Abstract

We report on a high-resolution static strain sensor developed with distributed feedback (DFB) fiber laser. A reference FBG resonator is used for temperature compensation. Locking another independent fiber laser to the resonator using the Pound-Drever-Hall technique results in a strain power spectral density better than Sε(f) = (4.6 × 10−21) ε2/Hz in the frequency range from 1 Hz to 1 kHz, corresponding to a minimum dynamic strain resolution of 67.8 pε/√Hz. This frequency stabilized fiber laser is proposed to interrogate the sensing DFB fiber laser by the beat frequency principle. As a reasonable DFB fiber laser setup is realized, a narrow beat frequency line-width of 3.23 kHz and a high beat frequency stability of 0.036 MHz in 15 minutes are obtained in the laboratory test, corresponding to a minimum static strain resolution of 270 pε. This is the first time that a sub-0.5 nε level for static strain measurement using DFB fiber laser is demonstrated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale
Opt. Express 13(7) 2377-2384 (2005)

Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique

D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta
Opt. Express 16(3) 1945-1950 (2008)

Highly sensitive liquid-level sensor based on dual-wavelength double-ring fiber laser assisted by beat frequency interrogation

Yi Dai, Qizhen Sun, Sisi Tan, Jianghai Wo, Jiejun Zhang, and Deming Liu
Opt. Express 20(25) 27367-27376 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Arie, B. Lissak, and M. Tur, “Static fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol. 17(10), 1849–1855 (1999).
    [Crossref]
  2. J. H. Chow, I. C. M. Littler, D. E. McClelland, and M. B. Gray, “Quasi-static fiber strain sensing with absolute frequency referencing,” Proc. SPIE 7004, 700429 (2008).
    [Crossref]
  3. T. T. Y. Lam, J. H. Chow, D. A. Shaddock, I. C. M. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, “High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing,” Appl. Opt. 49(21), 4029–4033 (2010).
    [Crossref] [PubMed]
  4. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the Ultimate Limit of Fiber-Optic Strain Sensing,” Science 330(6007), 1081–1084 (2010).
    [Crossref] [PubMed]
  5. G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, A. Di Maio, S. Carlino, G. De Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
    [Crossref]
  6. G. Gagliardi, P. Maddaloni, P. Malara, M. Salza, P. Ferraro, and P. De Natale, “Ultra-high sensitivity frequency-comb-referenced multiparametric sensors based on 1-D photonic components,” Proc. SPIE 7056, 70560I (2008).
    [Crossref]
  7. Q. W. Liu, Z. Y. He, T. Tokunaga, and K. Hotate, “An ultra-high-resolution FBG static-strain sensor for geophysics applications,” Proc. SPIE 7653, 76530W (2010).
    [Crossref]
  8. Q. Liu, T. Tokunaga, and Z. He, “Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique,” Opt. Lett. 37(3), 434–436 (2012).
    [Crossref] [PubMed]
  9. Q. Liu, Z. He, and T. Tokunaga, “Sensing the earth crustal deformation with nano-strain resolution fiber-optic sensors,” Opt. Express 23(11), A428–A436 (2015).
    [Crossref] [PubMed]
  10. W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “π-phase-shifted FBG for high-resolution static-strain measurement based on wavelet threshold denoising algorithm,” J. Lightwave Technol. 32(22), 3692–3698 (2014).
  11. W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors,” IEEE Photonics Technol. Lett. 26(16), 1597–1600 (2014).
    [Crossref]
  12. W. Huang, W. Zhang, and F. Li, “Swept optical SSB-SC modulation technique for high-resolution large-dynamic-range static strain measurement using FBG-FP sensors,” Opt. Lett. 40(7), 1406–1409 (2015).
    [Crossref] [PubMed]
  13. P. Malara, L. Mastronardi, C. E. Campanella, A. Giorgini, S. Avino, V. M. N. Passaro, and G. Gagliardi, “Split-mode fiber Bragg grating sensor for high-resolution static strain measurements,” Opt. Lett. 39(24), 6899–6902 (2014).
    [Crossref] [PubMed]
  14. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8(7), 1161–1172 (2008).
    [Crossref]
  15. Y. L. Liu, W. T. Zhang, T. W. Xu, W. J. He, F. X. Zhang, and F. Li, “Fiber laser sensing system and its applications,” Photonics Sensors 1(1), 43–53 (2011).
    [Crossref]
  16. P. Malara, C. E. Campanella, A. Giorgini, S. Avino, and G. Gagliardi, “Fiber Bragg grating laser sensor with direct radio-frequency readout,” Opt. Lett. 41(7), 1420–1422 (2016).
    [Crossref] [PubMed]
  17. K. P. Koo and A. D. Kersey, “Fiber laser sensor with ultra-high strain resolution using interferometric interrogation,” Electron. Lett. 31(17), 1180–1182 (1995).
    [Crossref]
  18. A. Dandridge, A. B. Teten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
    [Crossref]
  19. O. Hadeler, M. Ibsen, and M. N. Zervas, “Distributed-feedback fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain,” Appl. Opt. 40(19), 3169–3175 (2001).
    [Crossref] [PubMed]
  20. B. O. Guan, Y. N. Tan, and H. Y. Tam, “Dual polarization fiber grating laser hydrophone,” Opt. Express 17(22), 19544–19550 (2009).
    [Crossref] [PubMed]
  21. W. Z. Huang, W. T. Zhang, and F. Li, “Distributed feedback fiber laser for sub-nanostrain-resolution static strain measurement by use of swept beat-frequency demodulation,” Proc. SPIE 9655, 965504 (2015).
    [Crossref]
  22. Q. Zhao, Y. J. Wang, T. W. Xu, X. Dai, F. Li, and Y. Qu, “Distributed feedback fiber laser tuning method based on photo-thermal effect,” High Power Laser Particle Beams 25(2), 355–367 (2013).
    [Crossref]
  23. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express 16(3), 1945–1950 (2008).
    [Crossref] [PubMed]
  24. M. Ding and P. K. Cheo, “Effects of Yb:Er-codoping on suppressing self-pulsing in Er-doped fiber laser,” IEEE Photonics Technol. Lett. 9(3), 324–326 (1997).
    [Crossref]

