuribara, and K. Isawa, “Field measurements and a study of transient state of polarization produced in OPGW by lightning,” Electr. Eng. Jpn. 128(4), 55–64 (1999).
[Crossref]

M. Kurono, K. Isawa, and M. Kuribara, “Transient state of polarization on optical ground wire caused by lightning and impulse current,” Proc. SPIE 2873, 242–245 (1996).
[Crossref]

Martinelli, M.

S. M. Pietralunga, J. Colombelli, A. Fellegara, and M. Martinelli, “Fast polarization effects in optical aerial cables caused by lightning and impulse current,” IEEE Photonics Technol. Lett. 16(11), 2583–2585 (2004).
[Crossref]

Pietralunga, S. M.

S. M. Pietralunga, J. Colombelli, A. Fellegara, and M. Martinelli, “Fast polarization effects in optical aerial cables caused by lightning and impulse current,” IEEE Photonics Technol. Lett. 16(11), 2583–2585 (2004).
[Crossref]

Rakov, V. A.

W. R. Gamerota, J. O. Elismé, M. A. Uman, and V. A. Rakov, “Current waveforms for lightning simulation,” IEEE Trans. Electromagn. Compat. 54(4), 880–888 (2012).
[Crossref]

Rösch, J.

J. Wuttke, P. M. Krummrich, and J. Rösch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photonics Technol. Lett. 15(6), 882–884 (2003).
[Crossref]

Taylor, M. G.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photonics Technol. Lett. 16(2), 674–676 (2004).
[Crossref]

Uman, M. A.

W. R. Gamerota, J. O. Elismé, M. A. Uman, and V. A. Rakov, “Current waveforms for lightning simulation,” IEEE Trans. Electromagn. Compat. 54(4), 880–888 (2012).
[Crossref]

Wuttke, J.

J. Wuttke, P. M. Krummrich, and J. Rösch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photonics Technol. Lett. 15(6), 882–884 (2003).
[Crossref]

Appl. Opt. (1)

Electr. Eng. Jpn. (1)

M. Kurono, M. Kuribara, and K. Isawa, “Field measurements and a study of transient state of polarization produced in OPGW by lightning,” Electr. Eng. Jpn. 128(4), 55–64 (1999).
[Crossref]

IEEE Photonics Technol. Lett. (3)

S. M. Pietralunga, J. Colombelli, A. Fellegara, and M. Martinelli, “Fast polarization effects in optical aerial cables caused by lightning and impulse current,” IEEE Photonics Technol. Lett. 16(11), 2583–2585 (2004).
[Crossref]

J. Wuttke, P. M. Krummrich, and J. Rösch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photonics Technol. Lett. 15(6), 882–884 (2003).
[Crossref]

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photonics Technol. Lett. 16(2), 674–676 (2004).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

W. R. Gamerota, J. O. Elismé, M. A. Uman, and V. A. Rakov, “Current waveforms for lightning simulation,” IEEE Trans. Electromagn. Compat. 54(4), 880–888 (2012).
[Crossref]

Proc. SPIE (1)

M. Kurono, K. Isawa, and M. Kuribara, “Transient state of polarization on optical ground wire caused by lightning and impulse current,” Proc. SPIE 2873, 242–245 (1996).
[Crossref]

Other (5)

N. E. Hecker, E. Gottwald, K. Kotten, C.-J. Weiske, A. Schöpflin, P. M. Krummrich, and C. Glingener, “Automated polarization control demonstrated in a 1.28 Tbit/s (16x2x40 Gbit/s) polarization multiplexed DWDM field trial,” in 27th European Conference on Optical Communication (ECOC, 2001), paper Mo.L.3.
[Crossref]

V. A. Rakov and M. A. Uman, Lightning: Physics and Effects (Cambridge University Press, 2007), Chap. 5.

D. S. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Unrepeated 210-km transmission with coherent detection and digital signal processing of 20-Gb/s QPSK signal,” in Conference on Optical Fiber Communication (OFC, 2005), paper OTuL4.
[Crossref]

P. M. Krummrich and K. Kotten, “Extremely fast (microsecond timescale) polarization changes in high speed long haul WDM transmission systems,” in Conference on Optical Fiber Communication (OFC, 2004), paper FI3.

P. M. Krummrich, E.-D. Schmidt, W. Weiershausen, and A. Mattheus, “Field trial results on statistics of fast polarization changes in long haul WDM transmission systems,“ in Conference on Optical Fiber Communication (OFC, 2005), paper OThT6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Sketch of the configuration which is considered to calculate the impact of lightning current on optical fiber transmission.
Fig. 2
Fig. 2 Optical fiber following a segment of a circle around the lightning current.
Fig. 3
Fig. 3 Block diagram of the experimental set-up used for measuring the influence of lightning stroke currents on a continuous wave (CW) signal generated by an external cavity laser (ECL) propagating in standard single mode fiber (SSMF).
Fig. 4
Fig. 4 Block diagram of the experimental set-up used for measuring the influence of lightning stroke currents on modulated signals propagating through an element with differential group delay (DGD). This set-up also contains polarization maintaining fibers (PMF), variable optical attenuators (VOA), erbium doped fiber amplifiers (EDFA), optical bandpass filters (OBPF), an optical spectrum analyzer (OSA), and an optical power meter (OPM).
Fig. 5
Fig. 5 a) Scheme of the high current generator. b) Time evolution of the discharge current of the high current generator. The peak current is 31 kA, the rise time from 10% to 90% of the peak current is 4.05 µs and the time from 10% peak power to 50% peak power is 20.7 µs.
Fig. 6
Fig. 6 Images of the high current generator used for the experiments.
Fig. 7
Fig. 7 Analysis of polarization rotations of a CW signal due to a high current event; the signal was recorded using a coherent receiver; a) shows the time evolution of the normalized Stokes parameters, b) shows the variation of the polarization angle χ and c) shows the Poincaré presentation of the evolution of the Stokes parameters over time. The accumulated change of the polarization angle 2χ on the Poincaré sphere is 166.05°.

Tables (1)

Tables Icon

Table 1 Relative frequency of post-FEC errors

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

I= l | H |dl .
| H ( r ) |= I 2πr .
r= y 2 + z 2 .
| H ( z ) |= I 2π d 2 + z 2 ,
H z =| H |cos( α ).
cos( α )= d r = d d 2 + z 2 .
H z ( z )= dI 2π( d 2 + z 2 ) .
dθ dz =V B z
B z ( z )= μ 0 H z ( z )= μ 0 dI 2π( d 2 + z 2 ) ,
θ= V B z dz =2V 0 B z dz = V μ 0 dI π 0 1 d 2 + z 2 dz .
θ= V μ 0 I 2 .
θ S =V μ 0 H z ( z=0 ) l eff = 0 V μ 0 H z ( z )dz.
H z ( z=0 )= I 2πd .
l eff =d π 2 .
θ S =V μ 0 H z ( z=0 ) l eff =V μ 0 I 2πd d π 2 = 1 4 V μ 0 I.
l F =2πd δ 2π =dδ
θ F =V μ 0 H z ( z=0 ) l F =V μ 0 I δ 2π .
Δ z OS = c 0 n gr τ>2 l eff ,
d max < c 0 τ π n gr ,
T DGD =[ exp( j φ 2 ) 0 0 exp( j φ 2 ) ],
φ=ωΔτ.

Metrics