Abstract

A new and patented polishing tool called Orthogonal Velocity field Tool (OVT) was built and its material removal characteristics from Chemical Vapor Deposition Silicon Carbide (CVD SiC) mirror surfaces were investigated in this study. The velocity field of OVT is produced by rotating the bicycle type tool in the two orthogonal axes, and this concept is capable of producing a material removal foot print of pseudo Gaussian shapes. First for the OVT characterization, we derived a theoretical material removal model using distributions of pressure exerted onto the workpiece surface, relative speed between the tool and workpiece surface, and dwell time inside the tool- workpiece contact area. Second, using two flat CVD SiC mirrors that are 150 mm in diameter, we ran material removal experiments over machine run parameter ranging from 12.901 to 25.867 psi in pressure, from 0.086 m/sec to 0.147 m/sec tool in the relative speed, and 5 to 15 sec in dwell time. Material removal coefficients are obtained by using the in-house developed data analysis program. The resulting material removal coefficient varies from 3.35 to 9.46 um/psi hour m/sec with a mean value of 5.90 ± 1.26(standard deviation). We describe the technical details of the new OVT machine, the data analysis program, the experiments, and the results together with the implications to the future development of the machine.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modified subaperture tool influence functions of a flat-pitch polisher with reverse-calculated material removal rate

Zhichao Dong, Haobo Cheng, and Hon-Yuen Tam
Appl. Opt. 53(11) 2455-2464 (2014)

Edge control in a computer controlled optical surfacing process using a heterocercal tool influence function

Haixiang Hu, Xin Zhang, Virginia Ford, Xiao Luo, Erhui Qi, Xuefeng Zeng, and Xuejun Zhang
Opt. Express 24(23) 26809-26824 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Jones, “Computer-controlled optical surfacing with orbital tool motion,” Opt. Eng. 25(6), 780–790 (1986).
    [Crossref]
  2. R. A. Jones and R. L. Plante, “Rapid fabrication of large aspheric optics,” Precis. Eng. 9(2), 65–70 (1987).
    [Crossref]
  3. S. C. West, H. M. Martin, R. H. Nagel, R. S. Young, W. B. Davison, T. J. Trebisky, S. T. Derigne, and B. B. Hille, “Practical design and performance of the stressed-lap polishing tool,” Appl. Opt. 33(34), 8094–8100 (1994).
    [Crossref] [PubMed]
  4. D. D. Walker, R. G. Bingham, D. Brooks, F. Diego, and B. Humm, “The production of highly aspheric secondary mirrors using active laps,” ESOC 42, 215–218 (1992).
  5. L. N. Allen, “Precision figuring of optics by ion machining processes,” in Conference on Lasers and Electro-Optics (1989), paper TUB1.
  6. D. Golini, W. Kordonski, P. Dumas, and S. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80–91 (1999).
    [Crossref]
  7. D. D. Walker, S.-W. Kim, R. G. Bingham, D. Brooks, D.-H. Kim, and J. Thirtle, “Computer controlled polishing of moderate-sized general aspherics for instrumentation,” Proc. SPIE 3355, 947–954 (1998).
    [Crossref]
  8. R. G. Bingham, D. D. Walker, D.-H. Kim, D. Brooks, R. Freeman, and D. Riley, “A novel automated process for aspheric surfaces,” Proc. SPIE 4093, 445–450 (2000).
    [Crossref]
  9. Y. Toulemont, T. Passvogel, G. Pillbrat, D. de Chambure, D. Pierot, and D. Castel, “The 3.5m all SiC telescope for HERSCHEL,” Proc. SPIE 5487, 1119–1128 (2004).
    [Crossref]
  10. J. Robichaud, “SiC optics for EUV, UV, and visible space missions,” Proc. SPIE 4854, 39–49 (2003).
    [Crossref]
  11. R. Geyl, E. Ruch, H. Vayssade, H. Leplan, and J. Rodolfo, “NIRSpec optics development: the final report,” Proc. SPIE 8146, 81460B (2011).
    [Crossref]
  12. P. C. Baker, “Advanced flow-polishing of exotic optical materials,” Proc. SPIE 1160, 263–270 (1989).
    [Crossref]
  13. R. B. Hoover, R. B. Johnson, S. Fineschi, A. B. C. Walker, P. C. Baker, M. Zukic, and J. Kim, “Design and fabrication of the all-reflecting H- Lyman α coronagraph/ polarimeter,” Proc. SPIE 1742, 439–452 (1992).
    [Crossref]
  14. J. Robichaud, M. Anapol, L. Gardner, and P. Hadfield, “Ultralightweight off-axis three mirror anastigmatic SiC visible telescope,” Proc. SPIE 2543, 180–184 (1995).
    [Crossref]
  15. E. Fess, J. Schoen, M. Bechtold, and D. Mohring, “Ultra-form finishing process for optical materials,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2004), paper OMC5.
  16. T. Lambropoulos, E. Fess, and S. DeFisher, “Deterministic finishing of aspheric optical components,” Proc. SPIE 8884, 88840H (2013).
    [Crossref]
  17. Z. Rao, B. Guo, and Q. Zhao, “Investigation of contact pressure and influence function model for soft wheel polishing,” Appl. Opt. 54(27), 8091–8099 (2015).
    [Crossref] [PubMed]
  18. S.-W. Kim, “Machining tool head interface and associated polishing and grinding tools,” Republic of Korea Patent 10–0489703–0000 (May 2005).
  19. H. Seo, J.-Y. Han, S.-W. Kim, S. Seong, S. Yoon, K. Lee, and H. Lee, “Material removal characteristics of orthogonal velocity polishing tool for efficient fabrication of CVD SiC mirror surfaces,” Proc. SPIE 9575, 95750N (2015).
  20. F. W. Preston, “The theory and design of plate glass polishing machine,” J. Soc. Glass Technol. 11, 214–256 (1927).
  21. D. W. Kim, B. J. Lewis, and J. H. Burge, “Open-source data analysis and visualization software platform: SAGUARO,” Proc. SPIE 8126, 81260B (2011).
    [Crossref]
  22. G. A. Smith, B. J. Lewis, M. Palmer, D. W. Kim, A. R. Loeff, and J. H. Burge, “Open source data analysis and visualization software for optical engineering,” Proc. SPIE 8487, 84870F (2012).
    [Crossref]