2016 (1)

2015 (3)

2014 (3)

2013 (1)

Q. Zhao, Y. J. Wang, T. W. Xu, X. Dai, F. Li, and Y. Qu, “Distributed feedback fiber laser tuning method based on photo-thermal effect,” High Power Laser Particle Beams 25(2), 355–367 (2013).
[Crossref]

2012 (1)

2011 (1)

Y. L. Liu, W. T. Zhang, T. W. Xu, W. J. He, F. X. Zhang, and F. Li, “Fiber laser sensing system and its applications,” Photonics Sensors 1(1), 43–53 (2011).
[Crossref]

2010 (3)

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the Ultimate Limit of Fiber-Optic Strain Sensing,” Science 330(6007), 1081–1084 (2010).
[Crossref] [PubMed]

Q. W. Liu, Z. Y. He, T. Tokunaga, and K. Hotate, “An ultra-high-resolution FBG static-strain sensor for geophysics applications,” Proc. SPIE 7653, 76530W (2010).
[Crossref]

T. T. Y. Lam, J. H. Chow, D. A. Shaddock, I. C. M. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, “High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing,” Appl. Opt. 49(21), 4029–4033 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (5)

D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express 16(3), 1945–1950 (2008).
[Crossref] [PubMed]

J. H. Chow, I. C. M. Littler, D. E. McClelland, and M. B. Gray, “Quasi-static fiber strain sensing with absolute frequency referencing,” Proc. SPIE 7004, 700429 (2008).
[Crossref]

G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, A. Di Maio, S. Carlino, G. De Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

G. Gagliardi, P. Maddaloni, P. Malara, M. Salza, P. Ferraro, and P. De Natale, “Ultra-high sensitivity frequency-comb-referenced multiparametric sensors based on 1-D photonic components,” Proc. SPIE 7056, 70560I (2008).
[Crossref]

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8(7), 1161–1172 (2008).
[Crossref]

2001 (1)

1999 (1)

1997 (1)

M. Ding and P. K. Cheo, “Effects of Yb:Er-codoping on suppressing self-pulsing in Er-doped fiber laser,” IEEE Photonics Technol. Lett. 9(3), 324–326 (1997).
[Crossref]

1995 (1)

K. P. Koo and A. D. Kersey, “Fiber laser sensor with ultra-high strain resolution using interferometric interrogation,” Electron. Lett. 31(17), 1180–1182 (1995).
[Crossref]

1982 (1)

A. Dandridge, A. B. Teten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

Arie, A.

