Abstract

To understand and assess the effect of the sensor spectral response function (SRF) on the accuracy of the top of the atmosphere (TOA) Rayleigh-scattering radiance computation, new TOA Rayleigh radiance lookup tables (LUTs) over global oceans and inland waters have been generated. The new Rayleigh LUTs include spectral coverage of 335–2555 nm, all possible solar-sensor geometries, and surface wind speeds of 0–30 m/s. Using the new Rayleigh LUTs, the sensor SRF effect on the accuracy of the TOA Rayleigh radiance computation has been evaluated for spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS)-1, showing some important uncertainties for VIIRS-SNPP particularly for large solar- and/or sensor-zenith angles as well as for large Rayleigh optical thicknesses (i.e., short wavelengths) and bands with broad spectral bandwidths. To accurately account for the sensor SRF effect, a new correction algorithm has been developed for VIIRS spectral bands, which improves the TOA Rayleigh radiance accuracy to ~0.01% even for the large solar-zenith angles of 70°–80°, compared with the error of ~0.7% without applying the correction for the VIIRS-SNPP 410 nm band. The same methodology that accounts for the sensor SRF effect on the Rayleigh radiance computation can be used for other satellite sensors. In addition, with the new Rayleigh LUTs, the effect of surface atmospheric pressure variation on the TOA Rayleigh radiance computation can be calculated precisely, and no specific atmospheric pressure correction algorithm is needed. There are some other important applications and advantages to using the new Rayleigh LUTs for satellite remote sensing, including an efficient and accurate TOA Rayleigh radiance computation for hyperspectral satellite remote sensing, detector-based TOA Rayleigh radiance computation, Rayleigh radiance calculations for high altitude lakes, and the same Rayleigh LUTs are applicable for all satellite sensors over the global ocean and inland waters. The new Rayleigh LUTs have been implemented in the VIIRS-SNPP ocean color data processing for routine production of global ocean color and inland water products.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Out-of-band effects of satellite ocean color sensors

Menghua Wang, Puneeta Naik, and SeungHyun Son
Appl. Opt. 55(9) 2312-2323 (2016)

NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors

Menghua Wang, Wei Shi, Lide Jiang, and Kenneth Voss
Opt. Express 24(18) 20437-20453 (2016)

Sensor performance requirements for atmospheric correction of satellite ocean color remote sensing

