Abstract

We study bend loss in chalcogenide negative curvature fibers with different polarizations, different tube wall thicknesses, and different bend directions relative to the mode polarization. The coupling between the core mode and tube modes induces bend loss peaks in the two non-degenerate modes at the same bend radius. There is as much as a factor of 28 difference between the losses of the two polarization modes. The fiber with a larger tube wall thickness, corresponding to a smaller inner tube diameter, can sustain a smaller bend radius. The bend loss is sensitive to the bend direction when coupling occurs between the core mode and tube modes. A bend loss of 0.2 dB/m at a bend radius of 16 cm, corresponding to 0.2 dB/turn, can be achieved in a chalcogenide negative curvature fiber.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Higher-order mode suppression in chalcogenide negative curvature fibers

Chengli Wei, Robinson A. Kuis, Francois Chenard, Curtis R. Menyuk, and Jonathan Hu
Opt. Express 23(12) 15824-15832 (2015)

Negative curvature fibers

Chengli Wei, R. Joseph Weiblen, Curtis R. Menyuk, and Jonathan Hu
Adv. Opt. Photon. 9(3) 504-561 (2017)

Polarization-filtering and polarization-maintaining low-loss negative curvature fibers

Chengli Wei, Curtis R. Menyuk, and Jonathan Hu
Opt. Express 26(8) 9528-9540 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25(2), 96–98 (2000).
    [Crossref]
  2. G. Pearce, J. Pottage, D. Bird, P. Roberts, J. Knight, and P. Russell, “Hollow-core PCF for guidance in the mid to far infra-red,” Opt. Express 13(18), 6937–6946 (2005).
    [Crossref] [PubMed]
  3. J. Hu and C. R. Menyuk, “Leakage loss and bandgap analysis in air-core photonic bandgap fiber for nonsilica glasses,” Opt. Express 15(2), 339–349 (2007).
    [Crossref] [PubMed]
  4. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  5. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
    [Crossref] [PubMed]
  6. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  7. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  8. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
    [Crossref] [PubMed]
  9. F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
    [Crossref] [PubMed]
  10. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
    [Crossref] [PubMed]
  11. W. Ding and Y. Wang, “Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers,” Opt. Express 23(16), 21165–21174 (2015).
    [Crossref] [PubMed]
  12. A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber-guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(19), 19131–19140 (2014).
    [Crossref] [PubMed]
  13. W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
    [Crossref] [PubMed]
  14. P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
    [Crossref] [PubMed]
  15. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 μm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
    [Crossref] [PubMed]
  16. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser, Post-deadline Papers (Optical Society of America, 2010), paper CPDB4.
    [Crossref]
  17. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  18. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
    [Crossref]
  19. V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).
  20. V. S. Shiryaev, “Chalcogenide glass hollow-core microstructured optical fibers,” Front. Mater.2(24), (2015).
    [Crossref]
  21. D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinear chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285(23), 4660–4669 (2012).
    [Crossref]
  22. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I.T. Sorokina and K.L. Vodopyanov, eds. (Springer, 2003).
    [Crossref]
  23. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  24. Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
    [Crossref]
  25. P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
    [Crossref]
  26. Y. Yao, J. A. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  27. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
    [Crossref]
  28. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of a 3–5 μm source that is created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett. 35(17), 2907–2909 (2010).
    [Crossref] [PubMed]
  29. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
    [Crossref]
  30. C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23(12), 15824–15832 (2015).
    [Crossref] [PubMed]
  31. A. Hartung, J. Kobelke, A. Schwuchow, J. Bierlich, J. Popp, M. A. Schmidt, and T. Frosch, “Low-loss single-mode guidance in large-core antiresonant hollow-core fibers,” Opt. Lett. 40(14), 3432–3435 (2015).
    [Crossref] [PubMed]
  32. M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23(13), 17394–17406 (2015).
    [Crossref] [PubMed]
  33. M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24(8), 8429–8436 (2016).
    [Crossref] [PubMed]
  34. P. Uebel, M. Günendi, M. H. Frosz, G. Ahmed, N. Edavalath, J. Ménard, and P. S. Russell, “A broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW6C.2.
    [Crossref]
  35. P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. S. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(14), 1961–1964 (2016).
    [Crossref] [PubMed]
  36. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
    [Crossref] [PubMed]
  37. C. Wei, J. Hu, and C. Menyuk, “Bending-induced mode coupling in chalcogenide negative curvature fibers,” in Advanced Photonics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper NT2C.5.
    [Crossref]
  38. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
    [Crossref] [PubMed]
  39. V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
    [Crossref] [PubMed]
  40. A. D. Pryamikov, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Transmission of CO2 Laser Radiation through glass hollow core microstructured fibers,” in CO2 Laser - Optimisation and Application, D. C. Dumitras, ed. (InTech, 2012).
  41. M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibres for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
    [Crossref] [PubMed]
  42. M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: Cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
    [Crossref]
  43. G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Yu. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25(5), 055101 (2015).
    [Crossref]
  44. K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11(23), 3100–3109 (2003).
    [Crossref] [PubMed]
  45. G. Ren, Z. Wang, S. Lou, and S. Jian, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11(11), 1310–1321 (2003).
    [Crossref]
  46. M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
    [Crossref]
  47. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(13), 13–15 (1986).
    [Crossref]
  48. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref]
  49. W. Ding and Y. Wang, “Analytic model for light guidance in single-wall hollow-core anti-resonant fibers,” Opt. Express 22(22), 27242–27256 (2014).
    [Crossref] [PubMed]
  50. W. Liu, T. Guo, A. C. Wong, H. Y. Tam, and S. He, “Highly sensitive bending sensor based on Er3+-doped DBR fiber laser,” Opt. Express 18(17), 17834–17840 (2010).
    [Crossref] [PubMed]
  51. M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
    [Crossref]