Avino, S.

Boschi, E.

G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, A. Di Maio, S. Carlino, G. De Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

Campanella, C. E.

Carlino, S.

G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, A. Di Maio, S. Carlino, G. De Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

Cheo, P. K.

M. Ding and P. K. Cheo, “Effects of Yb:Er-codoping on suppressing self-pulsing in Er-doped fiber laser,” IEEE Photonics Technol. Lett. 9(3), 324–326 (1997).
[Crossref]

Chow, J. H.

Cranch, G. A.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8(7), 1161–1172 (2008).
[Crossref]

Dai, X.

Q. Zhao, Y. J. Wang, T. W. Xu, X. Dai, F. Li, and Y. Qu, “Distributed feedback fiber laser tuning method based on photo-thermal effect,” High Power Laser Particle Beams 25(2), 355–367 (2013).
[Crossref]

Dandridge, A.

A. Dandridge, A. B. Teten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

De Natale, G.

G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, A. Di Maio, S. Carlino, G. De Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

De Natale, P.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the Ultimate Limit of Fiber-Optic Strain Sensing,” Science 330(6007), 1081–1084 (2010).
[Crossref] [PubMed]

G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, A. Di Maio, S. Carlino, G. De Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

G. Gagliardi, P. Maddaloni, P. Malara, M. Salza, P. Ferraro, and P. De Natale, “Ultra-high sensitivity frequency-comb-referenced multiparametric sensors based on 1-D photonic components,” Proc. SPIE 7056, 70560I (2008).
[Crossref]

Di Maio, A.

G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, A. Di Maio, S. Carlino, G. De Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

Ding, M.

M. Ding and P. K. Cheo, “Effects of Yb:Er-codoping on suppressing self-pulsing in Er-doped fiber laser,” IEEE Photonics Technol. Lett. 9(3), 324–326 (1997).
[Crossref]

Ferraro, P.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the Ultimate Limit of Fiber-Optic Strain Sensing,” Science 330(6007), 1081–1084 (2010).
[Crossref] [PubMed]

G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, A. Di Maio, S. Carlino, G. De Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

G. Gagliardi, P. Maddaloni, P. Malara, M. Salza, P. Ferraro, and P. De Natale, “Ultra-high sensitivity frequency-comb-referenced multiparametric sensors based on 1-D photonic components,” Proc. SPIE 7056, 70560I (2008).
[Crossref]

Flockhart, G. M. H.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8(7), 1161–1172 (2008).
[Crossref]

Gagliardi, G.

P. Malara, C. E. Campanella, A. Giorgini, S. Avino, and G. Gagliardi, “Fiber Bragg grating laser sensor with direct radio-frequency readout,” Opt. Lett. 41(7), 1420–1422 (2016).
[Crossref] [PubMed]

P. Malara, L. Mastronardi, C. E. Campanella, A. Giorgini, S. Avino, V. M. N. Passaro, and G. Gagliardi, “Split-mode fiber Bragg grating sensor for high-resolution static strain measurements,” Opt. Lett. 39(24), 6899–6902 (2014).
[Crossref] [PubMed]

T. T. Y. Lam, J. H. Chow, D. A. Shaddock, I. C. M. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, “High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing,” Appl. Opt. 49(21), 4029–4033 (2010).
[Crossref] [PubMed]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the Ultimate Limit of Fiber-Optic Strain Sensing,” Science 330(6007), 1081–1084 (2010).
[Crossref] [PubMed]

G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, A. Di Maio, S. Carlino, G. De Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

G. Gagliardi, P. Maddaloni, P. Malara, M. Salza, P. Ferraro, and P. De Natale, “Ultra-high sensitivity frequency-comb-referenced multiparametric sensors based on 1-D photonic components,” Proc. SPIE 7056, 70560I (2008).
[Crossref]

Galzerano, G.