Menghua Wang and Howard R. Gordon
Opt. Express 26(6) 7390-7403 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
    [Crossref]
  2. W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
    [Crossref]
  3. M. Rast, J. L. Bezy, and S. Bruzzi, “The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission,” Int. J. Remote Sens. 20(9), 1681–1702 (1999).
    [Crossref]
  4. M. D. Goldberg, H. Kilcoyne, H. Cikanek, and A. Mehta, “Joint Polar Satellite System: the United States next generation civilian polar-orbiting environmental satellite system,” J. Geophys. Res. Atmos. 118(24), 13463–13475 (2013).
    [Crossref]
  5. M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
    [Crossref]
  6. G. Zimmermann and A. Neumann, “The Spaceborne Imaging Spectrometer MOS for ocean remote sensing,” the 1st International Workshop on MOS-IRS and Ocean Color (1997), 1–9.
  7. M. Wang and B. A. Franz, “Comparing the ocean color measurements between MOS and SeaWiFS: A vicarious intercalibration approach for MOS,” IEEE Trans. Geosci. Rem. Sens. 38(1), 184–197 (2000).
    [Crossref]
  8. J. Tanii, T. Machida, H. Ayada, Y. Katsuyama, J. Ishida, N. Iwasaki, Y. Tange, Y. Miyachi, and R. Sato, “Ocean Color and Temperature Scanner (OCTS) for ADEOS,” Proc. SPIE 1490, 200–206 (1991).
  9. M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, “Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: a comparison study,” Appl. Opt. 41(6), 974–990 (2002).
    [Crossref] [PubMed]
  10. P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Sèze, “The POLDER Mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Rem. Sens. 32(3), 598–615 (1994).
    [Crossref]
  11. J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012).
    [Crossref]
  12. M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
    [Crossref] [PubMed]
  13. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
    [Crossref] [PubMed]
  14. IOCCG, Atmospheric Correction for Remotely-Sensed Ocean-Colour Products, M. Wang (ed.), Reports of International Ocean-Color Coordinating Group, No. 10, IOCCG, Dartmouth, Canada (2010).
  15. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
    [Crossref] [PubMed]
  16. H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).
    [Crossref] [PubMed]
  17. M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
    [Crossref] [PubMed]
  18. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
    [Crossref]
  19. Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
    [Crossref] [PubMed]
  20. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
    [Crossref] [PubMed]
  21. M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009).
    [Crossref]
  22. H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27(5), 862–871 (1988).
    [Crossref] [PubMed]
  23. M. Wang, “Atmospheric correction of the second generation ocean color sensors,” Ph.D. dissertation (University of Miami, Coral Gables, Fla., 1991), p. 135.
  24. H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
    [Crossref] [PubMed]
  25. M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
    [Crossref]
  26. M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
    [Crossref]
  27. A. J. Brown, “Spectral bluing induced by small particles under the Mie and Rayleigh regimes,” Icarus 239, 85–95 (2014).
    [Crossref]
  28. M. Wang, B. A. Franz, R. A. Barnes, and C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40(3), 343–348 (2001).
    [Crossref] [PubMed]
  29. M. Wang, P. Naik, and S. Son, “Out-of-band effects of satellite ocean color sensors,” Appl. Opt. 55(9), 2312–2323 (2016).
    [Crossref] [PubMed]
  30. H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34(36), 8363–8374 (1995).
    [Crossref] [PubMed]
  31. M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations,” Remote Sens. Environ. 67(3), 348–359 (1999).
    [Crossref]
  32. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
    [Crossref]
  33. H. C. van de Hulst, Multiple Light Scattering (Academic Press, 1980).
  34. C. Cox and W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954).
    [Crossref]
  35. P. M. Saunders, “Shadowing on the ocean and the existence of the horizon,” J. Geophys. Res. 72(18), 4643–4649 (1967).
    [Crossref]
  36. G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
    [Crossref]
  37. M. Wang and S. W. Bailey, “Correction of the sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
    [Crossref] [PubMed]
  38. H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 492–506 (2010).
    [Crossref]
  39. W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
    [Crossref] [PubMed]
  40. NOAA, NASA, and USAF, U.S. Standard Atmosphere, 1976 (U.S. Government Printing Office, 1976).

2016 (1)

2014 (1)

A. J. Brown, “Spectral bluing induced by small particles under the Mie and Rayleigh regimes,” Icarus 239, 85–95 (2014).
[Crossref]

2013 (3)

M. D. Goldberg, H. Kilcoyne, H. Cikanek, and A. Mehta, “Joint Polar Satellite System: the United States next generation civilian polar-orbiting environmental satellite system,” J. Geophys. Res. Atmos. 118(24), 13463–13475 (2013).
[Crossref]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[Crossref] [PubMed]

2012 (1)

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012).
[Crossref]

2010 (1)

H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 492–506 (2010).
[Crossref]

2009 (1)

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009).
[Crossref]

2006 (1)

2005 (2)

H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).
[Crossref] [PubMed]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
[Crossref]

2004 (1)

C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
[Crossref]

2003 (1)

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[Crossref]

2002 (4)

2001 (2)

2000 (1)

M. Wang and B. A. Franz, “Comparing the ocean color measurements between MOS and SeaWiFS: A vicarious intercalibration approach for MOS,” IEEE Trans. Geosci. Rem. Sens. 38(1), 184–197 (2000).
[Crossref]

1999 (2)

M. Rast, J. L. Bezy, and S. Bruzzi, “The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission,” Int. J. Remote Sens. 20(9), 1681–1702 (1999).
[Crossref]

M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations,” Remote Sens. Environ. 67(3), 348–359 (1999).
[Crossref]

1998 (2)

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
[Crossref]

1997 (1)

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[Crossref]

1996 (1)

1995 (1)

1994 (2)

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Sèze, “The POLDER Mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Rem. Sens. 32(3), 598–615 (1994).
[Crossref]

1992 (1)

1991 (1)

J. Tanii, T. Machida, H. Ayada, Y. Katsuyama, J. Ishida, N. Iwasaki, Y. Tange, Y. Miyachi, and R. Sato, “Ocean Color and Temperature Scanner (OCTS) for ADEOS,” Proc. SPIE 1490, 200–206 (1991).

