Abstract

We demonstrate a compact and robust method for generating a 399-nm light resonant on the 1S01P1 transition in ytterbium using a single-pass periodically poled LiNbO3 waveguide for second harmonic generation (SHG). The obtained output power at 399 nm was 25 mW when a 798-nm fundamental power of 380 mW was coupled to the waveguide. We observed no degradation of the SHG power for 13 hours with a low power of 6 mW. The obtained SHG light has been used as a seed light for injection locking, which provides sufficient power for laser cooling ytterbium.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A compact light source at 461 nm using a periodically poled LiNbO3 waveguide for strontium magneto-optical trapping

Daisuke Akamatsu, Masami Yasuda, Takuya Kohno, Atsushi Onae, and Feng-Lei Hong
Opt. Express 19(3) 2046-2051 (2011)

Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide

Tadashi Nishikawa, Akira Ozawa, Yoshiki Nishida, Masaki Asobe, Feng-Lei Hong, and Theodor W. Hänsch
Opt. Express 17(20) 17792-17800 (2009)

References

  • View by:
  • |
  • |
  • |

  1. T. Kohno, M. Yasuda, K. Hosaka, H. Inaba, Y. Nakajima, and F.-L. Hong, “One-dimensional optical lattice clock with a fermionic 171Yb isotope,” Appl. Phys. Express 2, 072501 (2009).
    [Crossref]
  2. M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5, 102401 (2012).
    [Crossref]
  3. C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, “Absolute frequency measurement of 1S0(F = 1/2)−3 P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50, 119–128 (2013).
    [Crossref]
  4. N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
    [Crossref] [PubMed]
  5. S. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita, and Y. Takahashi, “Interaction and filling-induced quantum phases of dual Mott insulators of bosons and fermions,” Nat. Phys. 7, 642–648 (2011).
    [Crossref]
  6. S. Taie, S. Sugawa, R. Yamazaki, and Y. Takahashi, “An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling,” Nat. Phys. 8, 825–830 (2012).
    [Crossref]
  7. A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, and M. D. Lukin, “Alkali-earth-metal atoms as few-qubit quantum registers,” Phys. Rev. Lett. 102, 110503 (2009).
    [Crossref]
  8. A. Daley, “Quantum computing and quantum simulation with group-II atoms,” Quantum Inf. Proc. 10, 865–884 (2011).
    [Crossref]
  9. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
    [Crossref] [PubMed]
  10. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 6, 185–189 (2015).
    [Crossref]
  11. T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
    [Crossref]
  12. D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F.-L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22, 7898–7905 (2014).
    [Crossref] [PubMed]
  13. N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 s averaging time,” Nat. Photonics 10, 258–261 (2016).
  14. S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
    [Crossref]
  15. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
    [Crossref] [PubMed]
  16. C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329, 1630–1633 (2010).
    [Crossref] [PubMed]
  17. T. P. Krisher, “Gravitational redshift in a local freely falling frame: A proposed new null test of the equivalence principle,” Phys. Rev. D 53, R1735–R1739 (1996).
    [Crossref]
  18. A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10, 933–936 (2014).
    [Crossref]
  19. G. Mura, T. Franzen, C. A. Jaoudeh, A. Görlitz, H. Luckmann, I. Ernsting, A. Nevsky, S. Schiller, and and the SOC2 Team, “A transportable optical lattice clock using 171Yb,” in Joint European Frequency and Time Forum & International Frequency Control Symposium, EFTF/IFC 376–378 (2013).
  20. N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117, 1107–1116 (2014).
    [Crossref]
  21. K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
    [Crossref]
  22. J. I. Kim, C. Y. Park, J. Y. Yeom, E. B. Kim, and T. H. Yoon, “Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp,” Opt. Lett. 28, 245–247 (2003).
    [Crossref] [PubMed]
  23. T. Kohno, M. Yasuda, H. Inaba, and F.-L. Hong, “Optical frequency stability measurement of an external cavity blue diode laser with an optical frequency comb,” Jpn. J. Appl. Phys. 47, 8856–8858 (2008).
    [Crossref]
  24. K. Komori, Y. Takasu, M. Kumakura, Y. Takahashi, and T. Yabuzaki, “Injection-locking of blue laser diodes and its application to the laser cooling of neutral ytterbium atoms,” Jpn. J. Appl. Phys. 42, 5059–5062 (2003).
    [Crossref]
  25. C. Y. Park and T. H. Yoon, “Frequency stabilization of injection-locked violet laser diode with Doppler-free absorption signal of ytterbium,” Jpn. J. Appl. Phys. 42, L754–L756 (2003).
    [Crossref]
  26. T. Hosoya, M. Miranda, R. Inoue, and M. Kozuma, “Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms,” Rev. Sci. Instrum. 86, 073110 (2015).
    [Crossref] [PubMed]
  27. C. Adams and A. Ferguson, “Tunable narrow linewidth ultra-violet light generation by frequency doubling of a ring Ti:sapphire laser using lithium triborate in an external enhancement cavity,” Opt. Commun. 90, 89–94 (1992).
    [Crossref]
  28. V. Ruseva and J. Hald, “Generation of UV light by frequency doubling in BIBO,” Opt. Commun. 236, 219–223 (2004).
    [Crossref]
  29. F.-Y. Wang, B.-S. Shi, Q.-F. Chen, C. Zhai, and G.-C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281, 4114–4117 (2008).
    [Crossref]
  30. Y. Onoda, M. Ikeda, K. Sugiyama, H. Yokoyama, and M. Kitano, “Maximization of second-harmonic power using normal-cut nonlinear crystals in a high-enhancement external cavity,” Appl. Opt. 48, 1366–1370 (2009).
    [Crossref] [PubMed]
  31. M. Pizzocaro, D. Calonico, P. C. Pastor, J. Catani, G. A. Costanzo, F. Levi, and L. Lorini, “Efficient frequency doubling at 399 nm,” Appl. Opt. 53, 3388–3392 (2014).
    [Crossref] [PubMed]
  32. X. Wen, Y. Han, J. Bai, J. He, Y. Wang, B. Yang, and J. Wang, “Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime,” Opt. Express 22, 32293–32300 (2014).
    [Crossref]
  33. Y. Han, X. Wen, J. Bai, B. Yang, Y. Wang, J. He, and J. Wang, “Generation of 130 mW of 397.5 nm tunable laser via ring-cavity-enhanced frequency doubling,” J. Opt. Soc. Am. B 31, 1942–1947 (2014).
    [Crossref]
  34. X. Wen, Y. Han, and J. Wang, “Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals,” Laser Phys. 26, 045401 (2016).
    [Crossref]
  35. H. Jiang, G. Li, and X. Xu, “Highly efficient single-pass second harmonic generation in a periodically poled MgO:LiNbO3 waveguide pumped by a fiber laser at 1111.6 nm,” Opt. Express 17, 16073–16080 (2009).
    [Crossref] [PubMed]
  36. S. Guo, J. Wang, Y. Han, and J. He, “Frequency doubling of cw 1560nm laser with single-pass, doubling-pass and cascaded MgO:PPLN crystals and frequency locking to Rb D2 line,” Proc. SPIE 8772, 87721B (2013).
    [Crossref]
  37. R. Bege, D. Jedrzejczyk, G. Blume, J. Hormann, D. Feise, K. Paschke, and G. Tränkle, “Watt-level second-harmonic generation at 589 nm with a PPMgO:LN ridge waveguide crystal pumped by a DBR tapered diode laser,” Opt. Lett. 41, 1530–1533 (2016).
    [Crossref] [PubMed]
  38. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sodium resonance radiation from sum-frequency generation by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
    [Crossref] [PubMed]
  39. D. Akamatsu, M. Yasuda, T. Kohno, A. Onae, and F.-L. Hong, “A compact light source at 461 nm using a periodically poled LiNbO3 waveguide for strontium magneto-optical trapping,” Opt. Express 19, 2046–2051 (2011).
    [Crossref] [PubMed]
  40. M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
    [Crossref]
  41. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [Crossref]
  42. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39609–611 (2003).
    [Crossref]
  43. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43–45 (2002).
    [Crossref]
  44. A. Yariv, Optical Electronics in Modern Communications(Oxford University, 1997).
  45. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [Crossref]
  46. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [Crossref]
  47. K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-µ m periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90–L91 (2003).
    [Crossref]
  48. A. Bouchier, G. Lucas-Leclin, P. Georges, and J. M. Maillard, “Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978 nm in a periodically-poled MgO:LiNbO3 waveguide,” Opt. Express 13, 6974–6979 (2005).
    [Crossref] [PubMed]
  49. M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, and F.-L. Hong, “Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium,” J. Opt. Soc. Am B 27, 1388–1393 (2010).
    [Crossref]
  50. D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20, 16010–16016 (2012).
    [Crossref] [PubMed]
  51. H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21, 7891–7896 (2013).
    [Crossref] [PubMed]