2015 (2)

Z. Rao, B. Guo, and Q. Zhao, “Investigation of contact pressure and influence function model for soft wheel polishing,” Appl. Opt. 54(27), 8091–8099 (2015).
[Crossref] [PubMed]

H. Seo, J.-Y. Han, S.-W. Kim, S. Seong, S. Yoon, K. Lee, and H. Lee, “Material removal characteristics of orthogonal velocity polishing tool for efficient fabrication of CVD SiC mirror surfaces,” Proc. SPIE 9575, 95750N (2015).

2013 (1)

T. Lambropoulos, E. Fess, and S. DeFisher, “Deterministic finishing of aspheric optical components,” Proc. SPIE 8884, 88840H (2013).
[Crossref]

2012 (1)

G. A. Smith, B. J. Lewis, M. Palmer, D. W. Kim, A. R. Loeff, and J. H. Burge, “Open source data analysis and visualization software for optical engineering,” Proc. SPIE 8487, 84870F (2012).
[Crossref]

2011 (2)

D. W. Kim, B. J. Lewis, and J. H. Burge, “Open-source data analysis and visualization software platform: SAGUARO,” Proc. SPIE 8126, 81260B (2011).
[Crossref]

R. Geyl, E. Ruch, H. Vayssade, H. Leplan, and J. Rodolfo, “NIRSpec optics development: the final report,” Proc. SPIE 8146, 81460B (2011).
[Crossref]

2004 (1)

Y. Toulemont, T. Passvogel, G. Pillbrat, D. de Chambure, D. Pierot, and D. Castel, “The 3.5m all SiC telescope for HERSCHEL,” Proc. SPIE 5487, 1119–1128 (2004).
[Crossref]

2003 (1)

J. Robichaud, “SiC optics for EUV, UV, and visible space missions,” Proc. SPIE 4854, 39–49 (2003).
[Crossref]

2000 (1)

R. G. Bingham, D. D. Walker, D.-H. Kim, D. Brooks, R. Freeman, and D. Riley, “A novel automated process for aspheric surfaces,” Proc. SPIE 4093, 445–450 (2000).
[Crossref]

1999 (1)

D. Golini, W. Kordonski, P. Dumas, and S. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80–91 (1999).
[Crossref]

1998 (1)

D. D. Walker, S.-W. Kim, R. G. Bingham, D. Brooks, D.-H. Kim, and J. Thirtle, “Computer controlled polishing of moderate-sized general aspherics for instrumentation,” Proc. SPIE 3355, 947–954 (1998).
[Crossref]

1995 (1)

J. Robichaud, M. Anapol, L. Gardner, and P. Hadfield, “Ultralightweight off-axis three mirror anastigmatic SiC visible telescope,” Proc. SPIE 2543, 180–184 (1995).
[Crossref]

1994 (1)

1992 (2)

D. D. Walker, R. G. Bingham, D. Brooks, F. Diego, and B. Humm, “The production of highly aspheric secondary mirrors using active laps,” ESOC 42, 215–218 (1992).

