Abstract

We report the development of a Spectral Domain Line Field Optical Coherence Tomography (LF-OCT) system, using a broad bandwidth and spatial coherent Super-Continuum (SC) source. With conventional quasi-Continuous Wave (CW) setup we achieve axial resolutions up to 2.1 μm in air and 3D volume imaging speeds up to 213 kA-Scan/s. Furthermore, we report the use of a single SC pulse, of 2 ns duration, to temporally gate an OCT B-Scan image of 70 A-Scans. This is the equivalent of 35 GA-Scans/s. We apply the CW setup for high resolution imaging of the fine structures of a human cornea sample ex-vivo. The single pulse setup is applied to imaging of a coated pharmaceutical tablet. The fixed pattern noise due to spectral noise is removed by subtracting the median magnitude A-Scan. We also demonstrate that the Fourier phase can be used to remove aberration caused artefacts.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography

Yoshifumi Nakamura, Shuichi Makita, Masahiro Yamanari, Masahide Itoh, Toyohiko Yatagai, and Yoshiaki Yasuno
Opt. Express 15(12) 7103-7116 (2007)

In vivo high resolution human corneal imaging using full-field optical coherence tomography

Viacheslav Mazlin, Peng Xiao, Eugénie Dalimier, Kate Grieve, Kristina Irsch, José-Alain Sahel, Mathias Fink, and A. Claude Boccara
Biomed. Opt. Express 9(2) 557-568 (2018)

Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging

Peter Cimalla, Julia Walther, Mirko Mehner, Maximiliano Cuevas, and Edmund Koch
Opt. Express 17(22) 19486-19500 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [Crossref]
  2. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [Crossref] [PubMed]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  4. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  5. J. L. B. Ramos, Y. Li, and D. Huang, “Clinical and research applications of anterior segment optical coherence tomography - a review,” Clin. Experiment. Ophthalmol. 37(1), 81–89 (2009).
    [Crossref] [PubMed]
  6. M. Adhi and J. S. Duker, “Optical coherence tomography--current and future applications,” Curr. Opin. Ophthalmol. 24(3), 213–221 (2013).
    [Crossref] [PubMed]
  7. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  8. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  9. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
    [Crossref] [PubMed]
  10. A. F. Zuluaga and R. Richards-Kortum, “Spatially resolved spectral interferometry for determination of subsurface structure,” Opt. Lett. 24(8), 519–521 (1999).
    [Crossref] [PubMed]
  11. T.-U. Nguyen, M. C. Pierce, L. Higgins, and T. S. Tkaczyk, “Snapshot 3D optical coherence tomography system using image mapping spectrometry,” Opt. Express 21(11), 13758–13772 (2013).
    [Crossref] [PubMed]
  12. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131–1137 (2005).
    [Crossref] [PubMed]
  13. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
    [Crossref] [PubMed]
  14. Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15(12), 7103–7116 (2007).
    [Crossref] [PubMed]
  15. S. Uttam and Y. Liu, “Fourier phase in Fourier-domain optical coherence tomography,” J. Opt. Soc. Am. A 32(12), 2286–2306 (2015).
    [Crossref] [PubMed]
  16. M. H. De la Torre-Ibarra, P. D. Ruiz, and J. M. Huntley, “Double-shot depth-resolved displacement field measurement using phase-contrast spectral optical coherence tomography,” Opt. Express 14(21), 9643–9656 (2006).
    [Crossref] [PubMed]
  17. M. J. Briones-R, M. H. De La Torre-Ibarra, F. Mendoza-Santoyo, and J. Pedroza-G, “Simultaneous birefringence imaging and depth phase resolved measurement using a Fourier domain OCT system,” Opt. Lasers Eng. 68, 104–110 (2015).
    [Crossref]
  18. R. N. Graf, W. J. Brown, and A. Wax, “Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source,” Opt. Lett. 33(12), 1285–1287 (2008).
    [Crossref] [PubMed]
  19. J. Zhong, S. Zhong, Q. Zhang, and L. Yao, “Two-dimensional optical coherence tomography for real-time structural dynamical characterization,” Opt. Lasers Eng. 66, 74–79 (2015).
    [Crossref]
  20. R. R. Alfonso, ed., The Super Continuum Laser Source, 2nd ed. (Springer, 2006).
  21. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
    [Crossref] [PubMed]
  22. E. Bordenave, E. Abraham, G. Jonusauskas, J. Oberle, and C. Rulliere, “Single-shot correlation system for longitudinal imaging in biological tissues,” Opt. Commun. 208(4-6), 275–283 (2002).
    [Crossref]
  23. M. S. Muller, P. J. L. Webster, and J. M. Fraser, “Time-gated Fourier-domain optical coherence tomography,” Opt. Lett. 32(22), 3336–3338 (2007).
    [Crossref] [PubMed]
  24. S. Moon, S. W. Lee, and Z. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express 18(24), 24395–24404 (2010).
    [Crossref] [PubMed]
  25. J. P. McClure, “The Schmidt-Czerny-Turner spectrograph,” Proc. SPIE 9189, 91890C (2014).
    [Crossref]
  26. Z. H. Ma, R. K. Wang, F. Zhang, and J. Q. Yao, “Spectral optical coherence tomography using two-phase shifting method,” Chin. Phys. Lett. 22(8), 1909–1912 (2005).
    [Crossref]
  27. C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. Pharm. Sci. 103(1), 161–166 (2014).
    [Crossref] [PubMed]
  28. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27(6), 406–408 (2002).
    [Crossref] [PubMed]
  29. J. Gong, B. Liu, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Optimal spectral reshaping for resolution improvement in optical coherence tomography,” Opt. Express 14(13), 5909–5915 (2006).
    [Crossref] [PubMed]
  30. D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9(6), 1281–1287 (2004).
    [Crossref] [PubMed]
  31. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
    [Crossref] [PubMed]
  32. B. Grajciar, Y. Lehareinger, A. F. Fercher, and R. A. Leitgeb, “High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512 000 A-scan/s,” Opt. Express 18(21), 21841–21850 (2010).
    [Crossref] [PubMed]
  33. U. D. o. Defense, “MIL-STD-150A,” (1959).
  34. D. Williams, Y. Zheng, F. Bao, and A. Elsheikh, “Fast segmentation of anterior segment optical coherence tomography images using graph cut,” Eye Vis (Lond) 2(1), 1 (2015).
    [Crossref] [PubMed]
  35. T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
    [Crossref] [PubMed]
  36. H. Lin, R. K. May, M. J. Evans, S. Zhong, L. F. Gladden, Y. Shen, J. A. Zeitler, R. K. May, and S. Zhong, “Impact of processing conditions on inter-tablet coating thickness variations measured by Terahertz in-line sensing,” J. Pharm. Sci. 104(8), 2513–2522 (2015).
    [Crossref] [PubMed]
  37. J. S. Titiyal, M. Kaur, R. Falera, C. P. Jose, and N. Sharma, “Evaluation of time to donor lenticule apposition using intraoperative optical coherence tomography in descemet stripping automated endothelial keratoplasty,” Cornea 35(4), 477–481 (2016).
    [Crossref] [PubMed]
  38. D. A. Kumar, H. S. Dua, A. Agarwal, and S. Jacob, “Postoperative spectral-domain optical coherence tomography evaluation of pre-Descemet endothelial keratoplasty grafts,” J. Cataract Refract. Surg. 41(7), 1535–1536 (2015).
    [Crossref] [PubMed]
  39. L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334 (2014).
    [Crossref] [PubMed]
  40. M. A. Shousha, C. L. Karp, A. P. Canto, K. Hodson, P. Oellers, A. A. Kao, B. Bielory, J. Matthews, S. R. Dubovy, V. L. Perez, and J. Wang, “Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography,” Ophthalmology 120(5), 883–891 (2013).
    [Crossref] [PubMed]
  41. L. M. Vajzovic, C. L. Karp, P. Haft, M. A. Shousha, S. R. Dubovy, V. Hurmeric, S. H. Yoo, and J. Wang, “Ultra high-resolution anterior segment optical coherence tomography in the evaluation of anterior corneal dystrophies and degenerations,” Ophthalmology 118(7), 1291–1296 (2011).
    [PubMed]
  42. M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
    [Crossref] [PubMed]
  43. S. Wu, A. Tao, H. Jiang, Z. Xu, V. Perez, and J. Wang, “Vertical and horizontal corneal epithelial thickness profile using ultra-high resolution and long scan depth optical coherence tomography,” PLoS One 9(5), e97962 (2014).
    [Crossref] [PubMed]
  44. V. Hurmeric, S. H. Yoo, A. Galor, A. P. Canto, and J. Wang, “Atypical presentation of Salzmann nodular degeneration diagnosed with ultra-high-resolution optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 42(42), e122–e125 (2011).
    [PubMed]