2016 (3)

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 s averaging time,” Nat. Photonics 10, 258–261 (2016).

X. Wen, Y. Han, and J. Wang, “Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals,” Laser Phys. 26, 045401 (2016).
[Crossref]

R. Bege, D. Jedrzejczyk, G. Blume, J. Hormann, D. Feise, K. Paschke, and G. Tränkle, “Watt-level second-harmonic generation at 589 nm with a PPMgO:LN ridge waveguide crystal pumped by a DBR tapered diode laser,” Opt. Lett. 41, 1530–1533 (2016).
[Crossref] [PubMed]

2015 (4)

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

T. Hosoya, M. Miranda, R. Inoue, and M. Kozuma, “Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms,” Rev. Sci. Instrum. 86, 073110 (2015).
[Crossref] [PubMed]

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 6, 185–189 (2015).
[Crossref]

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

2014 (7)

2013 (4)

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21, 7891–7896 (2013).
[Crossref] [PubMed]

C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, “Absolute frequency measurement of 1S0(F = 1/2)−3 P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50, 119–128 (2013).
[Crossref]

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

S. Guo, J. Wang, Y. Han, and J. He, “Frequency doubling of cw 1560nm laser with single-pass, doubling-pass and cascaded MgO:PPLN crystals and frequency locking to Rb D2 line,” Proc. SPIE 8772, 87721B (2013).
[Crossref]

2012 (3)

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5, 102401 (2012).
[Crossref]

S. Taie, S. Sugawa, R. Yamazaki, and Y. Takahashi, “An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling,” Nat. Phys. 8, 825–830 (2012).
[Crossref]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20, 16010–16016 (2012).
[Crossref] [PubMed]

2011 (3)

D. Akamatsu, M. Yasuda, T. Kohno, A. Onae, and F.-L. Hong, “A compact light source at 461 nm using a periodically poled LiNbO3 waveguide for strontium magneto-optical trapping,” Opt. Express 19, 2046–2051 (2011).
[Crossref] [PubMed]

A. Daley, “Quantum computing and quantum simulation with group-II atoms,” Quantum Inf. Proc. 10, 865–884 (2011).
[Crossref]

S. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita, and Y. Takahashi, “Interaction and filling-induced quantum phases of dual Mott insulators of bosons and fermions,” Nat. Phys. 7, 642–648 (2011).
[Crossref]

2010 (2)

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329, 1630–1633 (2010).
[Crossref] [PubMed]

M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, and F.-L. Hong, “Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium,” J. Opt. Soc. Am B 27, 1388–1393 (2010).
[Crossref]

2009 (5)

2008 (4)

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

F.-Y. Wang, B.-S. Shi, Q.-F. Chen, C. Zhai, and G.-C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281, 4114–4117 (2008).
[Crossref]

T. Kohno, M. Yasuda, H. Inaba, and F.-L. Hong, “Optical frequency stability measurement of an external cavity blue diode laser with an optical frequency comb,” Jpn. J. Appl. Phys. 47, 8856–8858 (2008).
[Crossref]

2005 (1)

2004 (1)

V. Ruseva and J. Hald, “Generation of UV light by frequency doubling in BIBO,” Opt. Commun. 236, 219–223 (2004).
[Crossref]

2003 (5)

K. Komori, Y. Takasu, M. Kumakura, Y. Takahashi, and T. Yabuzaki, “Injection-locking of blue laser diodes and its application to the laser cooling of neutral ytterbium atoms,” Jpn. J. Appl. Phys. 42, 5059–5062 (2003).
[Crossref]