R. B. Hoover, R. B. Johnson, S. Fineschi, A. B. C. Walker, P. C. Baker, M. Zukic, and J. Kim, “Design and fabrication of the all-reflecting H- Lyman α coronagraph/ polarimeter,” Proc. SPIE 1742, 439–452 (1992).
[Crossref]

1989 (1)

P. C. Baker, “Advanced flow-polishing of exotic optical materials,” Proc. SPIE 1160, 263–270 (1989).
[Crossref]

1987 (1)

R. A. Jones and R. L. Plante, “Rapid fabrication of large aspheric optics,” Precis. Eng. 9(2), 65–70 (1987).
[Crossref]

1986 (1)

R. A. Jones, “Computer-controlled optical surfacing with orbital tool motion,” Opt. Eng. 25(6), 780–790 (1986).
[Crossref]

1927 (1)

F. W. Preston, “The theory and design of plate glass polishing machine,” J. Soc. Glass Technol. 11, 214–256 (1927).

Anapol, M.

J. Robichaud, M. Anapol, L. Gardner, and P. Hadfield, “Ultralightweight off-axis three mirror anastigmatic SiC visible telescope,” Proc. SPIE 2543, 180–184 (1995).
[Crossref]

Baker, P. C.

R. B. Hoover, R. B. Johnson, S. Fineschi, A. B. C. Walker, P. C. Baker, M. Zukic, and J. Kim, “Design and fabrication of the all-reflecting H- Lyman α coronagraph/ polarimeter,” Proc. SPIE 1742, 439–452 (1992).
[Crossref]

P. C. Baker, “Advanced flow-polishing of exotic optical materials,” Proc. SPIE 1160, 263–270 (1989).
[Crossref]

Bingham, R. G.

R. G. Bingham, D. D. Walker, D.-H. Kim, D. Brooks, R. Freeman, and D. Riley, “A novel automated process for aspheric surfaces,” Proc. SPIE 4093, 445–450 (2000).
[Crossref]

D. D. Walker, S.-W. Kim, R. G. Bingham, D. Brooks, D.-H. Kim, and J. Thirtle, “Computer controlled polishing of moderate-sized general aspherics for instrumentation,” Proc. SPIE 3355, 947–954 (1998).
[Crossref]

D. D. Walker, R. G. Bingham, D. Brooks, F. Diego, and B. Humm, “The production of highly aspheric secondary mirrors using active laps,” ESOC 42, 215–218 (1992).

Brooks, D.

R. G. Bingham, D. D. Walker, D.-H. Kim, D. Brooks, R. Freeman, and D. Riley, “A novel automated process for aspheric surfaces,” Proc. SPIE 4093, 445–450 (2000).
[Crossref]

D. D. Walker, S.-W. Kim, R. G. Bingham, D. Brooks, D.-H. Kim, and J. Thirtle, “Computer controlled polishing of moderate-sized general aspherics for instrumentation,” Proc. SPIE 3355, 947–954 (1998).
[Crossref]

D. D. Walker, R. G. Bingham, D. Brooks, F. Diego, and B. Humm, “The production of highly aspheric secondary mirrors using active laps,” ESOC 42, 215–218 (1992).

Burge, J. H.

G. A. Smith, B. J. Lewis, M. Palmer, D. W. Kim, A. R. Loeff, and J. H. Burge, “Open source data analysis and visualization software for optical engineering,” Proc. SPIE 8487, 84870F (2012).
[Crossref]

D. W. Kim, B. J. Lewis, and J. H. Burge, “Open-source data analysis and visualization software platform: SAGUARO,” Proc. SPIE 8126, 81260B (2011).
[Crossref]

Castel, D.

Y. Toulemont, T. Passvogel, G. Pillbrat, D. de Chambure, D. Pierot, and D. Castel, “The 3.5m all SiC telescope for HERSCHEL,” Proc. SPIE 5487, 1119–1128 (2004).
[Crossref]

Davison, W. B.

de Chambure, D.

