Abstract

We numerically and experimentally demonstrate strong coupling between the mid-infrared localized surface plasmon resonances supported by plasmonic metamaterials and the phonon vibrational resonances of polymethyl methacrylate (PMMA) molecules. The plasmonic resonances are tuned across the phonon resonance of PMMA molecules at 52 THz to observe the strong coupling, which manifests itself as an anti-crossing feature with two newly formed plasmon-phonon modes. It is also shown that the forbidden energy gap due to mode splitting is proportional to the overlapped optical power between the plasmonic resonance mode and the PMMA molecules, providing an effective approach for manipulating the coupling strength of light-matter interaction.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strong coupling between phonon-polaritons and plasmonic nanorods

Christian Huck, Jochen Vogt, Tomáš Neuman, Tadaaki Nagao, Rainer Hillenbrand, Javier Aizpurua, Annemarie Pucci, and Frank Neubrech
Opt. Express 24(22) 25528-25539 (2016)

Strong and weak couplings in molecular vibration–plasmon hybrid structures

Yunwei Chang, Jie Yao, Xuewei Wu, Dajian Wu, and Xiaojun Liu
Opt. Express 27(2) 1479-1487 (2019)

Strong coupling of localized surface plasmons and ensembles of dye molecules

V. N. Peters, T. U. Tumkur, Jing Ma, Nicholas A. Kotov, and M. A. Noginov
Opt. Express 24(22) 25653-25664 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  2. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [Crossref] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  4. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [Crossref] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  6. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
    [Crossref]
  7. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
    [Crossref]
  8. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  9. F. Cheng, X. Yang, and J. Gao, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39(11), 3185–3188 (2014).
    [Crossref] [PubMed]
  10. J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
    [Crossref] [PubMed]
  11. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
    [Crossref] [PubMed]
  12. X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
    [Crossref] [PubMed]
  13. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  14. H. Wang, Y. Yang, and L. Wang, “Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition,” J. Appl. Phys. 116(12), 123503 (2014).
    [Crossref]
  15. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  16. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  17. R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
    [Crossref] [PubMed]
  18. Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
    [Crossref] [PubMed]
  19. L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
    [Crossref] [PubMed]
  20. W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
    [Crossref] [PubMed]
  21. A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
    [Crossref] [PubMed]
  22. D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
    [Crossref] [PubMed]
  23. X. Zhang, D. Wu, C. Sun, and X. Zhang, “Artificial phonon-plasmon polariton at the interface of piezoelectric metamaterials and semiconductors,” Phys. Rev. B 76(8), 085318 (2007).
    [Crossref]
  24. J. P. Long and B. S. Simpkins, “Coherent Coupling between a Molecular Vibration and Fabry–Perot Optical Cavity to Give Hybridized States in the Strong Coupling Limit,” ACS Photonics 2(1), 130–136 (2015).
    [Crossref]
  25. A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
    [Crossref] [PubMed]
  26. B. Lahiri, S. G. McMeekin, R. M. De la Rue, and N. P. Johnson, “Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs),” Opt. Express 21(8), 9343–9352 (2013).
    [Crossref] [PubMed]
  27. F. Cheng, X. Yang, and J. Gao, “Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials,” Sci. Rep. 5, 14327 (2015).
    [Crossref] [PubMed]
  28. L. Novotny, “Strong coupling, energy splitting, and level crossings: A classical perspective,” Am. J. Phys. 78(11), 1199–1202 (2010).
    [Crossref]

2015 (3)

J. P. Long and B. S. Simpkins, “Coherent Coupling between a Molecular Vibration and Fabry–Perot Optical Cavity to Give Hybridized States in the Strong Coupling Limit,” ACS Photonics 2(1), 130–136 (2015).
[Crossref]

A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
[Crossref] [PubMed]

F. Cheng, X. Yang, and J. Gao, “Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials,” Sci. Rep. 5, 14327 (2015).
[Crossref] [PubMed]

2014 (4)

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

F. Cheng, X. Yang, and J. Gao, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39(11), 3185–3188 (2014).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

H. Wang, Y. Yang, and L. Wang, “Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition,” J. Appl. Phys. 116(12), 123503 (2014).
[Crossref]

2013 (1)

2012 (5)

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref] [PubMed]

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

2011 (1)

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

2010 (4)

L. Novotny, “Strong coupling, energy splitting, and level crossings: A classical perspective,” Am. J. Phys. 78(11), 1199–1202 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2009 (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

2008 (4)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

2007 (2)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

X. Zhang, D. Wu, C. Sun, and X. Zhang, “Artificial phonon-plasmon polariton at the interface of piezoelectric metamaterials and semiconductors,” Phys. Rev. B 76(8), 085318 (2007).
[Crossref]

2006 (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Aizpurua, J.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Alù, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Benz, A.