2016 (1)

J. S. Titiyal, M. Kaur, R. Falera, C. P. Jose, and N. Sharma, “Evaluation of time to donor lenticule apposition using intraoperative optical coherence tomography in descemet stripping automated endothelial keratoplasty,” Cornea 35(4), 477–481 (2016).
[Crossref] [PubMed]

2015 (7)

D. A. Kumar, H. S. Dua, A. Agarwal, and S. Jacob, “Postoperative spectral-domain optical coherence tomography evaluation of pre-Descemet endothelial keratoplasty grafts,” J. Cataract Refract. Surg. 41(7), 1535–1536 (2015).
[Crossref] [PubMed]

J. Zhong, S. Zhong, Q. Zhang, and L. Yao, “Two-dimensional optical coherence tomography for real-time structural dynamical characterization,” Opt. Lasers Eng. 66, 74–79 (2015).
[Crossref]

S. Uttam and Y. Liu, “Fourier phase in Fourier-domain optical coherence tomography,” J. Opt. Soc. Am. A 32(12), 2286–2306 (2015).
[Crossref] [PubMed]

M. J. Briones-R, M. H. De La Torre-Ibarra, F. Mendoza-Santoyo, and J. Pedroza-G, “Simultaneous birefringence imaging and depth phase resolved measurement using a Fourier domain OCT system,” Opt. Lasers Eng. 68, 104–110 (2015).
[Crossref]

D. Williams, Y. Zheng, F. Bao, and A. Elsheikh, “Fast segmentation of anterior segment optical coherence tomography images using graph cut,” Eye Vis (Lond) 2(1), 1 (2015).
[Crossref] [PubMed]

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

H. Lin, R. K. May, M. J. Evans, S. Zhong, L. F. Gladden, Y. Shen, J. A. Zeitler, R. K. May, and S. Zhong, “Impact of processing conditions on inter-tablet coating thickness variations measured by Terahertz in-line sensing,” J. Pharm. Sci. 104(8), 2513–2522 (2015).
[Crossref] [PubMed]

2014 (4)

S. Wu, A. Tao, H. Jiang, Z. Xu, V. Perez, and J. Wang, “Vertical and horizontal corneal epithelial thickness profile using ultra-high resolution and long scan depth optical coherence tomography,” PLoS One 9(5), e97962 (2014).
[Crossref] [PubMed]

J. P. McClure, “The Schmidt-Czerny-Turner spectrograph,” Proc. SPIE 9189, 91890C (2014).
[Crossref]

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. Pharm. Sci. 103(1), 161–166 (2014).
[Crossref] [PubMed]

L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334 (2014).
[Crossref] [PubMed]

2013 (3)

M. A. Shousha, C. L. Karp, A. P. Canto, K. Hodson, P. Oellers, A. A. Kao, B. Bielory, J. Matthews, S. R. Dubovy, V. L. Perez, and J. Wang, “Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography,” Ophthalmology 120(5), 883–891 (2013).
[Crossref] [PubMed]

T.-U. Nguyen, M. C. Pierce, L. Higgins, and T. S. Tkaczyk, “Snapshot 3D optical coherence tomography system using image mapping spectrometry,” Opt. Express 21(11), 13758–13772 (2013).
[Crossref] [PubMed]

M. Adhi and J. S. Duker, “Optical coherence tomography--current and future applications,” Curr. Opin. Ophthalmol. 24(3), 213–221 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