1988 (1)

1980 (1)

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
[Crossref] [PubMed]

1967 (1)

P. M. Saunders, “Shadowing on the ocean and the existence of the horizon,” J. Geophys. Res. 72(18), 4643–4649 (1967).
[Crossref]

1954 (1)

Abbott, M. R.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
[Crossref]

Ahn, J. H.

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[Crossref] [PubMed]

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012).
[Crossref]

Anderson, F.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
[Crossref] [PubMed]

Arnone, R. A.

Austin, R. W.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
[Crossref] [PubMed]

Ayada, H.

J. Tanii, T. Machida, H. Ayada, Y. Katsuyama, J. Ishida, N. Iwasaki, Y. Tange, Y. Miyachi, and R. Sato, “Ocean Color and Temperature Scanner (OCTS) for ADEOS,” Proc. SPIE 1490, 200–206 (1991).

Bailey, S. W.

Baker, E. T.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
[Crossref] [PubMed]

Balch, W. P.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
[Crossref]

Ball, D.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
[Crossref] [PubMed]

Barnes, R. A.

Barton, I.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
[Crossref]

Bezy, J. L.

M. Rast, J. L. Bezy, and S. Bruzzi, “The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission,” Int. J. Remote Sens. 20(9), 1681–1702 (1999).
[Crossref]

Bréon, F. M.

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Sèze, “The POLDER Mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Rem. Sens. 32(3), 598–615 (1994).
[Crossref]

Bricaud, A.

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Sèze, “The POLDER Mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Rem. Sens. 32(3), 598–615 (1994).
[Crossref]

Brown, A. J.

A. J. Brown, “Spectral bluing induced by small particles under the Mie and Rayleigh regimes,” Icarus 239, 85–95 (2014).
[Crossref]

Brown, J. W.

Brown, O. B.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
[Crossref]

Bruzzi, S.

M. Rast, J. L. Bezy, and S. Bruzzi, “The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission,” Int. J. Remote Sens. 20(9), 1681–1702 (1999).
[Crossref]

Buriez, J. C.

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Sèze, “The POLDER Mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Rem. Sens. 32(3), 598–615 (1994).
[Crossref]

Campbell, J. W.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
[Crossref]

Carder, K. L.

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[Crossref] [PubMed]

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
[Crossref]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Choi, J. K.

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012).
[Crossref]

Cikanek, H.

M. D. Goldberg, H. Kilcoyne, H. Cikanek, and A. Mehta, “Joint Polar Satellite System: the United States next generation civilian polar-orbiting environmental satellite system,” J. Geophys. Res. Atmos. 118(24), 13463–13475 (2013).
[Crossref]

Clark, D. K.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
[Crossref]

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
[Crossref] [PubMed]

Cox, C.

Deschamps, P. Y.

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Sèze, “The POLDER Mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Rem. Sens. 32(3), 598–615 (1994).
[Crossref]

El-Sayed, S. Z.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
[Crossref] [PubMed]

Eom, J.

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012).
[Crossref]

Esaias, W. E.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
[Crossref]

Evans, R. H.

Evans, R. L.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
[Crossref]

Feldman, G. C.

C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
[Crossref]

Foujols, T.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[Crossref]

Franz, B. A.

Garver, S. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Gentili, B.

Gillotay, D.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[Crossref]

Goldberg, M. D.