2016 (3)

2015 (5)

2014 (6)

2013 (7)

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 μm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
[Crossref] [PubMed]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
[Crossref] [PubMed]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
[Crossref] [PubMed]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
[Crossref] [PubMed]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: Cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref]

2012 (4)

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinear chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285(23), 4660–4669 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Y. Yao, J. A. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

2011 (5)

2010 (4)

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

W. Liu, T. Guo, A. C. Wong, H. Y. Tam, and S. He, “Highly sensitive bending sensor based on Er3+-doped DBR fiber laser,” Opt. Express 18(17), 17834–17840 (2010).
[Crossref] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of a 3–5 μm source that is created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett. 35(17), 2907–2909 (2010).
[Crossref] [PubMed]

2009 (1)

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

2003 (2)

2002 (1)

2000 (1)

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(13), 13–15 (1986).
[Crossref]

1975 (1)

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Abeeluck, A. K.

Aggarwal, I. D.

Ahmed, G.

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. S. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(14), 1961–1964 (2016).
[Crossref] [PubMed]

P. Uebel, M. Günendi, M. H. Frosz, G. Ahmed, N. Edavalath, J. Ménard, and P. S. Russell, “A broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW6C.2.
[Crossref]

Alagashev, G. K.

G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Yu. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25(5), 055101 (2015).
[Crossref]

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

Alharbi, M.

Alkeskjold, T. T.

Argyros, A.

Astapovich, M. S.

Bache, M.

Bai, Y.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

Bandyopadhyay, N.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Bang, O.

Barkou, S. E.

Belardi, W.

Benabid, F.

Bierlich, J.

Bird, D.

Biriukov, A. S.

G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Yu. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25(5), 055101 (2015).
[Crossref]

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Bjarklev, A.

Bradley, T.

Broeng, J.

J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25(2), 96–98 (2000).
[Crossref]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Chenard, F.

Churbanov, M. F.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref]

Couny, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser, Post-deadline Papers (Optical Society of America, 2010), paper CPDB4.
[Crossref]

Darvish, S. R.

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

Debord, B.

Dekker, S. A.

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinear chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285(23), 4660–4669 (2012).
[Crossref]

Deng, M.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[Crossref]

Dianov, E. M.

Dikmelik, Y.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Ding, W.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(13), 13–15 (1986).
[Crossref]

Edavalath, N.