L. M. Vajzovic, C. L. Karp, P. Haft, M. A. Shousha, S. R. Dubovy, V. Hurmeric, S. H. Yoo, and J. Wang, “Ultra high-resolution anterior segment optical coherence tomography in the evaluation of anterior corneal dystrophies and degenerations,” Ophthalmology 118(7), 1291–1296 (2011).
[PubMed]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

V. Hurmeric, S. H. Yoo, A. Galor, A. P. Canto, and J. Wang, “Atypical presentation of Salzmann nodular degeneration diagnosed with ultra-high-resolution optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 42(42), e122–e125 (2011).
[PubMed]

2010 (3)

S. Moon, S. W. Lee, and Z. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express 18(24), 24395–24404 (2010).
[Crossref] [PubMed]

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

B. Grajciar, Y. Lehareinger, A. F. Fercher, and R. A. Leitgeb, “High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512 000 A-scan/s,” Opt. Express 18(21), 21841–21850 (2010).
[Crossref] [PubMed]

2009 (1)

J. L. B. Ramos, Y. Li, and D. Huang, “Clinical and research applications of anterior segment optical coherence tomography - a review,” Clin. Experiment. Ophthalmol. 37(1), 81–89 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

2006 (2)

2005 (4)

2004 (1)

D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9(6), 1281–1287 (2004).
[Crossref] [PubMed]

2003 (3)

2002 (2)

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27(6), 406–408 (2002).
[Crossref] [PubMed]

E. Bordenave, E. Abraham, G. Jonusauskas, J. Oberle, and C. Rulliere, “Single-shot correlation system for longitudinal imaging in biological tissues,” Opt. Commun. 208(4-6), 275–283 (2002).
[Crossref]

1999 (1)

1997 (1)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Abraham, E.

E. Bordenave, E. Abraham, G. Jonusauskas, J. Oberle, and C. Rulliere, “Single-shot correlation system for longitudinal imaging in biological tissues,” Opt. Commun. 208(4-6), 275–283 (2002).
[Crossref]

Adhi, M.

M. Adhi and J. S. Duker, “Optical coherence tomography--current and future applications,” Curr. Opin. Ophthalmol. 24(3), 213–221 (2013).
[Crossref] [PubMed]

Agarwal, A.

D. A. Kumar, H. S. Dua, A. Agarwal, and S. Jacob, “Postoperative spectral-domain optical coherence tomography evaluation of pre-Descemet endothelial keratoplasty grafts,” J. Cataract Refract. Surg. 41(7), 1535–1536 (2015).
[Crossref] [PubMed]

Ai, S.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Ang, M.

L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334 (2014).
[Crossref] [PubMed]

Angunawela, R. I.

L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334 (2014).
[Crossref] [PubMed]

Backman, V.

Bao, F.

D. Williams, Y. Zheng, F. Bao, and A. Elsheikh, “Fast segmentation of anterior segment optical coherence tomography images using graph cut,” Eye Vis (Lond) 2(1), 1 (2015).
[Crossref] [PubMed]

Baumann, B.

Bielory, B.

M. A. Shousha, C. L. Karp, A. P. Canto, K. Hodson, P. Oellers, A. A. Kao, B. Bielory, J. Matthews, S. R. Dubovy, V. L. Perez, and J. Wang, “Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography,” Ophthalmology 120(5), 883–891 (2013).
[Crossref] [PubMed]

Bock, R.

Boppart, S. A.

D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9(6), 1281–1287 (2004).
[Crossref] [PubMed]

Bordenave, E.

E. Bordenave, E. Abraham, G. Jonusauskas, J. Oberle, and C. Rulliere, “Single-shot correlation system for longitudinal imaging in biological tissues,” Opt. Commun. 208(4-6), 275–283 (2002).
[Crossref]

Briones-R, M. J.

M. J. Briones-R, M. H. De La Torre-Ibarra, F. Mendoza-Santoyo, and J. Pedroza-G, “Simultaneous birefringence imaging and depth phase resolved measurement using a Fourier domain OCT system,” Opt. Lasers Eng. 68, 104–110 (2015).
[Crossref]

Brown, W. J.

Buchser, N.

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Canto, A. P.

M. A. Shousha, C. L. Karp, A. P. Canto, K. Hodson, P. Oellers, A. A. Kao, B. Bielory, J. Matthews, S. R. Dubovy, V. L. Perez, and J. Wang, “Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography,” Ophthalmology 120(5), 883–891 (2013).
[Crossref] [PubMed]

V. Hurmeric, S. H. Yoo, A. Galor, A. P. Canto, and J. Wang, “Atypical presentation of Salzmann nodular degeneration diagnosed with ultra-high-resolution optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 42(42), e122–e125 (2011).
[PubMed]

Carney, P. S.

D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9(6), 1281–1287 (2004).
[Crossref] [PubMed]

Chang, V.

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, Q.

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Chen, T.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Chen, Z.

Chinn, S. R.

Choma, M.

Choma, M. A.

Creazzo, T. L.

De Benito-Llopis, L.

L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334 (2014).
[Crossref] [PubMed]

de Boer, J. F.

De La Torre-Ibarra, M. H.

M. J. Briones-R, M. H. De La Torre-Ibarra, F. Mendoza-Santoyo, and J. Pedroza-G, “Simultaneous birefringence imaging and depth phase resolved measurement using a Fourier domain OCT system,” Opt. Lasers Eng. 68, 104–110 (2015).
[Crossref]

M. H. De la Torre-Ibarra, P. D. Ruiz, and J. M. Huntley, “Double-shot depth-resolved displacement field measurement using phase-contrast spectral optical coherence tomography,” Opt. Express 14(21), 9643–9656 (2006).
[Crossref] [PubMed]

Defense, U. D. o.

U. D. o. Defense, “MIL-STD-150A,” (1959).

Dong, Y.

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. Pharm. Sci. 103(1), 161–166 (2014).
[Crossref] [PubMed]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Dua, H. S.

D. A. Kumar, H. S. Dua, A. Agarwal, and S. Jacob, “Postoperative spectral-domain optical coherence tomography evaluation of pre-Descemet endothelial keratoplasty grafts,” J. Cataract Refract. Surg. 41(7), 1535–1536 (2015).
[Crossref] [PubMed]

Dubovy, S. R.