M. D. Goldberg, H. Kilcoyne, H. Cikanek, and A. Mehta, “Joint Polar Satellite System: the United States next generation civilian polar-orbiting environmental satellite system,” J. Geophys. Res. Atmos. 118(24), 13463–13475 (2013).
[Crossref]

Gordon, H. R.

H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).
[Crossref] [PubMed]

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
[Crossref]

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[Crossref]

H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34(36), 8363–8374 (1995).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
[Crossref] [PubMed]

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27(5), 862–871 (1988).
[Crossref] [PubMed]

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
[Crossref] [PubMed]

Harding, J. L. W.

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009).
[Crossref]

Herse, M.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[Crossref]

Hodge, F. E.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
[Crossref]

Hooker, S. B.

C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
[Crossref]

Hovis, W. A.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
[Crossref] [PubMed]

Isaacman, A.

Ishida, J.

J. Tanii, T. Machida, H. Ayada, Y. Katsuyama, J. Ishida, N. Iwasaki, Y. Tange, Y. Miyachi, and R. Sato, “Ocean Color and Temperature Scanner (OCTS) for ADEOS,” Proc. SPIE 1490, 200–206 (1991).

Iwasaki, N.

J. Tanii, T. Machida, H. Ayada, Y. Katsuyama, J. Ishida, N. Iwasaki, Y. Tange, Y. Miyachi, and R. Sato, “Ocean Color and Temperature Scanner (OCTS) for ADEOS,” Proc. SPIE 1490, 200–206 (1991).

Jiang, L.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[Crossref] [PubMed]

Kahru, M.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Katsuyama, Y.

J. Tanii, T. Machida, H. Ayada, Y. Katsuyama, J. Ishida, N. Iwasaki, Y. Tange, Y. Miyachi, and R. Sato, “Ocean Color and Temperature Scanner (OCTS) for ADEOS,” Proc. SPIE 1490, 200–206 (1991).

Kilcoyne, H.

M. D. Goldberg, H. Kilcoyne, H. Cikanek, and A. Mehta, “Joint Polar Satellite System: the United States next generation civilian polar-orbiting environmental satellite system,” J. Geophys. Res. Atmos. 118(24), 13463–13475 (2013).
[Crossref]

Labs, D.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[Crossref]

Lee, Z.

Leroy, M.

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Sèze, “The POLDER Mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Rem. Sens. 32(3), 598–615 (1994).
[Crossref]

Letelier, R.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
[Crossref]

Lim, H. S.

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012).
[Crossref]

Liu, X.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Machida, T.

J. Tanii, T. Machida, H. Ayada, Y. Katsuyama, J. Ishida, N. Iwasaki, Y. Tange, Y. Miyachi, and R. Sato, “Ocean Color and Temperature Scanner (OCTS) for ADEOS,” Proc. SPIE 1490, 200–206 (1991).

Mandel, H.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[Crossref]

Maritorena, S.

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
[Crossref] [PubMed]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

McClain, C. R.

C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
[Crossref]

M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, “Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: a comparison study,” Appl. Opt. 41(6), 974–990 (2002).
[Crossref] [PubMed]

M. Wang, B. A. Franz, R. A. Barnes, and C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40(3), 343–348 (2001).
[Crossref] [PubMed]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Mehta, A.

M. D. Goldberg, H. Kilcoyne, H. Cikanek, and A. Mehta, “Joint Polar Satellite System: the United States next generation civilian polar-orbiting environmental satellite system,” J. Geophys. Res. Atmos. 118(24), 13463–13475 (2013).
[Crossref]

Minnet, P. J.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
[Crossref]

Mitchell, B. G.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Miyachi, Y.

J. Tanii, T. Machida, H. Ayada, Y. Katsuyama, J. Ishida, N. Iwasaki, Y. Tange, Y. Miyachi, and R. Sato, “Ocean Color and Temperature Scanner (OCTS) for ADEOS,” Proc. SPIE 1490, 200–206 (1991).

Morel, A.

Mueller, J. L.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
[Crossref] [PubMed]

Munk, W.

Naik, P.

Neumann, A.