P. Uebel, M. Günendi, M. H. Frosz, G. Ahmed, N. Edavalath, J. Ménard, and P. S. Russell, “A broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW6C.2.
[Crossref]

Edavalath, N. N.

Eggleton, B. J.

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinear chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285(23), 4660–4669 (2012).
[Crossref]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[Crossref]

Escarra, M. D.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Fan, J.-Y.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Fourcade-Dutin, C.

Franz, K. J.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Fried, A.

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I.T. Sorokina and K.L. Vodopyanov, eds. (Springer, 2003).
[Crossref]

Frosch, T.

Frosz, M. H.

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. S. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(14), 1961–1964 (2016).
[Crossref] [PubMed]

P. Uebel, M. Günendi, M. H. Frosz, G. Ahmed, N. Edavalath, J. Ménard, and P. S. Russell, “A broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW6C.2.
[Crossref]

Gérôme, F.

Ghosh, D.

Gmachl, C. F.

Y. Yao, J. A. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Günendi, M.

P. Uebel, M. Günendi, M. H. Frosz, G. Ahmed, N. Edavalath, J. Ménard, and P. S. Russell, “A broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW6C.2.
[Crossref]

Günendi, M. C.

Guo, T.

Habib, M. S.

Hand, D. P.

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Harris, J. H.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Hartung, A.

He, S.

Headley, C.

Heiblum, M.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Hoffman, A. J.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Hoffman, J. A.

Y. Yao, J. A. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Hu, J.

Hudson, D. D.

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinear chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285(23), 4660–4669 (2012).
[Crossref]

Jakobsen, C.

Jaworski, P.

Jian, S.

Judge, A. C.

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinear chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285(23), 4660–4669 (2012).
[Crossref]

Khurgin, J. B.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Knight, J.

Knight, J. C.

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
[Crossref] [PubMed]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
[Crossref] [PubMed]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 μm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
[Crossref] [PubMed]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Kobelke, J.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(13), 13–15 (1986).
[Crossref]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(13), 13–15 (1986).
[Crossref]

Kolyadin, A. N.

G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Yu. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25(5), 055101 (2015).
[Crossref]

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

Koshiba, M.

Kosolapov, A. F.

G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Yu. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25(5), 055101 (2015).
[Crossref]

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

A. D. Pryamikov, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Transmission of CO2 Laser Radiation through glass hollow core microstructured fibers,” in CO2 Laser - Optimisation and Application, D. C. Dumitras, ed. (InTech, 2012).

Kotereva, T. V.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

Kuboya, S.

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

Kuis, R. A.

Lægsgaard, J.

Litchinitser, N. M.

Liu, P. Q.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Liu, W.

Lou, S.

Lukovkin, A. Yu.

G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Yu. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25(5), 055101 (2015).
[Crossref]

Lyngsø, J. K.

Mägi, E. C.

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinear chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285(23), 4660–4669 (2012).
[Crossref]

Maier, R. R. J.

Ménard, J.

P. Uebel, M. Günendi, M. H. Frosz, G. Ahmed, N. Edavalath, J. Ménard, and P. S. Russell, “A broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW6C.2.
[Crossref]

Ménard, J.-M.

Menyuk, C.

C. Wei, J. Hu, and C. Menyuk, “Bending-induced mode coupling in chalcogenide negative curvature fibers,” in Advanced Photonics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper NT2C.5.
[Crossref]

Menyuk, C. R.

Michieletto, M.

Mishinov, S. V.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

Pearce, G.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(13), 13–15 (1986).
[Crossref]

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Plotnichenko, V. G.

Poletti, F.

Popp, J.

Pottage, J.

Pryamikov, A. D.

G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Yu. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25(5), 055101 (2015).
[Crossref]

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

A. D. Pryamikov, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Transmission of CO2 Laser Radiation through glass hollow core microstructured fibers,” in CO2 Laser - Optimisation and Application, D. C. Dumitras, ed. (InTech, 2012).

Rao, Y. J.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[Crossref]

Razeghi, M.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

Ren, G.

Richter, D.

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I.T. Sorokina and K.L. Vodopyanov, eds. (Springer, 2003).
[Crossref]

Roberts, P.