M. A. Shousha, C. L. Karp, A. P. Canto, K. Hodson, P. Oellers, A. A. Kao, B. Bielory, J. Matthews, S. R. Dubovy, V. L. Perez, and J. Wang, “Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography,” Ophthalmology 120(5), 883–891 (2013).
[Crossref] [PubMed]

L. M. Vajzovic, C. L. Karp, P. Haft, M. A. Shousha, S. R. Dubovy, V. Hurmeric, S. H. Yoo, and J. Wang, “Ultra high-resolution anterior segment optical coherence tomography in the evaluation of anterior corneal dystrophies and degenerations,” Ophthalmology 118(7), 1291–1296 (2011).
[PubMed]

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Duker, J. S.

M. Adhi and J. S. Duker, “Optical coherence tomography--current and future applications,” Curr. Opin. Ophthalmol. 24(3), 213–221 (2013).
[Crossref] [PubMed]

Ellerbee, A. K.

Elsheikh, A.

D. Williams, Y. Zheng, F. Bao, and A. Elsheikh, “Fast segmentation of anterior segment optical coherence tomography images using graph cut,” Eye Vis (Lond) 2(1), 1 (2015).
[Crossref] [PubMed]

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Evans, M. J.

H. Lin, R. K. May, M. J. Evans, S. Zhong, L. F. Gladden, Y. Shen, J. A. Zeitler, R. K. May, and S. Zhong, “Impact of processing conditions on inter-tablet coating thickness variations measured by Terahertz in-line sensing,” J. Pharm. Sci. 104(8), 2513–2522 (2015).
[Crossref] [PubMed]

Falera, R.

J. S. Titiyal, M. Kaur, R. Falera, C. P. Jose, and N. Sharma, “Evaluation of time to donor lenticule apposition using intraoperative optical coherence tomography in descemet stripping automated endothelial keratoplasty,” Cornea 35(4), 477–481 (2016).
[Crossref] [PubMed]

Fercher, A.

Fercher, A. F.

B. Grajciar, Y. Lehareinger, A. F. Fercher, and R. A. Leitgeb, “High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512 000 A-scan/s,” Opt. Express 18(21), 21841–21850 (2010).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Feuer, W.

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fraser, J. M.

Fujimoto, J. G.

Galor, A.

V. Hurmeric, S. H. Yoo, A. Galor, A. P. Canto, and J. Wang, “Atypical presentation of Salzmann nodular degeneration diagnosed with ultra-high-resolution optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 42(42), e122–e125 (2011).
[PubMed]

Gladden, L. F.

H. Lin, R. K. May, M. J. Evans, S. Zhong, L. F. Gladden, Y. Shen, J. A. Zeitler, R. K. May, and S. Zhong, “Impact of processing conditions on inter-tablet coating thickness variations measured by Terahertz in-line sensing,” J. Pharm. Sci. 104(8), 2513–2522 (2015).
[Crossref] [PubMed]

Gong, J.

Graf, R. N.

Grajciar, B.

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Haft, P.

L. M. Vajzovic, C. L. Karp, P. Haft, M. A. Shousha, S. R. Dubovy, V. Hurmeric, S. H. Yoo, and J. Wang, “Ultra high-resolution anterior segment optical coherence tomography in the evaluation of anterior corneal dystrophies and degenerations,” Ophthalmology 118(7), 1291–1296 (2011).
[PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Higgins, L.

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Hodson, K.

M. A. Shousha, C. L. Karp, A. P. Canto, K. Hodson, P. Oellers, A. A. Kao, B. Bielory, J. Matthews, S. R. Dubovy, V. L. Perez, and J. Wang, “Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography,” Ophthalmology 120(5), 883–891 (2013).
[Crossref] [PubMed]

Hornegger, J.

Hsieh, J. C.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Huang, D.

J. L. B. Ramos, Y. Li, and D. Huang, “Clinical and research applications of anterior segment optical coherence tomography - a review,” Clin. Experiment. Ophthalmol. 37(1), 81–89 (2009).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huntley, J. M.

Huo, T.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Hurmeric, V.

L. M. Vajzovic, C. L. Karp, P. Haft, M. A. Shousha, S. R. Dubovy, V. Hurmeric, S. H. Yoo, and J. Wang, “Ultra high-resolution anterior segment optical coherence tomography in the evaluation of anterior corneal dystrophies and degenerations,” Ophthalmology 118(7), 1291–1296 (2011).
[PubMed]

V. Hurmeric, S. H. Yoo, A. Galor, A. P. Canto, and J. Wang, “Atypical presentation of Salzmann nodular degeneration diagnosed with ultra-high-resolution optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 42(42), e122–e125 (2011).
[PubMed]

Ide, T.

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Itoh, M.

Izatt, J.

Izatt, J. A.

Jacob, S.

D. A. Kumar, H. S. Dua, A. Agarwal, and S. Jacob, “Postoperative spectral-domain optical coherence tomography evaluation of pre-Descemet endothelial keratoplasty grafts,” J. Cataract Refract. Surg. 41(7), 1535–1536 (2015).
[Crossref] [PubMed]

Jiang, H.

S. Wu, A. Tao, H. Jiang, Z. Xu, V. Perez, and J. Wang, “Vertical and horizontal corneal epithelial thickness profile using ultra-high resolution and long scan depth optical coherence tomography,” PLoS One 9(5), e97962 (2014).
[Crossref] [PubMed]

Jiao, S.

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Jonnal, R.

Jonusauskas, G.

E. Bordenave, E. Abraham, G. Jonusauskas, J. Oberle, and C. Rulliere, “Single-shot correlation system for longitudinal imaging in biological tissues,” Opt. Commun. 208(4-6), 275–283 (2002).
[Crossref]

Jose, C. P.

J. S. Titiyal, M. Kaur, R. Falera, C. P. Jose, and N. Sharma, “Evaluation of time to donor lenticule apposition using intraoperative optical coherence tomography in descemet stripping automated endothelial keratoplasty,” Cornea 35(4), 477–481 (2016).
[Crossref] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Kao, A. A.

M. A. Shousha, C. L. Karp, A. P. Canto, K. Hodson, P. Oellers, A. A. Kao, B. Bielory, J. Matthews, S. R. Dubovy, V. L. Perez, and J. Wang, “Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography,” Ophthalmology 120(5), 883–891 (2013).
[Crossref] [PubMed]

Karp, C. L.