C. Y. Park and T. H. Yoon, “Frequency stabilization of injection-locked violet laser diode with Doppler-free absorption signal of ytterbium,” Jpn. J. Appl. Phys. 42, L754–L756 (2003).
[Crossref]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39609–611 (2003).
[Crossref]

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-µ m periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90–L91 (2003).
[Crossref]

J. I. Kim, C. Y. Park, J. Y. Yeom, E. B. Kim, and T. H. Yoon, “Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp,” Opt. Lett. 28, 245–247 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (1)

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
[Crossref]

1997 (2)

1996 (1)

T. P. Krisher, “Gravitational redshift in a local freely falling frame: A proposed new null test of the equivalence principle,” Phys. Rev. D 53, R1735–R1739 (1996).
[Crossref]

1995 (1)

1992 (1)

C. Adams and A. Ferguson, “Tunable narrow linewidth ultra-violet light generation by frequency doubling of a ring Ti:sapphire laser using lithium triborate in an external enhancement cavity,” Opt. Commun. 90, 89–94 (1992).
[Crossref]

Adams, C.

C. Adams and A. Ferguson, “Tunable narrow linewidth ultra-violet light generation by frequency doubling of a ring Ti:sapphire laser using lithium triborate in an external enhancement cavity,” Opt. Commun. 90, 89–94 (1992).
[Crossref]

Akamatsu, D.

Alighanbari, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Amemiya, M.

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5, 102401 (2012).
[Crossref]

Asobe, M.

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sodium resonance radiation from sum-frequency generation by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
[Crossref] [PubMed]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39609–611 (2003).
[Crossref]

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
[Crossref]

Bai, J.

Baillard, X.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Barrett, M. D.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Barwood, G. P.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Bege, R.

Beloy, K.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Bergquist, J. C.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Bishof, M.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Bize, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Blatt, S.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Bloom, B. J.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Blume, G.

Bongs, K.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Bosenberg, W. R.

Bouchier, A.

Boyd, M. M.

A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, and M. D. Lukin, “Alkali-earth-metal atoms as few-qubit quantum registers,” Phys. Rev. Lett. 102, 110503 (2009).
[Crossref]

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Bromley, S. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Brusch, A.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Byer, R. L.

Calonico, D.

Campbell, G. K.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Campbell, S. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Catani, J.

Chen, Q.-F.

F.-Y. Wang, B.-S. Shi, Q.-F. Chen, C. Zhai, and G.-C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281, 4114–4117 (2008).
[Crossref]

Cho, J. W.

C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, “Absolute frequency measurement of 1S0(F = 1/2)−3 P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50, 119–128 (2013).
[Crossref]

Chou, C. W.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329, 1630–1633 (2010).
[Crossref] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Costanzo, G. A.

Daley, A.

A. Daley, “Quantum computing and quantum simulation with group-II atoms,” Quantum Inf. Proc. 10, 865–884 (2011).
[Crossref]

Daley, A. J.

A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, and M. D. Lukin, “Alkali-earth-metal atoms as few-qubit quantum registers,” Phys. Rev. Lett. 102, 110503 (2009).
[Crossref]

Das, M.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 s averaging time,” Nat. Photonics 10, 258–261 (2016).

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 6, 185–189 (2015).
[Crossref]

Derevianko, A.

A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10, 933–936 (2014).
[Crossref]

Diddams, S. A.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Drullinger, R. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Eckardt, R. C.

Ernsting, I.

G. Mura, T. Franzen, C. A. Jaoudeh, A. Görlitz, H. Luckmann, I. Ernsting, A. Nevsky, S. Schiller, and and the SOC2 Team, “A transportable optical lattice clock using 171Yb,” in Joint European Frequency and Time Forum & International Frequency Control Symposium, EFTF/IFC 376–378 (2013).

Falke, S.

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117, 1107–1116 (2014).
[Crossref]

Feise, D.

Fejer, M. M.

Ferguson, A.

C. Adams and A. Ferguson, “Tunable narrow linewidth ultra-violet light generation by frequency doubling of a ring Ti:sapphire laser using lithium triborate in an external enhancement cavity,” Opt. Commun. 90, 89–94 (1992).
[Crossref]

Flambaum, V. V.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Fortier, T. M.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Fouché, M.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Franzen, T.

G. Mura, T. Franzen, C. A. Jaoudeh, A. Görlitz, H. Luckmann, I. Ernsting, A. Nevsky, S. Schiller, and and the SOC2 Team, “A transportable optical lattice clock using 171Yb,” in Joint European Frequency and Time Forum & International Frequency Control Symposium, EFTF/IFC 376–378 (2013).

Georges, P.

Gill, P.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Görlitz, A.

G. Mura, T. Franzen, C. A. Jaoudeh, A. Görlitz, H. Luckmann, I. Ernsting, A. Nevsky, S. Schiller, and and the SOC2 Team, “A transportable optical lattice clock using 171Yb,” in Joint European Frequency and Time Forum & International Frequency Control Symposium, EFTF/IFC 376–378 (2013).

Gorshkov, A. V.

A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, and M. D. Lukin, “Alkali-earth-metal atoms as few-qubit quantum registers,” Phys. Rev. Lett. 102, 110503 (2009).
[Crossref]

Guo, G.-C.

F.-Y. Wang, B.-S. Shi, Q.-F. Chen, C. Zhai, and G.-C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281, 4114–4117 (2008).
[Crossref]

Guo, S.

S. Guo, J. Wang, Y. Han, and J. He, “Frequency doubling of cw 1560nm laser with single-pass, doubling-pass and cascaded MgO:PPLN crystals and frequency locking to Rb D2 line,” Proc. SPIE 8772, 87721B (2013).
[Crossref]

Hald, J.

V. Ruseva and J. Hald, “Generation of UV light by frequency doubling in BIBO,” Opt. Commun. 236, 219–223 (2004).
[Crossref]

Han, Y.

X. Wen, Y. Han, and J. Wang, “Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals,” Laser Phys. 26, 045401 (2016).
[Crossref]

Y. Han, X. Wen, J. Bai, B. Yang, Y. Wang, J. He, and J. Wang, “Generation of 130 mW of 397.5 nm tunable laser via ring-cavity-enhanced frequency doubling,” J. Opt. Soc. Am. B 31, 1942–1947 (2014).
[Crossref]

X. Wen, Y. Han, J. Bai, J. He, Y. Wang, B. Yang, and J. Wang, “Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime,” Opt. Express 22, 32293–32300 (2014).
[Crossref]

S. Guo, J. Wang, Y. Han, and J. He, “Frequency doubling of cw 1560nm laser with single-pass, doubling-pass and cascaded MgO:PPLN crystals and frequency locking to Rb D2 line,” Proc. SPIE 8772, 87721B (2013).
[Crossref]

Hänsch, T. W.