Gatti, D.

Giallorenzi, T. G.

A. Dandridge, A. B. Teten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

Giorgini, A.

Gray, M. B.

Guan, B. O.

Hadeler, O.

He, W. J.

Y. L. Liu, W. T. Zhang, T. W. Xu, W. J. He, F. X. Zhang, and F. Li, “Fiber laser sensing system and its applications,” Photonics Sensors 1(1), 43–53 (2011).
[Crossref]

He, Z.

He, Z. Y.

Q. W. Liu, Z. Y. He, T. Tokunaga, and K. Hotate, “An ultra-high-resolution FBG static-strain sensor for geophysics applications,” Proc. SPIE 7653, 76530W (2010).
[Crossref]

Hotate, K.

Q. W. Liu, Z. Y. He, T. Tokunaga, and K. Hotate, “An ultra-high-resolution FBG static-strain sensor for geophysics applications,” Proc. SPIE 7653, 76530W (2010).
[Crossref]

Huang, W.

Huang, W. Z.

W. Z. Huang, W. T. Zhang, and F. Li, “Distributed feedback fiber laser for sub-nanostrain-resolution static strain measurement by use of swept beat-frequency demodulation,” Proc. SPIE 9655, 965504 (2015).
[Crossref]

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors,” IEEE Photonics Technol. Lett. 26(16), 1597–1600 (2014).
[Crossref]

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “π-phase-shifted FBG for high-resolution static-strain measurement based on wavelet threshold denoising algorithm,” J. Lightwave Technol. 32(22), 3692–3698 (2014).

Ibsen, M.

Janner, D.

Kersey, A. D.

K. P. Koo and A. D. Kersey, “Fiber laser sensor with ultra-high strain resolution using interferometric interrogation,” Electron. Lett. 31(17), 1180–1182 (1995).
[Crossref]

Kirkendall, C. K.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8(7), 1161–1172 (2008).
[Crossref]

Koo, K. P.

K. P. Koo and A. D. Kersey, “Fiber laser sensor with ultra-high strain resolution using interferometric interrogation,” Electron. Lett. 31(17), 1180–1182 (1995).
[Crossref]

Lam, T. T. Y.

Laporta, P.

Li, F.

W. Z. Huang, W. T. Zhang, and F. Li, “Distributed feedback fiber laser for sub-nanostrain-resolution static strain measurement by use of swept beat-frequency demodulation,” Proc. SPIE 9655, 965504 (2015).
[Crossref]

W. Huang, W. Zhang, and F. Li, “Swept optical SSB-SC modulation technique for high-resolution large-dynamic-range static strain measurement using FBG-FP sensors,” Opt. Lett. 40(7), 1406–1409 (2015).
[Crossref] [PubMed]

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “π-phase-shifted FBG for high-resolution static-strain measurement based on wavelet threshold denoising algorithm,” J. Lightwave Technol. 32(22), 3692–3698 (2014).

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors,” IEEE Photonics Technol. Lett. 26(16), 1597–1600 (2014).
[Crossref]

Q. Zhao, Y. J. Wang, T. W. Xu, X. Dai, F. Li, and Y. Qu, “Distributed feedback fiber laser tuning method based on photo-thermal effect,” High Power Laser Particle Beams 25(2), 355–367 (2013).
[Crossref]

Y. L. Liu, W. T. Zhang, T. W. Xu, W. J. He, F. X. Zhang, and F. Li, “Fiber laser sensing system and its applications,” Photonics Sensors 1(1), 43–53 (2011).
[Crossref]

Lissak, B.

Littler, I. C. M.

Liu, Q.

Liu, Q. W.

Q. W. Liu, Z. Y. He, T. Tokunaga, and K. Hotate, “An ultra-high-resolution FBG static-strain sensor for geophysics applications,” Proc. SPIE 7653, 76530W (2010).
[Crossref]

Liu, Y. L.

Y. L. Liu, W. T. Zhang, T. W. Xu, W. J. He, F. X. Zhang, and F. Li, “Fiber laser sensing system and its applications,” Photonics Sensors 1(1), 43–53 (2011).
[Crossref]

Longhi, S.

Maddaloni, P.