A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
[Crossref] [PubMed]

Boreman, G. D.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Brener, I.

A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
[Crossref] [PubMed]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Campione, S.

A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
[Crossref] [PubMed]

Catrysse, P. B.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

Chen, Y.

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

Cheng, F.

F. Cheng, X. Yang, and J. Gao, “Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials,” Sci. Rep. 5, 14327 (2015).
[Crossref] [PubMed]

F. Cheng, X. Yang, and J. Gao, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39(11), 3185–3188 (2014).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Coffey, K. R.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

De la Rue, R. M.

Dorpe, P. V.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Engheta, N.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Fan, S.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Gao, J.

F. Cheng, X. Yang, and J. Gao, “Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials,” Sci. Rep. 5, 14327 (2015).
[Crossref] [PubMed]

F. Cheng, X. Yang, and J. Gao, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39(11), 3185–3188 (2014).
[Crossref] [PubMed]

García-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Giessen, H.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Ginn, J. C.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Goh, X. M.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Gordon, R. J.

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref] [PubMed]

Halas, N. J.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Hentschel, M.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Johnson, N. P.

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Kästel, J.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Klem, J. F.

A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
[Crossref] [PubMed]

Kumar, K.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Lahiri, B.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lassiter, J. B.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, Z.

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Long, J. P.

J. P. Long and B. S. Simpkins, “Coherent Coupling between a Molecular Vibration and Fabry–Perot Optical Cavity to Give Hybridized States in the Strong Coupling Limit,” ACS Photonics 2(1), 130–136 (2015).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

McMeekin, S. G.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Neubrech, F.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Nordlander, P.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Novotny, L.

L. Novotny, “Strong coupling, energy splitting, and level crossings: A classical perspective,” Am. J. Phys. 78(11), 1199–1202 (2010).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Peters, D. W.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Prior, Y.

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref] [PubMed]

Pucci, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Qiu, C. W.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Rho, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Ruan, Z.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Salomon, A.

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Seideman, T.

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shelton, D. J.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Simpkins, B. S.

J. P. Long and B. S. Simpkins, “Coherent Coupling between a Molecular Vibration and Fabry–Perot Optical Cavity to Give Hybridized States in the Strong Coupling Limit,” ACS Photonics 2(1), 130–136 (2015).
[Crossref]

Sinclair, M. B.

A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
[Crossref] [PubMed]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Sobhani, H.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Sukharev, M.

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref] [PubMed]

Sun, C.

X. Zhang, D. Wu, C. Sun, and X. Zhang, “Artificial phonon-plasmon polariton at the interface of piezoelectric metamaterials and semiconductors,” Phys. Rev. B 76(8), 085318 (2007).
[Crossref]

Tan, S. J.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Taubert, R.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Verslegers, L.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

Wan, W.

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

Wang, H.

H. Wang, Y. Yang, and L. Wang, “Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition,” J. Appl. Phys. 116(12), 123503 (2014).
[Crossref]

Wang, L.

H. Wang, Y. Yang, and L. Wang, “Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition,” J. Appl. Phys. 116(12), 123503 (2014).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wen, F.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Wu, D.

X. Zhang, D. Wu, C. Sun, and X. Zhang, “Artificial phonon-plasmon polariton at the interface of piezoelectric metamaterials and semiconductors,” Phys. Rev. B 76(8), 085318 (2007).
[Crossref]

Yang, J. K. W.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Yang, X.

F. Cheng, X. Yang, and J. Gao, “Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials,” Sci. Rep. 5, 14327 (2015).
[Crossref] [PubMed]

F. Cheng, X. Yang, and J. Gao, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39(11), 3185–3188 (2014).
[Crossref] [PubMed]

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Yang, Y.

