Abstract

Simultaneous position and velocity measurements enable absolute 3-D shape measurements of fast rotating objects for instance for monitoring the cutting process in a lathe. Laser Doppler distance sensors enable simultaneous position and velocity measurements with a single sensor head by evaluating the scattered light signals. The superposition of several speckles with equal Doppler frequency but random phase on the photo detector results in an increased velocity and shape uncertainty, however. In this paper, we present a novel image evaluation method that overcomes the uncertainty limitations due to the speckle effect. For this purpose, the scattered light is detected with a camera instead of single photo detectors. Thus, the Doppler frequency from each speckle can be evaluated separately and the velocity uncertainty decreases with the square root of the number of camera lines. A reduction of the velocity uncertainty by the order of one magnitude is verified by the numerical simulations and experimental results, respectively. As a result, the measurement uncertainty of the absolute shape is not limited by the speckle effect anymore.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems

Philipp Günther, Robert Kuschmierz, Thorsten Pfister, and Jürgen W. Czarske
J. Opt. Soc. Am. A 30(5) 825-830 (2013)

Laser Doppler distance sensor using phase evaluation

P. Günther, T. Pfister, L. Büttner, and J. Czarske
Opt. Express 17(4) 2611-2622 (2009)

On the speckle number of interferometric velocity and distance measurements of moving rough surfaces

Robert Kuschmierz, Nektarios Koukourakis, Andreas Fischer, and Jürgen Czarske
Opt. Lett. 39(19) 5622-5625 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Bills, R. Racasan, R. J. Underwood, P. Cann, J. Skinner, A. J. Hart, X. Jiang, and L. Blunt, “Volumetric wear assessment of retrieved metal-on-metal hip prostheses and the impact of measurement uncertainty,” Wear 274, 212–219 (2012).
    [Crossref]
  2. K. H. Goh, N. Phillips, and R. Bell, “The applicability of a laser triangulation probe to non-contacting inspection,” Int. J. Prod. Res. 24, 1331–1348 (1986).
    [Crossref]
  3. A. Kempe, S. Schlamp, T. Rösgen, and K. Haffner, “Low-coherence interferometric tip-clearance probe,” Opt. Lett. 28, 1323–1325 (2003).
    [Crossref] [PubMed]
  4. G. Sirat and F. Paz, “Conoscopic probes are set to transform industrial metrology,” Sens. Rev. 18, 108–110 (1998).
    [Crossref]
  5. S. H. Lu and C. C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13, 1382–1387 (2002).
    [Crossref]
  6. W. Schertenleib, Optical 3-D Measurement Techniques III (Wichmann, 1995).
  7. J. Czarske, J. Mobius, K. Moldenhauer, and W. Ertmer, “External cavity laser sensor using synchronously-pumped laser diode for position measurements of rough surfaces,” Electron. Lett. 40, 1584–1586 (2004).
    [Crossref]
  8. U. Schnell, S. Gray, and R. Dändliker, “Dispersive white-light interferometry for absolute distance measurement with dielectric multilayer systems on the target,” Opt. Lett. 21, 528–530 (1996).
    [Crossref] [PubMed]
  9. X. L. Dai and K. Seta, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031–1035 (1998).
    [Crossref]
  10. T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22, 055301 (2011).
    [Crossref]
  11. F. Dreier, P. Günther, T. Pfister, J. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62, 2297–2302 (2013).
    [Crossref]
  12. R. Kuschmierz, A. Davids, S. Metschke, F. Löffler, H. Bosse, J. Czarske, and A. Fischer, “Optical, in situ, three-dimensional, absolute shape measurements in CNC metal working lathes,” Int. J. Adv. Manuf. Tech. 8234, 1–11 (2016).
  13. F. Dreier, P. Günther, T. Pfister, and J. Czarske, “Miniaturized nonincremental interferometric fiber-optic distance sensor for turning process monitoring,” Opt. Eng. 51, 014402 (2012).
    [Crossref]
  14. P. Günther, R. Kuschmierz, T. Pfister, and J. Czarske, “Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems,” J. Opt. Soc. Am. A 30, 2–7 (2013).
    [Crossref]
  15. P. Günther, T. Pfister, L. Büttner, and J. Czarske, “Laser Doppler distance sensor using phase evaluation,” Opt. Express 17, 2611 (2009).
    [Crossref] [PubMed]
  16. B. E. Truax, F. C. Demarest, and G. E. Sommargren, “Laser Doppler velocimeter for velocity and length measurements of moving surfaces,” Appl. Opt. 23, 67–73 (1984).
    [Crossref] [PubMed]
  17. K. Matsubara, W. Stork, A. Wagner, J. Drescher, and K. D. Müller-Glaser, “Simultaneous measurement of the velocity and the displacement of the moving rough surface by a laser Doppler velocimeter,” Appl. Opt. 36, 4516–4520 (1997).
    [Crossref] [PubMed]
  18. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer Verlag, 2003).
    [Crossref]
  19. R. Kuschmierz, N. Koukourakis, A. Fischer, and J. Czarske, “On the speckle number of interferometric velocity and distance measurements of moving rough surfaces,” Opt. Lett. 39, 5622–5625 (2014).
    [Crossref] [PubMed]
  20. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).
  21. H. Nobach, “Analysis of dual-burst laser Doppler signals,” Meas. Sci. Technol. 13, 33–44 (2002).
    [Crossref]
  22. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London, Ser. A 454, 903–995 (1998).
    [Crossref]
  23. H. Nobach and E. H. R. van Maanen, “LDA and PDA signal analysis using wavelets,” Exp. Fluids 30, 613–625 (2001).
    [Crossref]