G. Gagliardi, P. Maddaloni, P. Malara, M. Salza, P. Ferraro, and P. De Natale, “Ultra-high sensitivity frequency-comb-referenced multiparametric sensors based on 1-D photonic components,” Proc. SPIE 7056, 70560I (2008).
[Crossref]

Malara, P.

Mastronardi, L.

McClelland, D. E.

Passaro, V. M. N.

Qu, Y.

Q. Zhao, Y. J. Wang, T. W. Xu, X. Dai, F. Li, and Y. Qu, “Distributed feedback fiber laser tuning method based on photo-thermal effect,” High Power Laser Particle Beams 25(2), 355–367 (2013).
[Crossref]

Salza, M.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the Ultimate Limit of Fiber-Optic Strain Sensing,” Science 330(6007), 1081–1084 (2010).
[Crossref] [PubMed]

G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, A. Di Maio, S. Carlino, G. De Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

G. Gagliardi, P. Maddaloni, P. Malara, M. Salza, P. Ferraro, and P. De Natale, “Ultra-high sensitivity frequency-comb-referenced multiparametric sensors based on 1-D photonic components,” Proc. SPIE 7056, 70560I (2008).
[Crossref]

Shaddock, D. A.

Tam, H. Y.

Tan, Y. N.

Teten, A. B.

A. Dandridge, A. B. Teten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

Tokunaga, T.

Tur, M.

Wang, Y. J.

Q. Zhao, Y. J. Wang, T. W. Xu, X. Dai, F. Li, and Y. Qu, “Distributed feedback fiber laser tuning method based on photo-thermal effect,” High Power Laser Particle Beams 25(2), 355–367 (2013).
[Crossref]

Xu, T. W.

Q. Zhao, Y. J. Wang, T. W. Xu, X. Dai, F. Li, and Y. Qu, “Distributed feedback fiber laser tuning method based on photo-thermal effect,” High Power Laser Particle Beams 25(2), 355–367 (2013).
[Crossref]

Y. L. Liu, W. T. Zhang, T. W. Xu, W. J. He, F. X. Zhang, and F. Li, “Fiber laser sensing system and its applications,” Photonics Sensors 1(1), 43–53 (2011).
[Crossref]

Zervas, M. N.

Zhang, F. S.

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors,” IEEE Photonics Technol. Lett. 26(16), 1597–1600 (2014).
[Crossref]

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “π-phase-shifted FBG for high-resolution static-strain measurement based on wavelet threshold denoising algorithm,” J. Lightwave Technol. 32(22), 3692–3698 (2014).

Zhang, F. X.

Y. L. Liu, W. T. Zhang, T. W. Xu, W. J. He, F. X. Zhang, and F. Li, “Fiber laser sensing system and its applications,” Photonics Sensors 1(1), 43–53 (2011).
[Crossref]

Zhang, W.

Zhang, W. T.

W. Z. Huang, W. T. Zhang, and F. Li, “Distributed feedback fiber laser for sub-nanostrain-resolution static strain measurement by use of swept beat-frequency demodulation,” Proc. SPIE 9655, 965504 (2015).
[Crossref]

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors,” IEEE Photonics Technol. Lett. 26(16), 1597–1600 (2014).
[Crossref]

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “π-phase-shifted FBG for high-resolution static-strain measurement based on wavelet threshold denoising algorithm,” J. Lightwave Technol. 32(22), 3692–3698 (2014).

Y. L. Liu, W. T. Zhang, T. W. Xu, W. J. He, F. X. Zhang, and F. Li, “Fiber laser sensing system and its applications,” Photonics Sensors 1(1), 43–53 (2011).
[Crossref]

Zhao, Q.

Q. Zhao, Y. J. Wang, T. W. Xu, X. Dai, F. Li, and Y. Qu, “Distributed feedback fiber laser tuning method based on photo-thermal effect,” High Power Laser Particle Beams 25(2), 355–367 (2013).
[Crossref]

Zhen, T. K.

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors,” IEEE Photonics Technol. Lett. 26(16), 1597–1600 (2014).
[Crossref]

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “π-phase-shifted FBG for high-resolution static-strain measurement based on wavelet threshold denoising algorithm,” J. Lightwave Technol. 32(22), 3692–3698 (2014).