M. A. Shousha, C. L. Karp, A. P. Canto, K. Hodson, P. Oellers, A. A. Kao, B. Bielory, J. Matthews, S. R. Dubovy, V. L. Perez, and J. Wang, “Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography,” Ophthalmology 120(5), 883–891 (2013).
[Crossref] [PubMed]

L. M. Vajzovic, C. L. Karp, P. Haft, M. A. Shousha, S. R. Dubovy, V. Hurmeric, S. H. Yoo, and J. Wang, “Ultra high-resolution anterior segment optical coherence tomography in the evaluation of anterior corneal dystrophies and degenerations,” Ophthalmology 118(7), 1291–1296 (2011).
[PubMed]

Kaur, M.

J. S. Titiyal, M. Kaur, R. Falera, C. P. Jose, and N. Sharma, “Evaluation of time to donor lenticule apposition using intraoperative optical coherence tomography in descemet stripping automated endothelial keratoplasty,” Cornea 35(4), 477–481 (2016).
[Crossref] [PubMed]

Kim, Y. L.

Kraus, M. F.

Kumar, D. A.

D. A. Kumar, H. S. Dua, A. Agarwal, and S. Jacob, “Postoperative spectral-domain optical coherence tomography evaluation of pre-Descemet endothelial keratoplasty grafts,” J. Cataract Refract. Surg. 41(7), 1535–1536 (2015).
[Crossref] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Lee, S. W.

Lehareinger, Y.

Leitgeb, R.

Leitgeb, R. A.

Li, C.

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. Pharm. Sci. 103(1), 161–166 (2014).
[Crossref] [PubMed]

Li, X.

Li, Y.

J. L. B. Ramos, Y. Li, and D. Huang, “Clinical and research applications of anterior segment optical coherence tomography - a review,” Clin. Experiment. Ophthalmol. 37(1), 81–89 (2009).
[Crossref] [PubMed]

Liao, W.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lin, H.

H. Lin, R. K. May, M. J. Evans, S. Zhong, L. F. Gladden, Y. Shen, J. A. Zeitler, R. K. May, and S. Zhong, “Impact of processing conditions on inter-tablet coating thickness variations measured by Terahertz in-line sensing,” J. Pharm. Sci. 104(8), 2513–2522 (2015).
[Crossref] [PubMed]

Liu, B.

Liu, J. J.

Liu, Y.

Ma, Z. H.

Z. H. Ma, R. K. Wang, F. Zhang, and J. Q. Yao, “Spectral optical coherence tomography using two-phase shifting method,” Chin. Phys. Lett. 22(8), 1909–1912 (2005).
[Crossref]

Makita, S.

Marks, D.

D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9(6), 1281–1287 (2004).
[Crossref] [PubMed]

Matthews, J.

M. A. Shousha, C. L. Karp, A. P. Canto, K. Hodson, P. Oellers, A. A. Kao, B. Bielory, J. Matthews, S. R. Dubovy, V. L. Perez, and J. Wang, “Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography,” Ophthalmology 120(5), 883–891 (2013).
[Crossref] [PubMed]

May, R. K.

H. Lin, R. K. May, M. J. Evans, S. Zhong, L. F. Gladden, Y. Shen, J. A. Zeitler, R. K. May, and S. Zhong, “Impact of processing conditions on inter-tablet coating thickness variations measured by Terahertz in-line sensing,” J. Pharm. Sci. 104(8), 2513–2522 (2015).
[Crossref] [PubMed]

H. Lin, R. K. May, M. J. Evans, S. Zhong, L. F. Gladden, Y. Shen, J. A. Zeitler, R. K. May, and S. Zhong, “Impact of processing conditions on inter-tablet coating thickness variations measured by Terahertz in-line sensing,” J. Pharm. Sci. 104(8), 2513–2522 (2015).
[Crossref] [PubMed]

Mayer, M. A.

McClure, J. P.

J. P. McClure, “The Schmidt-Czerny-Turner spectrograph,” Proc. SPIE 9189, 91890C (2014).
[Crossref]

Mehta, J. S.

L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334 (2014).
[Crossref] [PubMed]

Mendoza-Santoyo, F.

M. J. Briones-R, M. H. De La Torre-Ibarra, F. Mendoza-Santoyo, and J. Pedroza-G, “Simultaneous birefringence imaging and depth phase resolved measurement using a Fourier domain OCT system,” Opt. Lasers Eng. 68, 104–110 (2015).
[Crossref]

Miller, D.

Moon, S.

Muller, M. S.

Nakamura, Y.

Nassif, N.

Nelson, J. S.

Nguyen, T.-U.

Oberle, J.

E. Bordenave, E. Abraham, G. Jonusauskas, J. Oberle, and C. Rulliere, “Single-shot correlation system for longitudinal imaging in biological tissues,” Opt. Commun. 208(4-6), 275–283 (2002).
[Crossref]

Oellers, P.

M. A. Shousha, C. L. Karp, A. P. Canto, K. Hodson, P. Oellers, A. A. Kao, B. Bielory, J. Matthews, S. R. Dubovy, V. L. Perez, and J. Wang, “Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography,” Ophthalmology 120(5), 883–891 (2013).
[Crossref] [PubMed]

Park, B. H.

Pedroza-G, J.

M. J. Briones-R, M. H. De La Torre-Ibarra, F. Mendoza-Santoyo, and J. Pedroza-G, “Simultaneous birefringence imaging and depth phase resolved measurement using a Fourier domain OCT system,” Opt. Lasers Eng. 68, 104–110 (2015).
[Crossref]

Perez, V.

S. Wu, A. Tao, H. Jiang, Z. Xu, V. Perez, and J. Wang, “Vertical and horizontal corneal epithelial thickness profile using ultra-high resolution and long scan depth optical coherence tomography,” PLoS One 9(5), e97962 (2014).
[Crossref] [PubMed]

Perez, V. L.

M. A. Shousha, C. L. Karp, A. P. Canto, K. Hodson, P. Oellers, A. A. Kao, B. Bielory, J. Matthews, S. R. Dubovy, V. L. Perez, and J. Wang, “Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography,” Ophthalmology 120(5), 883–891 (2013).
[Crossref] [PubMed]

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Pierce, M. C.