2016 (1)

R. Kuschmierz, A. Davids, S. Metschke, F. Löffler, H. Bosse, J. Czarske, and A. Fischer, “Optical, in situ, three-dimensional, absolute shape measurements in CNC metal working lathes,” Int. J. Adv. Manuf. Tech. 8234, 1–11 (2016).

2014 (1)

2013 (2)

P. Günther, R. Kuschmierz, T. Pfister, and J. Czarske, “Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems,” J. Opt. Soc. Am. A 30, 2–7 (2013).
[Crossref]

F. Dreier, P. Günther, T. Pfister, J. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62, 2297–2302 (2013).
[Crossref]

2012 (2)

F. Dreier, P. Günther, T. Pfister, and J. Czarske, “Miniaturized nonincremental interferometric fiber-optic distance sensor for turning process monitoring,” Opt. Eng. 51, 014402 (2012).
[Crossref]

P. J. Bills, R. Racasan, R. J. Underwood, P. Cann, J. Skinner, A. J. Hart, X. Jiang, and L. Blunt, “Volumetric wear assessment of retrieved metal-on-metal hip prostheses and the impact of measurement uncertainty,” Wear 274, 212–219 (2012).
[Crossref]

2011 (1)

T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22, 055301 (2011).
[Crossref]

2009 (1)

2004 (1)

J. Czarske, J. Mobius, K. Moldenhauer, and W. Ertmer, “External cavity laser sensor using synchronously-pumped laser diode for position measurements of rough surfaces,” Electron. Lett. 40, 1584–1586 (2004).
[Crossref]

2003 (1)

2002 (2)

S. H. Lu and C. C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13, 1382–1387 (2002).
[Crossref]

H. Nobach, “Analysis of dual-burst laser Doppler signals,” Meas. Sci. Technol. 13, 33–44 (2002).
[Crossref]

2001 (1)

H. Nobach and E. H. R. van Maanen, “LDA and PDA signal analysis using wavelets,” Exp. Fluids 30, 613–625 (2001).
[Crossref]

1998 (3)

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London, Ser. A 454, 903–995 (1998).
[Crossref]

X. L. Dai and K. Seta, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031–1035 (1998).
[Crossref]

G. Sirat and F. Paz, “Conoscopic probes are set to transform industrial metrology,” Sens. Rev. 18, 108–110 (1998).
[Crossref]

1997 (1)

1996 (1)

1986 (1)

K. H. Goh, N. Phillips, and R. Bell, “The applicability of a laser triangulation probe to non-contacting inspection,” Int. J. Prod. Res. 24, 1331–1348 (1986).
[Crossref]

1984 (1)

Albrecht, H.-E.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer Verlag, 2003).
[Crossref]

Bell, R.

K. H. Goh, N. Phillips, and R. Bell, “The applicability of a laser triangulation probe to non-contacting inspection,” Int. J. Prod. Res. 24, 1331–1348 (1986).
[Crossref]

Bills, P. J.

P. J. Bills, R. Racasan, R. J. Underwood, P. Cann, J. Skinner, A. J. Hart, X. Jiang, and L. Blunt, “Volumetric wear assessment of retrieved metal-on-metal hip prostheses and the impact of measurement uncertainty,” Wear 274, 212–219 (2012).
[Crossref]

Blunt, L.