Y. Toulemont, T. Passvogel, G. Pillbrat, D. de Chambure, D. Pierot, and D. Castel, “The 3.5m all SiC telescope for HERSCHEL,” Proc. SPIE 5487, 1119–1128 (2004).
[Crossref]

DeFisher, S.

T. Lambropoulos, E. Fess, and S. DeFisher, “Deterministic finishing of aspheric optical components,” Proc. SPIE 8884, 88840H (2013).
[Crossref]

Derigne, S. T.

Diego, F.

D. D. Walker, R. G. Bingham, D. Brooks, F. Diego, and B. Humm, “The production of highly aspheric secondary mirrors using active laps,” ESOC 42, 215–218 (1992).

Dumas, P.

D. Golini, W. Kordonski, P. Dumas, and S. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80–91 (1999).
[Crossref]

Fess, E.

T. Lambropoulos, E. Fess, and S. DeFisher, “Deterministic finishing of aspheric optical components,” Proc. SPIE 8884, 88840H (2013).
[Crossref]

Fineschi, S.

R. B. Hoover, R. B. Johnson, S. Fineschi, A. B. C. Walker, P. C. Baker, M. Zukic, and J. Kim, “Design and fabrication of the all-reflecting H- Lyman α coronagraph/ polarimeter,” Proc. SPIE 1742, 439–452 (1992).
[Crossref]

Freeman, R.

R. G. Bingham, D. D. Walker, D.-H. Kim, D. Brooks, R. Freeman, and D. Riley, “A novel automated process for aspheric surfaces,” Proc. SPIE 4093, 445–450 (2000).
[Crossref]

Gardner, L.

J. Robichaud, M. Anapol, L. Gardner, and P. Hadfield, “Ultralightweight off-axis three mirror anastigmatic SiC visible telescope,” Proc. SPIE 2543, 180–184 (1995).
[Crossref]

Geyl, R.

R. Geyl, E. Ruch, H. Vayssade, H. Leplan, and J. Rodolfo, “NIRSpec optics development: the final report,” Proc. SPIE 8146, 81460B (2011).
[Crossref]

Golini, D.

D. Golini, W. Kordonski, P. Dumas, and S. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80–91 (1999).
[Crossref]

Guo, B.

Hadfield, P.

J. Robichaud, M. Anapol, L. Gardner, and P. Hadfield, “Ultralightweight off-axis three mirror anastigmatic SiC visible telescope,” Proc. SPIE 2543, 180–184 (1995).
[Crossref]

Han, J.-Y.

H. Seo, J.-Y. Han, S.-W. Kim, S. Seong, S. Yoon, K. Lee, and H. Lee, “Material removal characteristics of orthogonal velocity polishing tool for efficient fabrication of CVD SiC mirror surfaces,” Proc. SPIE 9575, 95750N (2015).

Hille, B. B.

Hogan, S.

D. Golini, W. Kordonski, P. Dumas, and S. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80–91 (1999).
[Crossref]

Hoover, R. B.

R. B. Hoover, R. B. Johnson, S. Fineschi, A. B. C. Walker, P. C. Baker, M. Zukic, and J. Kim, “Design and fabrication of the all-reflecting H- Lyman α coronagraph/ polarimeter,” Proc. SPIE 1742, 439–452 (1992).
[Crossref]

Humm, B.

D. D. Walker, R. G. Bingham, D. Brooks, F. Diego, and B. Humm, “The production of highly aspheric secondary mirrors using active laps,” ESOC 42, 215–218 (1992).

Johnson, R. B.

R. B. Hoover, R. B. Johnson, S. Fineschi, A. B. C. Walker, P. C. Baker, M. Zukic, and J. Kim, “Design and fabrication of the all-reflecting H- Lyman α coronagraph/ polarimeter,” Proc. SPIE 1742, 439–452 (1992).
[Crossref]

Jones, R. A.

R. A. Jones and R. L. Plante, “Rapid fabrication of large aspheric optics,” Precis. Eng. 9(2), 65–70 (1987).
[Crossref]

R. A. Jones, “Computer-controlled optical surfacing with orbital tool motion,” Opt. Eng. 25(6), 780–790 (1986).
[Crossref]

Kim, D. W.