Pircher, M.

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ramos, J. L. B.

J. L. B. Ramos, Y. Li, and D. Huang, “Clinical and research applications of anterior segment optical coherence tomography - a review,” Clin. Experiment. Ophthalmol. 37(1), 81–89 (2009).
[Crossref] [PubMed]

Rha, J.

Richards-Kortum, R.

Robles, F. E.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Ruiz, P. D.

Rulliere, C.

E. Bordenave, E. Abraham, G. Jonusauskas, J. Oberle, and C. Rulliere, “Single-shot correlation system for longitudinal imaging in biological tissues,” Opt. Commun. 208(4-6), 275–283 (2002).
[Crossref]

Sarunic, M.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sharma, N.

J. S. Titiyal, M. Kaur, R. Falera, C. P. Jose, and N. Sharma, “Evaluation of time to donor lenticule apposition using intraoperative optical coherence tomography in descemet stripping automated endothelial keratoplasty,” Cornea 35(4), 477–481 (2016).
[Crossref] [PubMed]

Shen, Y.

H. Lin, R. K. May, M. J. Evans, S. Zhong, L. F. Gladden, Y. Shen, J. A. Zeitler, R. K. May, and S. Zhong, “Impact of processing conditions on inter-tablet coating thickness variations measured by Terahertz in-line sensing,” J. Pharm. Sci. 104(8), 2513–2522 (2015).
[Crossref] [PubMed]

Shen, Y.-C.

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. Pharm. Sci. 103(1), 161–166 (2014).
[Crossref] [PubMed]

Shousha, M. A.

M. A. Shousha, C. L. Karp, A. P. Canto, K. Hodson, P. Oellers, A. A. Kao, B. Bielory, J. Matthews, S. R. Dubovy, V. L. Perez, and J. Wang, “Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography,” Ophthalmology 120(5), 883–891 (2013).
[Crossref] [PubMed]

L. M. Vajzovic, C. L. Karp, P. Haft, M. A. Shousha, S. R. Dubovy, V. Hurmeric, S. H. Yoo, and J. Wang, “Ultra high-resolution anterior segment optical coherence tomography in the evaluation of anterior corneal dystrophies and degenerations,” Ophthalmology 118(7), 1291–1296 (2011).
[PubMed]

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tan, D. T.

L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334 (2014).
[Crossref] [PubMed]

Tao, A.

S. Wu, A. Tao, H. Jiang, Z. Xu, V. Perez, and J. Wang, “Vertical and horizontal corneal epithelial thickness profile using ultra-high resolution and long scan depth optical coherence tomography,” PLoS One 9(5), e97962 (2014).
[Crossref] [PubMed]

Titiyal, J. S.

J. S. Titiyal, M. Kaur, R. Falera, C. P. Jose, and N. Sharma, “Evaluation of time to donor lenticule apposition using intraoperative optical coherence tomography in descemet stripping automated endothelial keratoplasty,” Cornea 35(4), 477–481 (2016).
[Crossref] [PubMed]

Tkaczyk, T. S.

Tripathi, R.

Uttam, S.

Vajzovic, L. M.

L. M. Vajzovic, C. L. Karp, P. Haft, M. A. Shousha, S. R. Dubovy, V. Hurmeric, S. H. Yoo, and J. Wang, “Ultra high-resolution anterior segment optical coherence tomography in the evaluation of anterior corneal dystrophies and degenerations,” Ophthalmology 118(7), 1291–1296 (2011).
[PubMed]

Wang, C.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Wang, J.

S. Wu, A. Tao, H. Jiang, Z. Xu, V. Perez, and J. Wang, “Vertical and horizontal corneal epithelial thickness profile using ultra-high resolution and long scan depth optical coherence tomography,” PLoS One 9(5), e97962 (2014).
[Crossref] [PubMed]

M. A. Shousha, C. L. Karp, A. P. Canto, K. Hodson, P. Oellers, A. A. Kao, B. Bielory, J. Matthews, S. R. Dubovy, V. L. Perez, and J. Wang, “Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography,” Ophthalmology 120(5), 883–891 (2013).
[Crossref] [PubMed]

L. M. Vajzovic, C. L. Karp, P. Haft, M. A. Shousha, S. R. Dubovy, V. Hurmeric, S. H. Yoo, and J. Wang, “Ultra high-resolution anterior segment optical coherence tomography in the evaluation of anterior corneal dystrophies and degenerations,” Ophthalmology 118(7), 1291–1296 (2011).
[PubMed]

V. Hurmeric, S. H. Yoo, A. Galor, A. P. Canto, and J. Wang, “Atypical presentation of Salzmann nodular degeneration diagnosed with ultra-high-resolution optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 42(42), e122–e125 (2011).
[PubMed]

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Wang, R. K.

Z. H. Ma, R. K. Wang, F. Zhang, and J. Q. Yao, “Spectral optical coherence tomography using two-phase shifting method,” Chin. Phys. Lett. 22(8), 1909–1912 (2005).
[Crossref]

Wax, A.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

R. N. Graf, W. J. Brown, and A. Wax, “Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source,” Opt. Lett. 33(12), 1285–1287 (2008).
[Crossref] [PubMed]

Webster, P. J. L.

Williams, D.

D. Williams, Y. Zheng, F. Bao, and A. Elsheikh, “Fast segmentation of anterior segment optical coherence tomography images using graph cut,” Eye Vis (Lond) 2(1), 1 (2015).
[Crossref] [PubMed]

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Wu, S.

S. Wu, A. Tao, H. Jiang, Z. Xu, V. Perez, and J. Wang, “Vertical and horizontal corneal epithelial thickness profile using ultra-high resolution and long scan depth optical coherence tomography,” PLoS One 9(5), e97962 (2014).
[Crossref] [PubMed]

Xu, Z.

S. Wu, A. Tao, H. Jiang, Z. Xu, V. Perez, and J. Wang, “Vertical and horizontal corneal epithelial thickness profile using ultra-high resolution and long scan depth optical coherence tomography,” PLoS One 9(5), e97962 (2014).
[Crossref] [PubMed]

Xue, P.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Yamanari, M.