H. Wang, Y. Yang, and L. Wang, “Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition,” J. Appl. Phys. 116(12), 123503 (2014).
[Crossref]

Yao, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Ye, J.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Yin, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Yu, Z.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, L.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

X. Zhang, D. Wu, C. Sun, and X. Zhang, “Artificial phonon-plasmon polariton at the interface of piezoelectric metamaterials and semiconductors,” Phys. Rev. B 76(8), 085318 (2007).
[Crossref]

X. Zhang, D. Wu, C. Sun, and X. Zhang, “Artificial phonon-plasmon polariton at the interface of piezoelectric metamaterials and semiconductors,” Phys. Rev. B 76(8), 085318 (2007).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zheng, W.

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

Zheng, Y.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

J. P. Long and B. S. Simpkins, “Coherent Coupling between a Molecular Vibration and Fabry–Perot Optical Cavity to Give Hybridized States in the Strong Coupling Limit,” ACS Photonics 2(1), 130–136 (2015).
[Crossref]

Am. J. Phys. (1)

L. Novotny, “Strong coupling, energy splitting, and level crossings: A classical perspective,” Am. J. Phys. 78(11), 1199–1202 (2010).
[Crossref]

J. Appl. Phys. (1)

H. Wang, Y. Yang, and L. Wang, “Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition,” J. Appl. Phys. 116(12), 123503 (2014).
[Crossref]

Nano Lett. (5)

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
[Crossref] [PubMed]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Nanoscale (1)

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Nat. Mater. (3)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (2)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

X. Zhang, D. Wu, C. Sun, and X. Zhang, “Artificial phonon-plasmon polariton at the interface of piezoelectric metamaterials and semiconductors,” Phys. Rev. B 76(8), 085318 (2007).
[Crossref]

Phys. Rev. Lett. (6)

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref] [PubMed]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Sci. Rep. (1)

F. Cheng, X. Yang, and J. Gao, “Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials,” Sci. Rep. 5, 14327 (2015).
[Crossref] [PubMed]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of one unit cell of the cross-shaped aperture array and the incident light polarization configuration. (b) A SEM image of the fabricated aperture array (Top View, scale bar, 2 μm). (c) Simulated reflectance spectra and (d) FTIR measured reflectance spectra of the bare aperture arrays with different periods p.
Fig. 2
Fig. 2 Mode splitting induced by the strong coupling between the uncoupled plasmonic resonance and the phonon vibrational resonance of PMMA molecules. The black dotted curves and red solid curves represent the simulated and FTIR measured results, respectively. The period of aperture array is 2.35 μm. Top panel shows the plasmonic resonance of the bare metamaterial without PMMA. Middle panel shows the plasmonic resonance of the uncoupled metamaterial with 180-nm-thick PMMA coated on the top but in the absence of the phonon mode. Bottom panel shows two coupled plasmon-phonon modes the coupled system consisting of both the metamaterial and actual PMMA.
Fig. 3
Fig. 3 (a) FTIR measured reflectance spectra of bare metamaterials as a function of the resonance frequency of bare metamaterial. (b) Calculated reflectance spectra for the coupled system. (c) FTIR measured reflectancee spectra for the coupled system. The white dashed curves indicate the reflectance minima.
Fig. 4
Fig. 4 (a) Simulated and FTIR measured reflectance spectra of the coupled systems with metamaterials coated with PMMA films of different thicknesses (40, 100 and 180 nm). The uncoupled plasmonic resonances are designed at 52 THz. (b) Simulated and FTIR measured resonance frequencies ω ± with respected to the resonance frequency of bare metamaterial ωbare.
Fig. 5
Fig. 5 (a) The cross-section electric field distribution of the coupled system at the phonon vibrational frequency of 52 THz. The normal incident electric field (1V/m) is x-polarized. (b) The electric field profiles on the white dashed curve in (a) for PMMA thicknesses of 40, 100, and 180 nm. The metamaterial surface (indicated by the blue dashed curve) is set at the z = 0 position. (c) The comparison of forbidden energy gap between the simulated, fitted, and FTIR measured results as the function of PMMA thickness. The fitting parameters in Eq. (2) are α = 2.9 μm−1, B = 2.4 THz, B0 = 1.35 THz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P tot 0 z E 0 2 exp(2αz) dzA(1exp(2αz))+ A 0 ,
Ω=B(1exp(2αz))+ B 0 ,

Metrics