He, J.

He, W.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Hill, I. R.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Hinkley, N.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Holleville, D.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Hong, F.-L.

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F.-L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22, 7898–7905 (2014).
[Crossref] [PubMed]

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21, 7891–7896 (2013).
[Crossref] [PubMed]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20, 16010–16016 (2012).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5, 102401 (2012).
[Crossref]

D. Akamatsu, M. Yasuda, T. Kohno, A. Onae, and F.-L. Hong, “A compact light source at 461 nm using a periodically poled LiNbO3 waveguide for strontium magneto-optical trapping,” Opt. Express 19, 2046–2051 (2011).
[Crossref] [PubMed]

M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, and F.-L. Hong, “Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium,” J. Opt. Soc. Am B 27, 1388–1393 (2010).
[Crossref]

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sodium resonance radiation from sum-frequency generation by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
[Crossref] [PubMed]

T. Kohno, M. Yasuda, K. Hosaka, H. Inaba, Y. Nakajima, and F.-L. Hong, “One-dimensional optical lattice clock with a fermionic 171Yb isotope,” Appl. Phys. Express 2, 072501 (2009).
[Crossref]

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

T. Kohno, M. Yasuda, H. Inaba, and F.-L. Hong, “Optical frequency stability measurement of an external cavity blue diode laser with an optical frequency comb,” Jpn. J. Appl. Phys. 47, 8856–8858 (2008).
[Crossref]

Hormann, J.

Hosaka, K.

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F.-L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22, 7898–7905 (2014).
[Crossref] [PubMed]

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21, 7891–7896 (2013).
[Crossref] [PubMed]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20, 16010–16016 (2012).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5, 102401 (2012).
[Crossref]

M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, and F.-L. Hong, “Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium,” J. Opt. Soc. Am B 27, 1388–1393 (2010).
[Crossref]

T. Kohno, M. Yasuda, K. Hosaka, H. Inaba, Y. Nakajima, and F.-L. Hong, “One-dimensional optical lattice clock with a fermionic 171Yb isotope,” Appl. Phys. Express 2, 072501 (2009).
[Crossref]

Hosoya, T.

T. Hosoya, M. Miranda, R. Inoue, and M. Kozuma, “Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms,” Rev. Sci. Instrum. 86, 073110 (2015).
[Crossref] [PubMed]

Hughes, J.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Hume, D. B.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329, 1630–1633 (2010).
[Crossref] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Hutson, R. B.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Ikeda, M.

Inaba, H.

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F.-L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22, 7898–7905 (2014).
[Crossref] [PubMed]

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21, 7891–7896 (2013).
[Crossref] [PubMed]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20, 16010–16016 (2012).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5, 102401 (2012).
[Crossref]

M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, and F.-L. Hong, “Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium,” J. Opt. Soc. Am B 27, 1388–1393 (2010).
[Crossref]

T. Kohno, M. Yasuda, K. Hosaka, H. Inaba, Y. Nakajima, and F.-L. Hong, “One-dimensional optical lattice clock with a fermionic 171Yb isotope,” Appl. Phys. Express 2, 072501 (2009).
[Crossref]

T. Kohno, M. Yasuda, H. Inaba, and F.-L. Hong, “Optical frequency stability measurement of an external cavity blue diode laser with an optical frequency comb,” Jpn. J. Appl. Phys. 47, 8856–8858 (2008).
[Crossref]

Inaba, K.

S. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita, and Y. Takahashi, “Interaction and filling-induced quantum phases of dual Mott insulators of bosons and fermions,” Nat. Phys. 7, 642–648 (2011).
[Crossref]

Inoue, R.

T. Hosoya, M. Miranda, R. Inoue, and M. Kozuma, “Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms,” Rev. Sci. Instrum. 86, 073110 (2015).
[Crossref] [PubMed]

Itano, W. M.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Ito, R.

Itoh, H.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
[Crossref]

Iwakuni, K.

Jaoudeh, C. A.

G. Mura, T. Franzen, C. A. Jaoudeh, A. Görlitz, H. Luckmann, I. Ernsting, A. Nevsky, S. Schiller, and and the SOC2 Team, “A transportable optical lattice clock using 171Yb,” in Joint European Frequency and Time Forum & International Frequency Control Symposium, EFTF/IFC 376–378 (2013).

Jedrzejczyk, D.

Jiang, H.

Jundt, D. H.

Kaenders, W.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Katori, H.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 s averaging time,” Nat. Photonics 10, 258–261 (2016).

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 6, 185–189 (2015).
[Crossref]

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Kim, E. B.

C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, “Absolute frequency measurement of 1S0(F = 1/2)−3 P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50, 119–128 (2013).
[Crossref]

J. I. Kim, C. Y. Park, J. Y. Yeom, E. B. Kim, and T. H. Yoon, “Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp,” Opt. Lett. 28, 245–247 (2003).
[Crossref] [PubMed]

Kim, J. I.

Kitamoto, A.

Kitano, M.

Kock, O.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Kohno, T.

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21, 7891–7896 (2013).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5, 102401 (2012).
[Crossref]

D. Akamatsu, M. Yasuda, T. Kohno, A. Onae, and F.-L. Hong, “A compact light source at 461 nm using a periodically poled LiNbO3 waveguide for strontium magneto-optical trapping,” Opt. Express 19, 2046–2051 (2011).
[Crossref] [PubMed]

M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, and F.-L. Hong, “Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium,” J. Opt. Soc. Am B 27, 1388–1393 (2010).
[Crossref]

T. Kohno, M. Yasuda, K. Hosaka, H. Inaba, Y. Nakajima, and F.-L. Hong, “One-dimensional optical lattice clock with a fermionic 171Yb isotope,” Appl. Phys. Express 2, 072501 (2009).
[Crossref]

T. Kohno, M. Yasuda, H. Inaba, and F.-L. Hong, “Optical frequency stability measurement of an external cavity blue diode laser with an optical frequency comb,” Jpn. J. Appl. Phys. 47, 8856–8858 (2008).
[Crossref]

Komori, K.