G. A. Smith, B. J. Lewis, M. Palmer, D. W. Kim, A. R. Loeff, and J. H. Burge, “Open source data analysis and visualization software for optical engineering,” Proc. SPIE 8487, 84870F (2012).
[Crossref]

D. W. Kim, B. J. Lewis, and J. H. Burge, “Open-source data analysis and visualization software platform: SAGUARO,” Proc. SPIE 8126, 81260B (2011).
[Crossref]

Kim, D.-H.

R. G. Bingham, D. D. Walker, D.-H. Kim, D. Brooks, R. Freeman, and D. Riley, “A novel automated process for aspheric surfaces,” Proc. SPIE 4093, 445–450 (2000).
[Crossref]

D. D. Walker, S.-W. Kim, R. G. Bingham, D. Brooks, D.-H. Kim, and J. Thirtle, “Computer controlled polishing of moderate-sized general aspherics for instrumentation,” Proc. SPIE 3355, 947–954 (1998).
[Crossref]

Kim, J.

R. B. Hoover, R. B. Johnson, S. Fineschi, A. B. C. Walker, P. C. Baker, M. Zukic, and J. Kim, “Design and fabrication of the all-reflecting H- Lyman α coronagraph/ polarimeter,” Proc. SPIE 1742, 439–452 (1992).
[Crossref]

Kim, S.-W.

H. Seo, J.-Y. Han, S.-W. Kim, S. Seong, S. Yoon, K. Lee, and H. Lee, “Material removal characteristics of orthogonal velocity polishing tool for efficient fabrication of CVD SiC mirror surfaces,” Proc. SPIE 9575, 95750N (2015).

D. D. Walker, S.-W. Kim, R. G. Bingham, D. Brooks, D.-H. Kim, and J. Thirtle, “Computer controlled polishing of moderate-sized general aspherics for instrumentation,” Proc. SPIE 3355, 947–954 (1998).
[Crossref]

Kordonski, W.

D. Golini, W. Kordonski, P. Dumas, and S. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80–91 (1999).
[Crossref]

Lambropoulos, T.

T. Lambropoulos, E. Fess, and S. DeFisher, “Deterministic finishing of aspheric optical components,” Proc. SPIE 8884, 88840H (2013).
[Crossref]

Lee, H.

H. Seo, J.-Y. Han, S.-W. Kim, S. Seong, S. Yoon, K. Lee, and H. Lee, “Material removal characteristics of orthogonal velocity polishing tool for efficient fabrication of CVD SiC mirror surfaces,” Proc. SPIE 9575, 95750N (2015).

Lee, K.

H. Seo, J.-Y. Han, S.-W. Kim, S. Seong, S. Yoon, K. Lee, and H. Lee, “Material removal characteristics of orthogonal velocity polishing tool for efficient fabrication of CVD SiC mirror surfaces,” Proc. SPIE 9575, 95750N (2015).

Leplan, H.

R. Geyl, E. Ruch, H. Vayssade, H. Leplan, and J. Rodolfo, “NIRSpec optics development: the final report,” Proc. SPIE 8146, 81460B (2011).
[Crossref]

Lewis, B. J.

G. A. Smith, B. J. Lewis, M. Palmer, D. W. Kim, A. R. Loeff, and J. H. Burge, “Open source data analysis and visualization software for optical engineering,” Proc. SPIE 8487, 84870F (2012).
[Crossref]

D. W. Kim, B. J. Lewis, and J. H. Burge, “Open-source data analysis and visualization software platform: SAGUARO,” Proc. SPIE 8126, 81260B (2011).
[Crossref]

Loeff, A. R.

G. A. Smith, B. J. Lewis, M. Palmer, D. W. Kim, A. R. Loeff, and J. H. Burge, “Open source data analysis and visualization software for optical engineering,” Proc. SPIE 8487, 84870F (2012).
[Crossref]

Martin, H. M.

Nagel, R. H.

Palmer, M.

G. A. Smith, B. J. Lewis, M. Palmer, D. W. Kim, A. R. Loeff, and J. H. Burge, “Open source data analysis and visualization software for optical engineering,” Proc. SPIE 8487, 84870F (2012).
[Crossref]

Passvogel, T.

Y. Toulemont, T. Passvogel, G. Pillbrat, D. de Chambure, D. Pierot, and D. Castel, “The 3.5m all SiC telescope for HERSCHEL,” Proc. SPIE 5487, 1119–1128 (2004).
[Crossref]

Pierot, D.

Y. Toulemont, T. Passvogel, G. Pillbrat, D. de Chambure, D. Pierot, and D. Castel, “The 3.5m all SiC telescope for HERSCHEL,” Proc. SPIE 5487, 1119–1128 (2004).
[Crossref]

Pillbrat, G.