G. Zimmermann and A. Neumann, “The Spaceborne Imaging Spectrometer MOS for ocean remote sensing,” the 1st International Workshop on MOS-IRS and Ocean Color (1997), 1–9.

O’Reilly, J. E.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Park, Y. J.

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[Crossref] [PubMed]

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012).
[Crossref]

Peetermans, W.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[Crossref]

Peterson, A. R.

Podaire, A.

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Sèze, “The POLDER Mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Rem. Sens. 32(3), 598–615 (1994).
[Crossref]

Rast, M.

M. Rast, J. L. Bezy, and S. Bruzzi, “The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission,” Int. J. Remote Sens. 20(9), 1681–1702 (1999).
[Crossref]

Rausch, K.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Ryu, J. H.

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[Crossref] [PubMed]

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012).
[Crossref]

Sato, R.

J. Tanii, T. Machida, H. Ayada, Y. Katsuyama, J. Ishida, N. Iwasaki, Y. Tange, Y. Miyachi, and R. Sato, “Ocean Color and Temperature Scanner (OCTS) for ADEOS,” Proc. SPIE 1490, 200–206 (1991).

Saunders, P. M.

P. M. Saunders, “Shadowing on the ocean and the existence of the horizon,” J. Geophys. Res. 72(18), 4643–4649 (1967).
[Crossref]

Sèze, G.

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Sèze, “The POLDER Mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Rem. Sens. 32(3), 598–615 (1994).
[Crossref]

Shi, W.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[Crossref] [PubMed]

Siegel, D. A.

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
[Crossref] [PubMed]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Simon, P. C.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[Crossref]

Son, S.

M. Wang, P. Naik, and S. Son, “Out-of-band effects of satellite ocean color sensors,” Appl. Opt. 55(9), 2312–2323 (2016).
[Crossref] [PubMed]

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[Crossref] [PubMed]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009).
[Crossref]

Sturm, B.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
[Crossref] [PubMed]

Tan, L.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Tange, Y.

J. Tanii, T. Machida, H. Ayada, Y. Katsuyama, J. Ishida, N. Iwasaki, Y. Tange, Y. Miyachi, and R. Sato, “Ocean Color and Temperature Scanner (OCTS) for ADEOS,” Proc. SPIE 1490, 200–206 (1991).

Tanii, J.

J. Tanii, T. Machida, H. Ayada, Y. Katsuyama, J. Ishida, N. Iwasaki, Y. Tange, Y. Miyachi, and R. Sato, “Ocean Color and Temperature Scanner (OCTS) for ADEOS,” Proc. SPIE 1490, 200–206 (1991).

Thuillier, G.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[Crossref]

Voss, K.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Wang, M.

M. Wang, P. Naik, and S. Son, “Out-of-band effects of satellite ocean color sensors,” Appl. Opt. 55(9), 2312–2323 (2016).
[Crossref] [PubMed]

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[Crossref] [PubMed]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 492–506 (2010).
[Crossref]

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009).
[Crossref]

M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
[Crossref] [PubMed]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
[Crossref]

M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, “Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: a comparison study,” Appl. Opt. 41(6), 974–990 (2002).
[Crossref] [PubMed]

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
[Crossref]

M. Wang and S. W. Bailey, “Correction of the sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
[Crossref] [PubMed]

M. Wang, B. A. Franz, R. A. Barnes, and C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40(3), 343–348 (2001).
[Crossref] [PubMed]

M. Wang and B. A. Franz, “Comparing the ocean color measurements between MOS and SeaWiFS: A vicarious intercalibration approach for MOS,” IEEE Trans. Geosci. Rem. Sens. 38(1), 184–197 (2000).
[Crossref]

M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations,” Remote Sens. Environ. 67(3), 348–359 (1999).
[Crossref]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
[Crossref] [PubMed]

Wilson, W. H.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
[Crossref] [PubMed]

Wrigley, R. C.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
[Crossref] [PubMed]

Yentsch, C. S.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
[Crossref] [PubMed]

Zhang, H.

H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 492–506 (2010).
[Crossref]

Zimmermann, G.