K. Komori, Y. Takasu, M. Kumakura, Y. Takahashi, and T. Yabuzaki, “Injection-locking of blue laser diodes and its application to the laser cooling of neutral ytterbium atoms,” Jpn. J. Appl. Phys. 42, 5059–5062 (2003).
[Crossref]

Kondo, T.

Kozuma, M.

T. Hosoya, M. Miranda, R. Inoue, and M. Kozuma, “Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms,” Rev. Sci. Instrum. 86, 073110 (2015).
[Crossref] [PubMed]

Krisher, T. P.

T. P. Krisher, “Gravitational redshift in a local freely falling frame: A proposed new null test of the equivalence principle,” Phys. Rev. D 53, R1735–R1739 (1996).
[Crossref]

Kumakura, M.

K. Komori, Y. Takasu, M. Kumakura, Y. Takahashi, and T. Yabuzaki, “Injection-locking of blue laser diodes and its application to the laser cooling of neutral ytterbium atoms,” Jpn. J. Appl. Phys. 42, 5059–5062 (2003).
[Crossref]

Kurz, J. R.

Kwon, T. Y.

C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, “Absolute frequency measurement of 1S0(F = 1/2)−3 P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50, 119–128 (2013).
[Crossref]

Le Targat, R.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Lee, S. K.

C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, “Absolute frequency measurement of 1S0(F = 1/2)−3 P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50, 119–128 (2013).
[Crossref]

Lee, S.-B.

C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, “Absolute frequency measurement of 1S0(F = 1/2)−3 P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50, 119–128 (2013).
[Crossref]

Lee, W.-K.

C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, “Absolute frequency measurement of 1S0(F = 1/2)−3 P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50, 119–128 (2013).
[Crossref]

Lemke, N. D.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Lemonde, P.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Levi, F.

Li, G.

Lisdat, C.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117, 1107–1116 (2014).
[Crossref]

Lodewyck, J.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Lorini, L.

M. Pizzocaro, D. Calonico, P. C. Pastor, J. Catani, G. A. Costanzo, F. Levi, and L. Lorini, “Efficient frequency doubling at 399 nm,” Appl. Opt. 53, 3388–3392 (2014).
[Crossref] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Lucas-Leclin, G.

Luckmann, H.

G. Mura, T. Franzen, C. A. Jaoudeh, A. Görlitz, H. Luckmann, I. Ernsting, A. Nevsky, S. Schiller, and and the SOC2 Team, “A transportable optical lattice clock using 171Yb,” in Joint European Frequency and Time Forum & International Frequency Control Symposium, EFTF/IFC 376–378 (2013).

Ludlow, A. D.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Lukin, M. D.

A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, and M. D. Lukin, “Alkali-earth-metal atoms as few-qubit quantum registers,” Phys. Rev. Lett. 102, 110503 (2009).
[Crossref]

Maillard, J. M.

Marti, G. E.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

McNally, R. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Miranda, M.

T. Hosoya, M. Miranda, R. Inoue, and M. Kozuma, “Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms,” Rev. Sci. Instrum. 86, 073110 (2015).
[Crossref] [PubMed]

Miyazawa, H.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39609–611 (2003).
[Crossref]

Mizuuchi, K.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-µ m periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90–L91 (2003).
[Crossref]

Morikawa, A.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-µ m periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90–L91 (2003).
[Crossref]

Mun, J.

C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, “Absolute frequency measurement of 1S0(F = 1/2)−3 P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50, 119–128 (2013).
[Crossref]

Mura, G.

G. Mura, T. Franzen, C. A. Jaoudeh, A. Görlitz, H. Luckmann, I. Ernsting, A. Nevsky, S. Schiller, and and the SOC2 Team, “A transportable optical lattice clock using 171Yb,” in Joint European Frequency and Time Forum & International Frequency Control Symposium, EFTF/IFC 376–378 (2013).

Myers, L. E.

Nakajima, Y.

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21, 7891–7896 (2013).
[Crossref] [PubMed]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20, 16010–16016 (2012).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5, 102401 (2012).
[Crossref]

M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, and F.-L. Hong, “Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium,” J. Opt. Soc. Am B 27, 1388–1393 (2010).
[Crossref]

T. Kohno, M. Yasuda, K. Hosaka, H. Inaba, Y. Nakajima, and F.-L. Hong, “One-dimensional optical lattice clock with a fermionic 171Yb isotope,” Appl. Phys. Express 2, 072501 (2009).
[Crossref]

Nemitz, N.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 s averaging time,” Nat. Photonics 10, 258–261 (2016).

Nevsky, A.

G. Mura, T. Franzen, C. A. Jaoudeh, A. Görlitz, H. Luckmann, I. Ernsting, A. Nevsky, S. Schiller, and and the SOC2 Team, “A transportable optical lattice clock using 171Yb,” in Joint European Frequency and Time Forum & International Frequency Control Symposium, EFTF/IFC 376–378 (2013).

Newbury, N. R.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Nicholson, T. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Nishida, Y.

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sodium resonance radiation from sum-frequency generation by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
[Crossref] [PubMed]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39609–611 (2003).
[Crossref]

Nishikawa, T.

Oates, C. W.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Ohkubo, T.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 s averaging time,” Nat. Photonics 10, 258–261 (2016).

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 6, 185–189 (2015).
[Crossref]

Ohmae, N.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 s averaging time,” Nat. Photonics 10, 258–261 (2016).

Okubo, S.

Onae, A.

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F.-L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22, 7898–7905 (2014).
[Crossref] [PubMed]

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21, 7891–7896 (2013).
[Crossref] [PubMed]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20, 16010–16016 (2012).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5, 102401 (2012).
[Crossref]

D. Akamatsu, M. Yasuda, T. Kohno, A. Onae, and F.-L. Hong, “A compact light source at 461 nm using a periodically poled LiNbO3 waveguide for strontium magneto-optical trapping,” Opt. Express 19, 2046–2051 (2011).
[Crossref] [PubMed]

M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, and F.-L. Hong, “Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium,” J. Opt. Soc. Am B 27, 1388–1393 (2010).
[Crossref]

Onoda, Y.