Yang, C.

Yao, J. Q.

Z. H. Ma, R. K. Wang, F. Zhang, and J. Q. Yao, “Spectral optical coherence tomography using two-phase shifting method,” Chin. Phys. Lett. 22(8), 1909–1912 (2005).
[Crossref]

Yao, L.

J. Zhong, S. Zhong, Q. Zhang, and L. Yao, “Two-dimensional optical coherence tomography for real-time structural dynamical characterization,” Opt. Lasers Eng. 66, 74–79 (2015).
[Crossref]

Yasuno, Y.

Yatagai, T.

Yoo, S. H.

V. Hurmeric, S. H. Yoo, A. Galor, A. P. Canto, and J. Wang, “Atypical presentation of Salzmann nodular degeneration diagnosed with ultra-high-resolution optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 42(42), e122–e125 (2011).
[PubMed]

L. M. Vajzovic, C. L. Karp, P. Haft, M. A. Shousha, S. R. Dubovy, V. Hurmeric, S. H. Yoo, and J. Wang, “Ultra high-resolution anterior segment optical coherence tomography in the evaluation of anterior corneal dystrophies and degenerations,” Ophthalmology 118(7), 1291–1296 (2011).
[PubMed]

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Zeitler, J. A.

H. Lin, R. K. May, M. J. Evans, S. Zhong, L. F. Gladden, Y. Shen, J. A. Zeitler, R. K. May, and S. Zhong, “Impact of processing conditions on inter-tablet coating thickness variations measured by Terahertz in-line sensing,” J. Pharm. Sci. 104(8), 2513–2522 (2015).
[Crossref] [PubMed]

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. Pharm. Sci. 103(1), 161–166 (2014).
[Crossref] [PubMed]

Zhang, F.

Z. H. Ma, R. K. Wang, F. Zhang, and J. Q. Yao, “Spectral optical coherence tomography using two-phase shifting method,” Chin. Phys. Lett. 22(8), 1909–1912 (2005).
[Crossref]

Zhang, Q.

J. Zhong, S. Zhong, Q. Zhang, and L. Yao, “Two-dimensional optical coherence tomography for real-time structural dynamical characterization,” Opt. Lasers Eng. 66, 74–79 (2015).
[Crossref]

Zhang, W.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Zhang, X.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Zhang, Y.

Zheng, Y.

D. Williams, Y. Zheng, F. Bao, and A. Elsheikh, “Fast segmentation of anterior segment optical coherence tomography images using graph cut,” Eye Vis (Lond) 2(1), 1 (2015).
[Crossref] [PubMed]

Zhong, J.

J. Zhong, S. Zhong, Q. Zhang, and L. Yao, “Two-dimensional optical coherence tomography for real-time structural dynamical characterization,” Opt. Lasers Eng. 66, 74–79 (2015).
[Crossref]

Zhong, S.

J. Zhong, S. Zhong, Q. Zhang, and L. Yao, “Two-dimensional optical coherence tomography for real-time structural dynamical characterization,” Opt. Lasers Eng. 66, 74–79 (2015).
[Crossref]

H. Lin, R. K. May, M. J. Evans, S. Zhong, L. F. Gladden, Y. Shen, J. A. Zeitler, R. K. May, and S. Zhong, “Impact of processing conditions on inter-tablet coating thickness variations measured by Terahertz in-line sensing,” J. Pharm. Sci. 104(8), 2513–2522 (2015).
[Crossref] [PubMed]

H. Lin, R. K. May, M. J. Evans, S. Zhong, L. F. Gladden, Y. Shen, J. A. Zeitler, R. K. May, and S. Zhong, “Impact of processing conditions on inter-tablet coating thickness variations measured by Terahertz in-line sensing,” J. Pharm. Sci. 104(8), 2513–2522 (2015).
[Crossref] [PubMed]

Zuluaga, A. F.

Am. J. Ophthalmol. (1)

L. De Benito-Llopis, J. S. Mehta, R. I. Angunawela, M. Ang, and D. T. Tan, “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Chin. Phys. Lett. (1)

Z. H. Ma, R. K. Wang, F. Zhang, and J. Q. Yao, “Spectral optical coherence tomography using two-phase shifting method,” Chin. Phys. Lett. 22(8), 1909–1912 (2005).
[Crossref]

Clin. Experiment. Ophthalmol. (1)

J. L. B. Ramos, Y. Li, and D. Huang, “Clinical and research applications of anterior segment optical coherence tomography - a review,” Clin. Experiment. Ophthalmol. 37(1), 81–89 (2009).
[Crossref] [PubMed]

Cornea (1)

J. S. Titiyal, M. Kaur, R. Falera, C. P. Jose, and N. Sharma, “Evaluation of time to donor lenticule apposition using intraoperative optical coherence tomography in descemet stripping automated endothelial keratoplasty,” Cornea 35(4), 477–481 (2016).
[Crossref] [PubMed]

Curr. Opin. Ophthalmol. (1)

M. Adhi and J. S. Duker, “Optical coherence tomography--current and future applications,” Curr. Opin. Ophthalmol. 24(3), 213–221 (2013).
[Crossref] [PubMed]

Eye Vis (Lond) (1)

D. Williams, Y. Zheng, F. Bao, and A. Elsheikh, “Fast segmentation of anterior segment optical coherence tomography images using graph cut,” Eye Vis (Lond) 2(1), 1 (2015).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9(6), 1281–1287 (2004).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (1)

D. A. Kumar, H. S. Dua, A. Agarwal, and S. Jacob, “Postoperative spectral-domain optical coherence tomography evaluation of pre-Descemet endothelial keratoplasty grafts,” J. Cataract Refract. Surg. 41(7), 1535–1536 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Pharm. Sci. (2)

H. Lin, R. K. May, M. J. Evans, S. Zhong, L. F. Gladden, Y. Shen, J. A. Zeitler, R. K. May, and S. Zhong, “Impact of processing conditions on inter-tablet coating thickness variations measured by Terahertz in-line sensing,” J. Pharm. Sci. 104(8), 2513–2522 (2015).
[Crossref] [PubMed]

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. Pharm. Sci. 103(1), 161–166 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Ophthalmic Surg. Lasers Imaging (1)