Appl. Opt. (2)

Electron. Lett. (1)

K. P. Koo and A. D. Kersey, “Fiber laser sensor with ultra-high strain resolution using interferometric interrogation,” Electron. Lett. 31(17), 1180–1182 (1995).
[Crossref]

High Power Laser Particle Beams (1)

Q. Zhao, Y. J. Wang, T. W. Xu, X. Dai, F. Li, and Y. Qu, “Distributed feedback fiber laser tuning method based on photo-thermal effect,” High Power Laser Particle Beams 25(2), 355–367 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Dandridge, A. B. Teten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

IEEE Photonics Technol. Lett. (2)

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors,” IEEE Photonics Technol. Lett. 26(16), 1597–1600 (2014).
[Crossref]

M. Ding and P. K. Cheo, “Effects of Yb:Er-codoping on suppressing self-pulsing in Er-doped fiber laser,” IEEE Photonics Technol. Lett. 9(3), 324–326 (1997).
[Crossref]

IEEE Sens. J. (1)

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8(7), 1161–1172 (2008).
[Crossref]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, A. Di Maio, S. Carlino, G. De Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Photonics Sensors (1)

Y. L. Liu, W. T. Zhang, T. W. Xu, W. J. He, F. X. Zhang, and F. Li, “Fiber laser sensing system and its applications,” Photonics Sensors 1(1), 43–53 (2011).
[Crossref]

Proc. SPIE (4)

G. Gagliardi, P. Maddaloni, P. Malara, M. Salza, P. Ferraro, and P. De Natale, “Ultra-high sensitivity frequency-comb-referenced multiparametric sensors based on 1-D photonic components,” Proc. SPIE 7056, 70560I (2008).
[Crossref]

Q. W. Liu, Z. Y. He, T. Tokunaga, and K. Hotate, “An ultra-high-resolution FBG static-strain sensor for geophysics applications,” Proc. SPIE 7653, 76530W (2010).
[Crossref]

J. H. Chow, I. C. M. Littler, D. E. McClelland, and M. B. Gray, “Quasi-static fiber strain sensing with absolute frequency referencing,” Proc. SPIE 7004, 700429 (2008).
[Crossref]

W. Z. Huang, W. T. Zhang, and F. Li, “Distributed feedback fiber laser for sub-nanostrain-resolution static strain measurement by use of swept beat-frequency demodulation,” Proc. SPIE 9655, 965504 (2015).
[Crossref]

Science (1)

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the Ultimate Limit of Fiber-Optic Strain Sensing,” Science 330(6007), 1081–1084 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The DFB fiber laser step: (a) tests of beat frequency line-width and frequency stability, (b) the line-width of DFB fiber laser, (c) the picture of DFB fiber laser. WDM, wavelength division multiplex; CP, coupler; PD, photodiode.
Fig. 2
Fig. 2 The beat frequency linewidth between DFB fiber laser and the NKT fiber laser.
Fig. 3
Fig. 3 The beat frequency stability and its relationship with the drift of pump power: (a) and (b) the black lines are frequency drifts of the beat frequency signals when the DFB fiber laser is in the air and water respectively, the red lines are frequency noise level getting rid of the large and slow frequency fluctuation of NKT fiber laser, (c) the sensitivity of frequency drift against the pump power when the DFB fiber laser is in the air and water.
Fig. 4
Fig. 4 The schematic principle and configuration of the DFB fiber laser static strain interrogation system. WDM, wavelength division multiplex; CP, coupler; CIR, circulator; PC, polarization controller; PD, photodiode; ISO, isolator; FG, function generator; PM, phase modulator; VA, voltage amplifier.
Fig. 5
Fig. 5 The strain power spectral density when the NKT fiber laser is locked to the π-FBG.
Fig. 6
Fig. 6 The measured results of the static strain: (a) the sensing DFB fiber laser and the reference π-FBG are packaged in a sealed box, (b) a 10-nε square signal is applied on the sensing DFB fiber laser.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ B =2 n eff Λ 0
S ε (f)= S Δν (f) ( ν B K) 2 = S V (f) ( ν B KD) 2   [ ε 2 /Hz ] 

Metrics