Origlia, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Oskay, W. H.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Ovchinnikov, Y. B.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Ozawa, A.

Parameswaran, K. R.

Park, C. Y.

C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, “Absolute frequency measurement of 1S0(F = 1/2)−3 P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50, 119–128 (2013).
[Crossref]

J. I. Kim, C. Y. Park, J. Y. Yeom, E. B. Kim, and T. H. Yoon, “Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp,” Opt. Lett. 28, 245–247 (2003).
[Crossref] [PubMed]

C. Y. Park and T. H. Yoon, “Frequency stabilization of injection-locked violet laser diode with Doppler-free absorption signal of ytterbium,” Jpn. J. Appl. Phys. 42, L754–L756 (2003).
[Crossref]

Park, S. E.

C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, “Absolute frequency measurement of 1S0(F = 1/2)−3 P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50, 119–128 (2013).
[Crossref]

Park, S. J.

C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, “Absolute frequency measurement of 1S0(F = 1/2)−3 P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50, 119–128 (2013).
[Crossref]

Paschke, K.

Pastor, P. C.

Phillips, N. B.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Pierce, J. W.

Pizzocaro, M.

M. Pizzocaro, D. Calonico, P. C. Pastor, J. Catani, G. A. Costanzo, F. Levi, and L. Lorini, “Efficient frequency doubling at 399 nm,” Appl. Opt. 53, 3388–3392 (2014).
[Crossref] [PubMed]

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Poli, N.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117, 1107–1116 (2014).
[Crossref]

Pospelov, M.

A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10, 933–936 (2014).
[Crossref]

Rey, A. M.

A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, and M. D. Lukin, “Alkali-earth-metal atoms as few-qubit quantum registers,” Phys. Rev. Lett. 102, 110503 (2009).
[Crossref]

Rosenband, T.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329, 1630–1633 (2010).
[Crossref] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Roussev, R. V.

Ruseva, V.

V. Ruseva and J. Hald, “Generation of UV light by frequency doubling in BIBO,” Opt. Commun. 236, 219–223 (2004).
[Crossref]

Safronova, M. S.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Schiller, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

G. Mura, T. Franzen, C. A. Jaoudeh, A. Görlitz, H. Luckmann, I. Ernsting, A. Nevsky, S. Schiller, and and the SOC2 Team, “A transportable optical lattice clock using 171Yb,” in Joint European Frequency and Time Forum & International Frequency Control Symposium, EFTF/IFC 376–378 (2013).

Schioppo, M.

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117, 1107–1116 (2014).
[Crossref]

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Schmidt, P. O.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Sherman, J. A.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Shi, B.-S.

F.-Y. Wang, B.-S. Shi, Q.-F. Chen, C. Zhai, and G.-C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281, 4114–4117 (2008).
[Crossref]

Shirane, M.

Shoji, I.

Singh, Y.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Smith, L.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Stalnaker, J. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Sterr, U.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117, 1107–1116 (2014).
[Crossref]

Strouse, G. F.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Stuhler, J.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Sugawa, S.

S. Taie, S. Sugawa, R. Yamazaki, and Y. Takahashi, “An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling,” Nat. Phys. 8, 825–830 (2012).
[Crossref]

S. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita, and Y. Takahashi, “Interaction and filling-induced quantum phases of dual Mott insulators of bosons and fermions,” Nat. Phys. 7, 642–648 (2011).
[Crossref]

Sugita, T.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-µ m periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90–L91 (2003).
[Crossref]

Sugiyama, K.

Suzuki, H.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39609–611 (2003).
[Crossref]

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
[Crossref]

Suzuyama, T.

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5, 102401 (2012).
[Crossref]

Swann, W. C.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Swierad, D.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Tadanaga, O.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39609–611 (2003).
[Crossref]

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
[Crossref]

Taie, S.

S. Taie, S. Sugawa, R. Yamazaki, and Y. Takahashi, “An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling,” Nat. Phys. 8, 825–830 (2012).
[Crossref]

S. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita, and Y. Takahashi, “Interaction and filling-induced quantum phases of dual Mott insulators of bosons and fermions,” Nat. Phys. 7, 642–648 (2011).
[Crossref]

Takahashi, Y.

S. Taie, S. Sugawa, R. Yamazaki, and Y. Takahashi, “An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling,” Nat. Phys. 8, 825–830 (2012).
[Crossref]

S. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita, and Y. Takahashi, “Interaction and filling-induced quantum phases of dual Mott insulators of bosons and fermions,” Nat. Phys. 7, 642–648 (2011).
[Crossref]

K. Komori, Y. Takasu, M. Kumakura, Y. Takahashi, and T. Yabuzaki, “Injection-locking of blue laser diodes and its application to the laser cooling of neutral ytterbium atoms,” Jpn. J. Appl. Phys. 42, 5059–5062 (2003).
[Crossref]

Takamoto, M.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 s averaging time,” Nat. Photonics 10, 258–261 (2016).

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 6, 185–189 (2015).
[Crossref]

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Takasu, Y.

K. Komori, Y. Takasu, M. Kumakura, Y. Takahashi, and T. Yabuzaki, “Injection-locking of blue laser diodes and its application to the laser cooling of neutral ytterbium atoms,” Jpn. J. Appl. Phys. 42, 5059–5062 (2003).
[Crossref]

Tanabe, T.

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F.-L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22, 7898–7905 (2014).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5, 102401 (2012).
[Crossref]

Targat, R. Le

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Tew, W. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Thomsen, J. W.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Tino, G. M.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117, 1107–1116 (2014).
[Crossref]

Tränkle, G.

Ushijima, I.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 s averaging time,” Nat. Photonics 10, 258–261 (2016).

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 6, 185–189 (2015).
[Crossref]

Venon, B.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Vogt, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117, 1107–1116 (2014).
[Crossref]

Wang, F.-Y.

F.-Y. Wang, B.-S. Shi, Q.-F. Chen, C. Zhai, and G.-C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281, 4114–4117 (2008).
[Crossref]

Wang, J.