V. Hurmeric, S. H. Yoo, A. Galor, A. P. Canto, and J. Wang, “Atypical presentation of Salzmann nodular degeneration diagnosed with ultra-high-resolution optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 42(42), e122–e125 (2011).
[PubMed]

Ophthalmology (3)

M. A. Shousha, C. L. Karp, A. P. Canto, K. Hodson, P. Oellers, A. A. Kao, B. Bielory, J. Matthews, S. R. Dubovy, V. L. Perez, and J. Wang, “Diagnosis of ocular surface lesions using ultra-high-resolution optical coherence tomography,” Ophthalmology 120(5), 883–891 (2013).
[Crossref] [PubMed]

L. M. Vajzovic, C. L. Karp, P. Haft, M. A. Shousha, S. R. Dubovy, V. Hurmeric, S. H. Yoo, and J. Wang, “Ultra high-resolution anterior segment optical coherence tomography in the evaluation of anterior corneal dystrophies and degenerations,” Ophthalmology 118(7), 1291–1296 (2011).
[PubMed]

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Opt. Commun. (2)

E. Bordenave, E. Abraham, G. Jonusauskas, J. Oberle, and C. Rulliere, “Single-shot correlation system for longitudinal imaging in biological tissues,” Opt. Commun. 208(4-6), 275–283 (2002).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Opt. Express (10)

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

M. H. De la Torre-Ibarra, P. D. Ruiz, and J. M. Huntley, “Double-shot depth-resolved displacement field measurement using phase-contrast spectral optical coherence tomography,” Opt. Express 14(21), 9643–9656 (2006).
[Crossref] [PubMed]

T.-U. Nguyen, M. C. Pierce, L. Higgins, and T. S. Tkaczyk, “Snapshot 3D optical coherence tomography system using image mapping spectrometry,” Opt. Express 21(11), 13758–13772 (2013).
[Crossref] [PubMed]

B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131–1137 (2005).
[Crossref] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
[Crossref] [PubMed]

Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15(12), 7103–7116 (2007).
[Crossref] [PubMed]

S. Moon, S. W. Lee, and Z. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express 18(24), 24395–24404 (2010).
[Crossref] [PubMed]

B. Grajciar, Y. Lehareinger, A. F. Fercher, and R. A. Leitgeb, “High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512 000 A-scan/s,” Opt. Express 18(21), 21841–21850 (2010).
[Crossref] [PubMed]

J. Gong, B. Liu, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Optimal spectral reshaping for resolution improvement in optical coherence tomography,” Opt. Express 14(13), 5909–5915 (2006).
[Crossref] [PubMed]

Opt. Lasers Eng. (2)

J. Zhong, S. Zhong, Q. Zhang, and L. Yao, “Two-dimensional optical coherence tomography for real-time structural dynamical characterization,” Opt. Lasers Eng. 66, 74–79 (2015).
[Crossref]

M. J. Briones-R, M. H. De La Torre-Ibarra, F. Mendoza-Santoyo, and J. Pedroza-G, “Simultaneous birefringence imaging and depth phase resolved measurement using a Fourier domain OCT system,” Opt. Lasers Eng. 68, 104–110 (2015).
[Crossref]

Opt. Lett. (6)

PLoS One (1)

S. Wu, A. Tao, H. Jiang, Z. Xu, V. Perez, and J. Wang, “Vertical and horizontal corneal epithelial thickness profile using ultra-high resolution and long scan depth optical coherence tomography,” PLoS One 9(5), e97962 (2014).
[Crossref] [PubMed]

Proc. SPIE (1)

J. P. McClure, “The Schmidt-Czerny-Turner spectrograph,” Proc. SPIE 9189, 91890C (2014).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (2)

U. D. o. Defense, “MIL-STD-150A,” (1959).

R. R. Alfonso, ed., The Super Continuum Laser Source, 2nd ed. (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The LF-OCT system. SC - Super-Continuum light source, CSMF – Continuously Single Mode Fibre. C – Collimator, Fil – Optical Filters (Bandpass and Neutral Density), Cyl – Cylindrical Lens, BS – Cube Beam Splitter. Obj – Objective Lenses, Ref – Reference Interface (Flat glass surface), Col – Collection Lens, Spec – Andor Shamrock 303i toroidal Czerny-Turner imaging spectrograph, sCMOS – Scientific Complementary Metal Oxide Semiconductor camera (Neo, Andor, UK), BI CCD – Back Illuminated Charged Couple Device camera (iVac, Andor, UK).
Fig. 2
Fig. 2 Plot of the theoretical raw (padded FFT of S(ω)) (line), measured example raw (circles) and measured example digital spectral shaped (crosses) axial PSFs of the LF-OCT using the wide BI CCD camera and 300 l/mm grating. (Inset) An example raw OCT spectrum in wavelength space.
Fig. 3
Fig. 3 En-face OCT image of USAF 1951 chart from volume taken at 213kAScans/s.
Fig. 4
Fig. 4 (Left) Full OCT image of partially dried human cornea ex-vivo imaged from the back (top). (Top right) Zoom into back showing endothelium, Descemet’s membrane, and stroma. (Bottom right) Zoom into front showing stroma, Bowman’s membrane and Epithelium. Red lines show segmentation.
Fig. 5
Fig. 5 (Left) Raw super-continuum single pulse LF-OCT image. (Right) Super-continuum single pulse LF-OCT image after subtraction of median magnitude A-Scan. The red lines show the segmented interfaces of the clear coating.
Fig. 6
Fig. 6 (a) Aberration artefacted LF-OCT image of curved cling film. (b) The LF-OCT image after the application of the phase mask β. Zoom into side (c, d, e) and front (f, g, h) are shown before (c, f) and after (d, g) application of phase mask. The raw Fourier phase maps of these zooms are shown in (e) and (h).

Tables (1)

Tables Icon

Table 1 Measured Optical Thickness of Corneal Layers*.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

K(ω)= D(ω) S(ω) ,
I'(t)=2.T.R.DFT( K(ω).S(ω) ) h j δ t,Δt ( a j + b j i ),
where a j 2 + b j 2 =1
β=| | Δ L Ψ |π |,

Metrics