Y. Toulemont, T. Passvogel, G. Pillbrat, D. de Chambure, D. Pierot, and D. Castel, “The 3.5m all SiC telescope for HERSCHEL,” Proc. SPIE 5487, 1119–1128 (2004).
[Crossref]

Plante, R. L.

R. A. Jones and R. L. Plante, “Rapid fabrication of large aspheric optics,” Precis. Eng. 9(2), 65–70 (1987).
[Crossref]

Preston, F. W.

F. W. Preston, “The theory and design of plate glass polishing machine,” J. Soc. Glass Technol. 11, 214–256 (1927).

Rao, Z.

Riley, D.

R. G. Bingham, D. D. Walker, D.-H. Kim, D. Brooks, R. Freeman, and D. Riley, “A novel automated process for aspheric surfaces,” Proc. SPIE 4093, 445–450 (2000).
[Crossref]

Robichaud, J.

J. Robichaud, “SiC optics for EUV, UV, and visible space missions,” Proc. SPIE 4854, 39–49 (2003).
[Crossref]

J. Robichaud, M. Anapol, L. Gardner, and P. Hadfield, “Ultralightweight off-axis three mirror anastigmatic SiC visible telescope,” Proc. SPIE 2543, 180–184 (1995).
[Crossref]

Rodolfo, J.

R. Geyl, E. Ruch, H. Vayssade, H. Leplan, and J. Rodolfo, “NIRSpec optics development: the final report,” Proc. SPIE 8146, 81460B (2011).
[Crossref]

Ruch, E.

R. Geyl, E. Ruch, H. Vayssade, H. Leplan, and J. Rodolfo, “NIRSpec optics development: the final report,” Proc. SPIE 8146, 81460B (2011).
[Crossref]

Seo, H.

H. Seo, J.-Y. Han, S.-W. Kim, S. Seong, S. Yoon, K. Lee, and H. Lee, “Material removal characteristics of orthogonal velocity polishing tool for efficient fabrication of CVD SiC mirror surfaces,” Proc. SPIE 9575, 95750N (2015).

Seong, S.

H. Seo, J.-Y. Han, S.-W. Kim, S. Seong, S. Yoon, K. Lee, and H. Lee, “Material removal characteristics of orthogonal velocity polishing tool for efficient fabrication of CVD SiC mirror surfaces,” Proc. SPIE 9575, 95750N (2015).

Smith, G. A.

G. A. Smith, B. J. Lewis, M. Palmer, D. W. Kim, A. R. Loeff, and J. H. Burge, “Open source data analysis and visualization software for optical engineering,” Proc. SPIE 8487, 84870F (2012).
[Crossref]

Thirtle, J.

D. D. Walker, S.-W. Kim, R. G. Bingham, D. Brooks, D.-H. Kim, and J. Thirtle, “Computer controlled polishing of moderate-sized general aspherics for instrumentation,” Proc. SPIE 3355, 947–954 (1998).
[Crossref]

Toulemont, Y.

Y. Toulemont, T. Passvogel, G. Pillbrat, D. de Chambure, D. Pierot, and D. Castel, “The 3.5m all SiC telescope for HERSCHEL,” Proc. SPIE 5487, 1119–1128 (2004).
[Crossref]

Trebisky, T. J.

Vayssade, H.

R. Geyl, E. Ruch, H. Vayssade, H. Leplan, and J. Rodolfo, “NIRSpec optics development: the final report,” Proc. SPIE 8146, 81460B (2011).
[Crossref]

Walker, A. B. C.

R. B. Hoover, R. B. Johnson, S. Fineschi, A. B. C. Walker, P. C. Baker, M. Zukic, and J. Kim, “Design and fabrication of the all-reflecting H- Lyman α coronagraph/ polarimeter,” Proc. SPIE 1742, 439–452 (1992).
[Crossref]

Walker, D. D.

R. G. Bingham, D. D. Walker, D.-H. Kim, D. Brooks, R. Freeman, and D. Riley, “A novel automated process for aspheric surfaces,” Proc. SPIE 4093, 445–450 (2000).
[Crossref]

D. D. Walker, S.-W. Kim, R. G. Bingham, D. Brooks, D.-H. Kim, and J. Thirtle, “Computer controlled polishing of moderate-sized general aspherics for instrumentation,” Proc. SPIE 3355, 947–954 (1998).
[Crossref]

D. D. Walker, R. G. Bingham, D. Brooks, F. Diego, and B. Humm, “The production of highly aspheric secondary mirrors using active laps,” ESOC 42, 215–218 (1992).