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser, Post-deadline Papers (Optical Society of America, 2010), paper CPDB4.
[Crossref]

Russell, P.

Russell, P. S.

P. Uebel, M. Günendi, M. H. Frosz, G. Ahmed, N. Edavalath, J. Ménard, and P. S. Russell, “A broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW6C.2.
[Crossref]

Russell, P. S. J.

Saitoh, K.

Sanghera, J. S.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schmidt, M. A.

Schwuchow, A.

Semjonov, S. L.

Setti, V.

Shaw, L. B.

Shephard, J. D.

Shiryaev, V. S.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref]

V. S. Shiryaev, “Chalcogenide glass hollow-core microstructured optical fibers,” Front. Mater.2(24), (2015).
[Crossref]

Slivken, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

Snopatin, G. E.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref]

Søndergaard, T.

Tam, H. Y.

Tang, C. P.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[Crossref]

Tittel, F. K.

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I.T. Sorokina and K.L. Vodopyanov, eds. (Springer, 2003).
[Crossref]

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Uebel, P.

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. S. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(14), 1961–1964 (2016).
[Crossref] [PubMed]

P. Uebel, M. Günendi, M. H. Frosz, G. Ahmed, N. Edavalath, J. Ménard, and P. S. Russell, “A broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW6C.2.
[Crossref]

Urich, A.

Vincetti, L.

Wadsworth, W. J.

Wang, X.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Wang, Y.

W. Ding and Y. Wang, “Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers,” Opt. Express 23(16), 21165–21174 (2015).
[Crossref] [PubMed]

W. Ding and Y. Wang, “Analytic model for light guidance in single-wall hollow-core anti-resonant fibers,” Opt. Express 22(22), 27242–27256 (2014).
[Crossref] [PubMed]

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser, Post-deadline Papers (Optical Society of America, 2010), paper CPDB4.
[Crossref]

Wang, Y. Y.

Wang, Z.

Wei, C.

C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23(12), 15824–15832 (2015).
[Crossref] [PubMed]

C. Wei, J. Hu, and C. Menyuk, “Bending-induced mode coupling in chalcogenide negative curvature fibers,” in Advanced Photonics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper NT2C.5.
[Crossref]

Wheeler, N. V.

Wondraczek, K.

Wong, A. C.

Yao, Y.

Y. Yao, J. A. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Yu, F.

Zhu, T.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[Crossref]

Adv. Opt. Photonics (1)

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[Crossref]

Appl. Phys. Lett. (2)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(13), 13–15 (1986).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (1)

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

J. Lightwave Technol. (1)

J. Optoelectron. Adv. M. (1)

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

Laser Phys. (1)

G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Yu. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25(5), 055101 (2015).
[Crossref]

Nat. Photonics (4)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Y. Yao, J. A. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Opt. Commun. (2)

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinear chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285(23), 4660–4669 (2012).
[Crossref]

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[Crossref]

Opt. Express (23)

W. Ding and Y. Wang, “Analytic model for light guidance in single-wall hollow-core anti-resonant fibers,” Opt. Express 22(22), 27242–27256 (2014).
[Crossref] [PubMed]

W. Liu, T. Guo, A. C. Wong, H. Y. Tam, and S. He, “Highly sensitive bending sensor based on Er3+-doped DBR fiber laser,” Opt. Express 18(17), 17834–17840 (2010).
[Crossref] [PubMed]

K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11(23), 3100–3109 (2003).
[Crossref] [PubMed]

G. Ren, Z. Wang, S. Lou, and S. Jian, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11(11), 1310–1321 (2003).
[Crossref]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibres for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
[Crossref] [PubMed]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: Cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
[Crossref] [PubMed]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
[Crossref] [PubMed]

C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23(12), 15824–15832 (2015).
[Crossref] [PubMed]

M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23(13), 17394–17406 (2015).
[Crossref] [PubMed]

M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24(8), 8429–8436 (2016).
[Crossref] [PubMed]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref]