G. Zimmermann and A. Neumann, “The Spaceborne Imaging Spectrometer MOS for ocean remote sensing,” the 1st International Workshop on MOS-IRS and Ocean Color (1997), 1–9.

Appl. Opt. (13)

M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, “Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: a comparison study,” Appl. Opt. 41(6), 974–990 (2002).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
[Crossref] [PubMed]

H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).
[Crossref] [PubMed]

M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
[Crossref] [PubMed]

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[Crossref] [PubMed]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
[Crossref] [PubMed]

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27(5), 862–871 (1988).
[Crossref] [PubMed]

M. Wang, B. A. Franz, R. A. Barnes, and C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40(3), 343–348 (2001).
[Crossref] [PubMed]

M. Wang, P. Naik, and S. Son, “Out-of-band effects of satellite ocean color sensors,” Appl. Opt. 55(9), 2312–2323 (2016).
[Crossref] [PubMed]

H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34(36), 8363–8374 (1995).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
[Crossref] [PubMed]

M. Wang and S. W. Bailey, “Correction of the sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
[Crossref] [PubMed]

Deep Sea Res. Part II Top. Stud. Oceanogr. (1)

C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
[Crossref]

Icarus (1)

A. J. Brown, “Spectral bluing induced by small particles under the Mie and Rayleigh regimes,” Icarus 239, 85–95 (2014).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (3)

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1250–1265 (1998).
[Crossref]

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Sèze, “The POLDER Mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Rem. Sens. 32(3), 598–615 (1994).
[Crossref]

M. Wang and B. A. Franz, “Comparing the ocean color measurements between MOS and SeaWiFS: A vicarious intercalibration approach for MOS,” IEEE Trans. Geosci. Rem. Sens. 38(1), 184–197 (2000).
[Crossref]

Int. J. Remote Sens. (3)

M. Rast, J. L. Bezy, and S. Bruzzi, “The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission,” Int. J. Remote Sens. 20(9), 1681–1702 (1999).
[Crossref]

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
[Crossref]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
[Crossref]

J. Geophys. Res. (5)

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[Crossref]

P. M. Saunders, “Shadowing on the ocean and the existence of the horizon,” J. Geophys. Res. 72(18), 4643–4649 (1967).
[Crossref]

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009).
[Crossref]

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012).
[Crossref]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

J. Geophys. Res. Atmos. (2)

M. D. Goldberg, H. Kilcoyne, H. Cikanek, and A. Mehta, “Joint Polar Satellite System: the United States next generation civilian polar-orbiting environmental satellite system,” J. Geophys. Res. Atmos. 118(24), 13463–13475 (2013).
[Crossref]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 492–506 (2010).
[Crossref]

Opt. Express (1)

Proc. SPIE (1)

J. Tanii, T. Machida, H. Ayada, Y. Katsuyama, J. Ishida, N. Iwasaki, Y. Tange, Y. Miyachi, and R. Sato, “Ocean Color and Temperature Scanner (OCTS) for ADEOS,” Proc. SPIE 1490, 200–206 (1991).

Remote Sens. Environ. (1)

M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations,” Remote Sens. Environ. 67(3), 348–359 (1999).
[Crossref]

Science (1)

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 coastal zone color scanner: system description and initial imagery,” Science 210(4465), 60–63 (1980).
[Crossref] [PubMed]

Sol. Phys. (1)

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[Crossref]

Other (5)

H. C. van de Hulst, Multiple Light Scattering (Academic Press, 1980).

M. Wang, “Atmospheric correction of the second generation ocean color sensors,” Ph.D. dissertation (University of Miami, Coral Gables, Fla., 1991), p. 135.

IOCCG, Atmospheric Correction for Remotely-Sensed Ocean-Colour Products, M. Wang (ed.), Reports of International Ocean-Color Coordinating Group, No. 10, IOCCG, Dartmouth, Canada (2010).

G. Zimmermann and A. Neumann, “The Spaceborne Imaging Spectrometer MOS for ocean remote sensing,” the 1st International Workshop on MOS-IRS and Ocean Color (1997), 1–9.