West, S. C.

Yoon, S.

H. Seo, J.-Y. Han, S.-W. Kim, S. Seong, S. Yoon, K. Lee, and H. Lee, “Material removal characteristics of orthogonal velocity polishing tool for efficient fabrication of CVD SiC mirror surfaces,” Proc. SPIE 9575, 95750N (2015).

Young, R. S.

Zhao, Q.

Zukic, M.

R. B. Hoover, R. B. Johnson, S. Fineschi, A. B. C. Walker, P. C. Baker, M. Zukic, and J. Kim, “Design and fabrication of the all-reflecting H- Lyman α coronagraph/ polarimeter,” Proc. SPIE 1742, 439–452 (1992).
[Crossref]

Appl. Opt. (2)

ESOC (1)

D. D. Walker, R. G. Bingham, D. Brooks, F. Diego, and B. Humm, “The production of highly aspheric secondary mirrors using active laps,” ESOC 42, 215–218 (1992).

J. Soc. Glass Technol. (1)

F. W. Preston, “The theory and design of plate glass polishing machine,” J. Soc. Glass Technol. 11, 214–256 (1927).

Opt. Eng. (1)

R. A. Jones, “Computer-controlled optical surfacing with orbital tool motion,” Opt. Eng. 25(6), 780–790 (1986).
[Crossref]

Precis. Eng. (1)

R. A. Jones and R. L. Plante, “Rapid fabrication of large aspheric optics,” Precis. Eng. 9(2), 65–70 (1987).
[Crossref]

Proc. SPIE (13)

T. Lambropoulos, E. Fess, and S. DeFisher, “Deterministic finishing of aspheric optical components,” Proc. SPIE 8884, 88840H (2013).
[Crossref]

H. Seo, J.-Y. Han, S.-W. Kim, S. Seong, S. Yoon, K. Lee, and H. Lee, “Material removal characteristics of orthogonal velocity polishing tool for efficient fabrication of CVD SiC mirror surfaces,” Proc. SPIE 9575, 95750N (2015).

D. Golini, W. Kordonski, P. Dumas, and S. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80–91 (1999).
[Crossref]

D. D. Walker, S.-W. Kim, R. G. Bingham, D. Brooks, D.-H. Kim, and J. Thirtle, “Computer controlled polishing of moderate-sized general aspherics for instrumentation,” Proc. SPIE 3355, 947–954 (1998).
[Crossref]

R. G. Bingham, D. D. Walker, D.-H. Kim, D. Brooks, R. Freeman, and D. Riley, “A novel automated process for aspheric surfaces,” Proc. SPIE 4093, 445–450 (2000).
[Crossref]

Y. Toulemont, T. Passvogel, G. Pillbrat, D. de Chambure, D. Pierot, and D. Castel, “The 3.5m all SiC telescope for HERSCHEL,” Proc. SPIE 5487, 1119–1128 (2004).
[Crossref]

J. Robichaud, “SiC optics for EUV, UV, and visible space missions,” Proc. SPIE 4854, 39–49 (2003).
[Crossref]

R. Geyl, E. Ruch, H. Vayssade, H. Leplan, and J. Rodolfo, “NIRSpec optics development: the final report,” Proc. SPIE 8146, 81460B (2011).
[Crossref]

P. C. Baker, “Advanced flow-polishing of exotic optical materials,” Proc. SPIE 1160, 263–270 (1989).
[Crossref]

R. B. Hoover, R. B. Johnson, S. Fineschi, A. B. C. Walker, P. C. Baker, M. Zukic, and J. Kim, “Design and fabrication of the all-reflecting H- Lyman α coronagraph/ polarimeter,” Proc. SPIE 1742, 439–452 (1992).
[Crossref]

J. Robichaud, M. Anapol, L. Gardner, and P. Hadfield, “Ultralightweight off-axis three mirror anastigmatic SiC visible telescope,” Proc. SPIE 2543, 180–184 (1995).
[Crossref]

D. W. Kim, B. J. Lewis, and J. H. Burge, “Open-source data analysis and visualization software platform: SAGUARO,” Proc. SPIE 8126, 81260B (2011).
[Crossref]

G. A. Smith, B. J. Lewis, M. Palmer, D. W. Kim, A. R. Loeff, and J. H. Burge, “Open source data analysis and visualization software for optical engineering,” Proc. SPIE 8487, 84870F (2012).
[Crossref]

Other (3)

E. Fess, J. Schoen, M. Bechtold, and D. Mohring, “Ultra-form finishing process for optical materials,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2004), paper OMC5.