X. Wen, Y. Han, and J. Wang, “Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals,” Laser Phys. 26, 045401 (2016).
[Crossref]

X. Wen, Y. Han, J. Bai, J. He, Y. Wang, B. Yang, and J. Wang, “Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime,” Opt. Express 22, 32293–32300 (2014).
[Crossref]

Y. Han, X. Wen, J. Bai, B. Yang, Y. Wang, J. He, and J. Wang, “Generation of 130 mW of 397.5 nm tunable laser via ring-cavity-enhanced frequency doubling,” J. Opt. Soc. Am. B 31, 1942–1947 (2014).
[Crossref]

S. Guo, J. Wang, Y. Han, and J. He, “Frequency doubling of cw 1560nm laser with single-pass, doubling-pass and cascaded MgO:PPLN crystals and frequency locking to Rb D2 line,” Proc. SPIE 8772, 87721B (2013).
[Crossref]

Wang, Y.

Wen, X.

Williams, J. R.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Wineland, D. J.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329, 1630–1633 (2010).
[Crossref] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Xu, X.

Yabuzaki, T.

K. Komori, Y. Takasu, M. Kumakura, Y. Takahashi, and T. Yabuzaki, “Injection-locking of blue laser diodes and its application to the laser cooling of neutral ytterbium atoms,” Jpn. J. Appl. Phys. 42, 5059–5062 (2003).
[Crossref]

Yamamoto, K.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-µ m periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90–L91 (2003).
[Crossref]

Yamashita, M.

S. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita, and Y. Takahashi, “Interaction and filling-induced quantum phases of dual Mott insulators of bosons and fermions,” Nat. Phys. 7, 642–648 (2011).
[Crossref]

Yamazaki, R.

S. Taie, S. Sugawa, R. Yamazaki, and Y. Takahashi, “An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling,” Nat. Phys. 8, 825–830 (2012).
[Crossref]

S. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita, and Y. Takahashi, “Interaction and filling-induced quantum phases of dual Mott insulators of bosons and fermions,” Nat. Phys. 7, 642–648 (2011).
[Crossref]

Yanagawa, T.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
[Crossref]

Yang, B.

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications(Oxford University, 1997).

Yasuda, M.

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F.-L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22, 7898–7905 (2014).
[Crossref] [PubMed]

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21, 7891–7896 (2013).
[Crossref] [PubMed]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20, 16010–16016 (2012).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5, 102401 (2012).
[Crossref]

D. Akamatsu, M. Yasuda, T. Kohno, A. Onae, and F.-L. Hong, “A compact light source at 461 nm using a periodically poled LiNbO3 waveguide for strontium magneto-optical trapping,” Opt. Express 19, 2046–2051 (2011).
[Crossref] [PubMed]

M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, and F.-L. Hong, “Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium,” J. Opt. Soc. Am B 27, 1388–1393 (2010).
[Crossref]

T. Kohno, M. Yasuda, K. Hosaka, H. Inaba, Y. Nakajima, and F.-L. Hong, “One-dimensional optical lattice clock with a fermionic 171Yb isotope,” Appl. Phys. Express 2, 072501 (2009).
[Crossref]

T. Kohno, M. Yasuda, H. Inaba, and F.-L. Hong, “Optical frequency stability measurement of an external cavity blue diode laser with an optical frequency comb,” Jpn. J. Appl. Phys. 47, 8856–8858 (2008).
[Crossref]

Ye, J.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, and M. D. Lukin, “Alkali-earth-metal atoms as few-qubit quantum registers,” Phys. Rev. Lett. 102, 110503 (2009).
[Crossref]

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Yeom, J. Y.

Yokoyama, H.

Yoon, T. H.

C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, “Absolute frequency measurement of 1S0(F = 1/2)−3 P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50, 119–128 (2013).
[Crossref]

J. I. Kim, C. Y. Park, J. Y. Yeom, E. B. Kim, and T. H. Yoon, “Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp,” Opt. Lett. 28, 245–247 (2003).
[Crossref] [PubMed]

C. Y. Park and T. H. Yoon, “Frequency stabilization of injection-locked violet laser diode with Doppler-free absorption signal of ytterbium,” Jpn. J. Appl. Phys. 42, L754–L756 (2003).
[Crossref]

Yu, D.-H.

C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, “Absolute frequency measurement of 1S0(F = 1/2)−3 P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50, 119–128 (2013).
[Crossref]

Zelevinsky, T.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

Zhai, C.

F.-Y. Wang, B.-S. Shi, Q.-F. Chen, C. Zhai, and G.-C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281, 4114–4117 (2008).
[Crossref]

Zhang, W.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Zhang, X.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Zoller, P.

A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, and M. D. Lukin, “Alkali-earth-metal atoms as few-qubit quantum registers,” Phys. Rev. Lett. 102, 110503 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and G. M. Tino, “A transportable strontium optical lattice clock,” Appl. Phys. B 117, 1107–1116 (2014).
[Crossref]

Appl. Phys. Express (2)

T. Kohno, M. Yasuda, K. Hosaka, H. Inaba, Y. Nakajima, and F.-L. Hong, “One-dimensional optical lattice clock with a fermionic 171Yb isotope,” Appl. Phys. Express 2, 072501 (2009).
[Crossref]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5, 102401 (2012).
[Crossref]

Appl. Phys. Lett. (1)

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
[Crossref]

C. R. Physique (1)

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Świerad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and W. Kaenders, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Physique 16, 553–564 (2015).
[Crossref]

Electron. Lett. (1)

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39609–611 (2003).
[Crossref]

J. Opt. Soc. Am B (1)

M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, and F.-L. Hong, “Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium,” J. Opt. Soc. Am B 27, 1388–1393 (2010).
[Crossref]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (4)

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-µ m periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90–L91 (2003).
[Crossref]

T. Kohno, M. Yasuda, H. Inaba, and F.-L. Hong, “Optical frequency stability measurement of an external cavity blue diode laser with an optical frequency comb,” Jpn. J. Appl. Phys. 47, 8856–8858 (2008).
[Crossref]

K. Komori, Y. Takasu, M. Kumakura, Y. Takahashi, and T. Yabuzaki, “Injection-locking of blue laser diodes and its application to the laser cooling of neutral ytterbium atoms,” Jpn. J. Appl. Phys. 42, 5059–5062 (2003).
[Crossref]

C. Y. Park and T. H. Yoon, “Frequency stabilization of injection-locked violet laser diode with Doppler-free absorption signal of ytterbium,” Jpn. J. Appl. Phys. 42, L754–L756 (2003).
[Crossref]

Laser Phys. (1)

X. Wen, Y. Han, and J. Wang, “Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals,” Laser Phys. 26, 045401 (2016).
[Crossref]

Metrologia (1)

C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, “Absolute frequency measurement of 1S0(F = 1/2)−3 P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50, 119–128 (2013).
[Crossref]

Nat. Commun. (1)

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref]

Nat. Photonics (2)

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 s averaging time,” Nat. Photonics 10, 258–261 (2016).