G. Pearce, J. Pottage, D. Bird, P. Roberts, J. Knight, and P. Russell, “Hollow-core PCF for guidance in the mid to far infra-red,” Opt. Express 13(18), 6937–6946 (2005).
[Crossref] [PubMed]

J. Hu and C. R. Menyuk, “Leakage loss and bandgap analysis in air-core photonic bandgap fiber for nonsilica glasses,” Opt. Express 15(2), 339–349 (2007).
[Crossref] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[Crossref] [PubMed]

W. Ding and Y. Wang, “Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers,” Opt. Express 23(16), 21165–21174 (2015).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber-guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(19), 19131–19140 (2014).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
[Crossref] [PubMed]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
[Crossref] [PubMed]

Opt. Lett. (7)

Science (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Other (6)

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser, Post-deadline Papers (Optical Society of America, 2010), paper CPDB4.
[Crossref]

P. Uebel, M. Günendi, M. H. Frosz, G. Ahmed, N. Edavalath, J. Ménard, and P. S. Russell, “A broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW6C.2.
[Crossref]

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I.T. Sorokina and K.L. Vodopyanov, eds. (Springer, 2003).
[Crossref]

V. S. Shiryaev, “Chalcogenide glass hollow-core microstructured optical fibers,” Front. Mater.2(24), (2015).
[Crossref]

A. D. Pryamikov, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Transmission of CO2 Laser Radiation through glass hollow core microstructured fibers,” in CO2 Laser - Optimisation and Application, D. C. Dumitras, ed. (InTech, 2012).

C. Wei, J. Hu, and C. Menyuk, “Bending-induced mode coupling in chalcogenide negative curvature fibers,” in Advanced Photonics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper NT2C.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Cross section of a chalcogenide negative curvature fiber.
Fig. 2
Fig. 2 Bend loss of the fundamental mode that is polarized (a) parallel and (b) perpendicular to the bend direction as a function of the tube wall thickness and the bend radius. The plus signs denote points at which the loss becomes high relative to the bend-free loss even though the thickness is antiresonant.
Fig. 3
Fig. 3 (a) Real parts of the effective indices and (b) bend losses for both parallel-polarized and perpendicular-polarized modes in the negative curvature fiber with a tube wall thickness of 1.8 μm. The inset shows the avoided crossing close to a bend radius of 9.4 cm. The effective air index is defined as the index after conformal transformation at the peak of the core mode intensity.
Fig. 4
Fig. 4 The parallel-polarized and perpendicular-polarized modes at bend radii of 5.7 cm and 9.4 cm. The contour plots represent the normalized electric field intensity, and the arrows represent the amplitude and direction of the transverse electric field.
Fig. 5
Fig. 5 The parallel-polarized fundamental core modes at bend radii of (a) 7.0 cm and (b) 15.0 cm.
Fig. 6
Fig. 6 (a) Real parts of the effective indices and (b) bend losses for the parallel-polarized mode with tube wall thicknesses of 0.7 μm, 1.8 μm, and 2.9 μm.
Fig. 7
Fig. 7 Real parts of the effective indices in annular core fibers with a fixed inner tube diameter or a fixed outer tube diameter. The inset shows the geometry of an annular core fiber.
Fig. 8
Fig. 8 Minimum bend radius for the parallel-polarized mode as a function of tube wall thickness for given bend losses of 0.2 dB/m, 0.5 dB/m and 1.0 dB/m.
Fig. 9
Fig. 9 Bend losses of the parallel-polarized and perpendicular-polarized modes as a function of bend relative angle for the fibers with a tube wall thickness of 1.8 μm at bend radii of (a) 9.4 cm and (b) 20.0 cm. The inset shows the relative angle, Δθ, between the bend direction and x-axis in the negative curvature fiber. The blue triangles mark the relative angles for the mode fields that are shown in Fig. 10.
Fig. 10
Fig. 10 Parallel-polarized core mode at (a) Δθ = 0 and (c) Δθ = π/8 corresponds to the two triangles in Fig. 9(a) at a bend radius of 9.4 cm. The parallel-polarized core mode at (b) Δθ = 0 and (d) Δθ = π/8 corresponds to the two triangles in Fig. 9(b) at a bend radius of 20.0 cm.

Metrics