NOAA, NASA, and USAF, U.S. Standard Atmosphere, 1976 (U.S. Government Printing Office, 1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Examples of the TOA Rayleigh-scattering radiances (F0(λ) = 1) for a case with solar-zenith angle of 60°, sensor-zenith angle of 20°, and relative-azimuth angle of 90° for (a) Rayleigh radiance as a function of the wavelength, (b) Rayleigh Stokes components as a function of the wavelength, (c) Rayleigh Stokes components as a function of Rayleigh optical thickness, and (d) the degree of linear polarization (%) as a function of the wavelength.
Fig. 2
Fig. 2 VIIRS SRFs for SNPP and JPSS-1 as a function of the wavelength for VIIRS spectral bans of (a)–(g) M1–M7 and (h) I1. Nominal center wavelengths are indicated in plots for both SNPP and JPSS-1.
Fig. 3
Fig. 3 Rayleigh radiance ratio values in L r ( A ) ( λ ) / L r ( E ) ( λ ) for VIIRS spectral bands as a function of the solar-zenith angle with satellite sensor-zenith angles of (a) 20°, (b) 60°, (c) 70°, and (d) 75°, respectively. This is for a case with a relative-azimuth angle of 90° and with a wind speed of 7.5 m/s.
Fig. 4
Fig. 4 The TOA Rayleigh radiance ratio L r ( E ) ( λ ) / L r ( A ) ( λ ) , i.e., correction factor, as a function of the air mass M for the VIIRS-SNPP spectral bands of (a) M1 (410 nm), (b) M2 (443 nm), (c) M3 (486 nm), and (d) M4 (551 nm), respectively.
Fig. 5
Fig. 5 Evaluation results in L r ( A ) ( λ ) / L r ( E ) ( λ ) for the proposed correction algorithm to account for the VIIRS-SNPP band SRF effect on the performance of the TOA Rayleigh radiance computation for (a) without applying the correction, (b) after applying the correction for a wind speed of 3 m/s, (c) after applying the correction for a wind speed of 7.5 m/s, and (d) after applying the correction for a wind speed of 10 m/s.
Fig. 6
Fig. 6 Evaluation results in L r ( A ) ( λ ) / L r ( E ) ( λ ) for the proposed correction algorithm to account for the VIIRS-JPSS-1 band SRF effect on the performance of the TOA Rayleigh radiance computation for (a) without applying the correction, (b) after applying the correction for a wind speed of 3 m/s, (c) after applying the correction for a wind speed of 7.5 m/s, and (d) after applying the correction for a wind speed of 10 m/s.
Fig. 7
Fig. 7 The ratio of the atmospheric pressure at a given altitude (height) P(h) to the sea level P0 (i.e., P(h)/P0) as a function of altitude for the US standard 1976 atmospheric model.

Tables (3)

Tables Icon

Table 1 VIIRS nominal center wavelengths and bandwidths for SNPP and JPSS-1.

Tables Icon

Table 2 Fitting coefficients for the correction algorithm as in Eq. (4) for VIIRS.

Tables Icon

Table 3 Mean ratio values in L r ( A ) ( λ ) / L r ( E ) ( λ ) (with and without applying the correction) for VIIRS SNPP and JPSS-1 for solar-zenith angles of 70°–80° with wind speed of 7.5 m/s (total data number of 225).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ r ( λ i ) = τ r ( λ ) F 0 ( λ ) S i ( λ )dλ F 0 ( λ ) S i ( λ )dλ ,
L r ( θ 0 ,θ,Δϕ, λ i ) L r ( θ 0 ,θ,Δϕ, τ r ( λ i ) ),
L r ( λ i ) = L r ( λ ) S i ( λ )dλ S i ( λ )dλ ,
Corr( λ )= a 0 ( λ )+ a 1 ( λ ) log e ( M )
τ r ( λ, P 0 +ΔP )= τ r ( λ, P 0 ) P 0 +ΔP P 0 ,

Metrics