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 6, 185–189 (2015).
[Crossref]

Nat. Phys. (3)

A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10, 933–936 (2014).
[Crossref]

S. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita, and Y. Takahashi, “Interaction and filling-induced quantum phases of dual Mott insulators of bosons and fermions,” Nat. Phys. 7, 642–648 (2011).
[Crossref]

S. Taie, S. Sugawa, R. Yamazaki, and Y. Takahashi, “An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling,” Nat. Phys. 8, 825–830 (2012).
[Crossref]

Nature (1)

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Opt. Commun. (3)

C. Adams and A. Ferguson, “Tunable narrow linewidth ultra-violet light generation by frequency doubling of a ring Ti:sapphire laser using lithium triborate in an external enhancement cavity,” Opt. Commun. 90, 89–94 (1992).
[Crossref]

V. Ruseva and J. Hald, “Generation of UV light by frequency doubling in BIBO,” Opt. Commun. 236, 219–223 (2004).
[Crossref]

F.-Y. Wang, B.-S. Shi, Q.-F. Chen, C. Zhai, and G.-C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281, 4114–4117 (2008).
[Crossref]

Opt. Express (8)

X. Wen, Y. Han, J. Bai, J. He, Y. Wang, B. Yang, and J. Wang, “Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime,” Opt. Express 22, 32293–32300 (2014).
[Crossref]

H. Jiang, G. Li, and X. Xu, “Highly efficient single-pass second harmonic generation in a periodically poled MgO:LiNbO3 waveguide pumped by a fiber laser at 1111.6 nm,” Opt. Express 17, 16073–16080 (2009).
[Crossref] [PubMed]

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sodium resonance radiation from sum-frequency generation by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
[Crossref] [PubMed]

D. Akamatsu, M. Yasuda, T. Kohno, A. Onae, and F.-L. Hong, “A compact light source at 461 nm using a periodically poled LiNbO3 waveguide for strontium magneto-optical trapping,” Opt. Express 19, 2046–2051 (2011).
[Crossref] [PubMed]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20, 16010–16016 (2012).
[Crossref] [PubMed]

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21, 7891–7896 (2013).
[Crossref] [PubMed]

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F.-L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22, 7898–7905 (2014).
[Crossref] [PubMed]

A. Bouchier, G. Lucas-Leclin, P. Georges, and J. M. Maillard, “Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978 nm in a periodically-poled MgO:LiNbO3 waveguide,” Opt. Express 13, 6974–6979 (2005).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. D (1)

T. P. Krisher, “Gravitational redshift in a local freely falling frame: A proposed new null test of the equivalence principle,” Phys. Rev. D 53, R1735–R1739 (1996).
[Crossref]

Phys. Rev. Lett. (2)

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008).
[Crossref]

A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, and M. D. Lukin, “Alkali-earth-metal atoms as few-qubit quantum registers,” Phys. Rev. Lett. 102, 110503 (2009).
[Crossref]

Proc. SPIE (1)

S. Guo, J. Wang, Y. Han, and J. He, “Frequency doubling of cw 1560nm laser with single-pass, doubling-pass and cascaded MgO:PPLN crystals and frequency locking to Rb D2 line,” Proc. SPIE 8772, 87721B (2013).
[Crossref]

Quantum Inf. Proc. (1)

A. Daley, “Quantum computing and quantum simulation with group-II atoms,” Quantum Inf. Proc. 10, 865–884 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

T. Hosoya, M. Miranda, R. Inoue, and M. Kozuma, “Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms,” Rev. Sci. Instrum. 86, 073110 (2015).
[Crossref] [PubMed]

Science (3)

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329, 1630–1633 (2010).
[Crossref] [PubMed]

Other (2)

G. Mura, T. Franzen, C. A. Jaoudeh, A. Görlitz, H. Luckmann, I. Ernsting, A. Nevsky, S. Schiller, and and the SOC2 Team, “A transportable optical lattice clock using 171Yb,” in Joint European Frequency and Time Forum & International Frequency Control Symposium, EFTF/IFC 376–378 (2013).

A. Yariv, Optical Electronics in Modern Communications(Oxford University, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. Ti:S: Titanium sapphire, λ/2: Half-wave plate, PM: Polarization-maintaining, PPLN: Periodically poled lithium niobate

Fig. 2
Fig. 2

SHG power (a) and conversion efficiency (b) as a function of the coupled fundamental power. The solid red curve indicates the best fit of a function based on the pump depletion model (see text). The inset in (b) shows the normalized conversion efficiency against the coupled fundamental power.

Fig. 3
Fig. 3

Waveguide temperature dependence of the SHG power, where the coupled fundamental power is (a) 160 mW and (b) 400 mW.

Figure 4:
Figure 4:

Long-term stability of the SHG output power for a coupled fundamental power of 190 mW.

Fig. 5
Fig. 5

Transverse mode profile of an SHG output beam.

Fig. 6
Fig. 6

Picture of our light source at 399 nm for laser cooling Yb atoms, consisting of a 798-nm external cavity diode laser (ECDL) with a tapered amplifier (TA) as a fundamental input laser, a periodically-poled LiNbO3 (PPLN) waveguide, and an injection locked 399-nm slave diode laser. All the optical parts of the light source are arranged on two breadboards with areas of 45 cm × 45 cm. The seed light at 399 nm generated on the right breadboard is sent to the left breadboard via a polarization-maintaining (PM) fiber (blue jacket), and then injected into the slave laser. The residual fundamental 798-nm light transmitted from the PPLN waveguide is sent to an optical frequency comb through a PM fiber. The output beam at 399 nm is transported via a PM fiber for laser cooling.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P out 2 ω = η P in ω = P in ω tanh 2 ( η 0 P in ω L ) ,
d eff = c ω ε 0 c n ( ω ) n ( 2 ω ) S η 0 ,

Metrics