S.-W. Kim, “Machining tool head interface and associated polishing and grinding tools,” Republic of Korea Patent 10–0489703–0000 (May 2005).

L. N. Allen, “Precision figuring of optics by ion machining processes,” in Conference on Lasers and Electro-Optics (1989), paper TUB1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 OVT concept.
Fig. 2
Fig. 2 Polishing machine with OVT.
Fig. 3
Fig. 3 Polishing pressure plotted against exerted force (Error bar is the standard deviation).
Fig. 4
Fig. 4 Semi major axis and semi minor axis determined by polishing pressure.
Fig. 5
Fig. 5 Example of pressure distribution inside the tool-workpiece contact area, i.e. ellipse; 3D (a) and 2D color contour map (b).
Fig. 6
Fig. 6 Integrated pressure map over time period t. (a) t = 0.2 sec (b) t = 0.4 sec (c) t = 0.6 sec (d) t = 0.84 sec.
Fig. 7
Fig. 7 Schematic diagram of velocity field inside the tool-workpiece contact area.
Fig. 8
Fig. 8 Integrated velocity map over time period t. (a) t = 0.2 sec (b) t = 0.4 sec (c) t = 0.6 sec (d) t = 0.84 sec.
Fig. 9
Fig. 9 Instantaneous tool – Workpiece contact area (i.e., black ellipse) and resulting instantaneous contact length (i.e., red arcs) at r. The red arc tends to form a blue dotted circle when a full rotation is made.
Fig. 10
Fig. 10 Relation between radial distance (r) and angle (θ).
Fig. 11
Fig. 11 Dwell time contour map for one revolution.
Fig. 12
Fig. 12 Theoretical and TIFs of the trial experiment on CVD SiC 150 mm in diameter.
Fig. 13
Fig. 13 Example of TIF extraction.
Fig. 14
Fig. 14 Experimental maximum TIF depth (a), theoretical maximum TIF depth (b), Difference in maximum TIF depth (c), Experimental material removal coefficient (d), Theoretical material removal coefficient corresponding to the experiment conditions (e), Difference in material removal coefficient (f)
Fig. 15
Fig. 15 Material removal coefficient from TIF depth vs that from TIF volume.
Fig. 16
Fig. 16 2D profile (a) and 3D shape (b) of TIF for case 1 that each input parameter is minimum value.
Fig. 17
Fig. 17 2D profile (a) and 3D shape (b) of TIF for case 14 that each input parameter is intermediate value.
Fig. 18
Fig. 18 2D profile (a) and 3D shape (b) of TIF for case 27 that each input parameter is maximum value.

Tables (5)

Tables Icon

Table 1 Polishing machine characteristics

Tables Icon

Table 2 Parameter ranges for TIF generation experiment

Tables Icon

Table 3 Fixed parameters for TIF generation experiment

Tables Icon

Table 4 Maximum material removal depth of each TIF

Tables Icon

Table 5 Material removal rate (removal coefficient) of each TIF

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δz=κPVΔT
P mean =152.54 F loadcell +6.19
a=0.027 P mean +1.368
b=0.009 P mean +0.930
P( x,y )=c e 1 2 [ ( x σ x ) 2 + ( y σ y ) 2 ] 2π σ x σ y ( 1 x 2 b 2 y 2 a 2 ) 2
P( x,y,t )=c e 1 2 [ ( xcos ω a t+ysin ω a t σ x ) 2 + ( xsin ω a t+ycos ω a t σ y ) 2 ] 2π σ x σ y [ 1 ( xcos ω a t+ysin ω a t ) 2 b 2 ( xsin ω a t+ycos ω a t ) 2 a 2 ] 2
V( x,y )=| V a + V w |= ω a 2 y 2 + [ ω a x+ ω w R w ] 2
V( x,y,t )= ω a 2 ( xsin ω a t+ycos ω a t ) 2 + [ ω a ( xcos ω a t+ysin ω a t )+ ω w R w ] 2
r( θ )= ab (acosθ) 2 + (bsinθ) 2
T( r )= 4rθ(r) 2πr × 60 36 = 10θ( r ) 3π

Metrics