P. J. Bills, R. Racasan, R. J. Underwood, P. Cann, J. Skinner, A. J. Hart, X. Jiang, and L. Blunt, “Volumetric wear assessment of retrieved metal-on-metal hip prostheses and the impact of measurement uncertainty,” Wear 274, 212–219 (2012).
[Crossref]

Borys, M.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer Verlag, 2003).
[Crossref]

Bosse, H.

R. Kuschmierz, A. Davids, S. Metschke, F. Löffler, H. Bosse, J. Czarske, and A. Fischer, “Optical, in situ, three-dimensional, absolute shape measurements in CNC metal working lathes,” Int. J. Adv. Manuf. Tech. 8234, 1–11 (2016).

Büttner, L.

Cann, P.

P. J. Bills, R. Racasan, R. J. Underwood, P. Cann, J. Skinner, A. J. Hart, X. Jiang, and L. Blunt, “Volumetric wear assessment of retrieved metal-on-metal hip prostheses and the impact of measurement uncertainty,” Wear 274, 212–219 (2012).
[Crossref]

Czarske, J.

R. Kuschmierz, A. Davids, S. Metschke, F. Löffler, H. Bosse, J. Czarske, and A. Fischer, “Optical, in situ, three-dimensional, absolute shape measurements in CNC metal working lathes,” Int. J. Adv. Manuf. Tech. 8234, 1–11 (2016).

R. Kuschmierz, N. Koukourakis, A. Fischer, and J. Czarske, “On the speckle number of interferometric velocity and distance measurements of moving rough surfaces,” Opt. Lett. 39, 5622–5625 (2014).
[Crossref] [PubMed]

P. Günther, R. Kuschmierz, T. Pfister, and J. Czarske, “Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems,” J. Opt. Soc. Am. A 30, 2–7 (2013).
[Crossref]

F. Dreier, P. Günther, T. Pfister, J. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62, 2297–2302 (2013).
[Crossref]

F. Dreier, P. Günther, T. Pfister, and J. Czarske, “Miniaturized nonincremental interferometric fiber-optic distance sensor for turning process monitoring,” Opt. Eng. 51, 014402 (2012).
[Crossref]

T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22, 055301 (2011).
[Crossref]

P. Günther, T. Pfister, L. Büttner, and J. Czarske, “Laser Doppler distance sensor using phase evaluation,” Opt. Express 17, 2611 (2009).
[Crossref] [PubMed]

J. Czarske, J. Mobius, K. Moldenhauer, and W. Ertmer, “External cavity laser sensor using synchronously-pumped laser diode for position measurements of rough surfaces,” Electron. Lett. 40, 1584–1586 (2004).
[Crossref]

Dai, X. L.

X. L. Dai and K. Seta, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031–1035 (1998).
[Crossref]

Damaschke, N.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer Verlag, 2003).
[Crossref]

Dändliker, R.

Davids, A.

R. Kuschmierz, A. Davids, S. Metschke, F. Löffler, H. Bosse, J. Czarske, and A. Fischer, “Optical, in situ, three-dimensional, absolute shape measurements in CNC metal working lathes,” Int. J. Adv. Manuf. Tech. 8234, 1–11 (2016).

Demarest, F. C.

Dreier, F.

F. Dreier, P. Günther, T. Pfister, J. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62, 2297–2302 (2013).
[Crossref]

F. Dreier, P. Günther, T. Pfister, and J. Czarske, “Miniaturized nonincremental interferometric fiber-optic distance sensor for turning process monitoring,” Opt. Eng. 51, 014402 (2012).
[Crossref]

Drescher, J.

Ertmer, W.

J. Czarske, J. Mobius, K. Moldenhauer, and W. Ertmer, “External cavity laser sensor using synchronously-pumped laser diode for position measurements of rough surfaces,” Electron. Lett. 40, 1584–1586 (2004).
[Crossref]

Fischer, A.

R. Kuschmierz, A. Davids, S. Metschke, F. Löffler, H. Bosse, J. Czarske, and A. Fischer, “Optical, in situ, three-dimensional, absolute shape measurements in CNC metal working lathes,” Int. J. Adv. Manuf. Tech. 8234, 1–11 (2016).

R. Kuschmierz, N. Koukourakis, A. Fischer, and J. Czarske, “On the speckle number of interferometric velocity and distance measurements of moving rough surfaces,” Opt. Lett. 39, 5622–5625 (2014).
[Crossref] [PubMed]

F. Dreier, P. Günther, T. Pfister, J. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62, 2297–2302 (2013).
[Crossref]

T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22, 055301 (2011).
[Crossref]

Goh, K. H.

K. H. Goh, N. Phillips, and R. Bell, “The applicability of a laser triangulation probe to non-contacting inspection,” Int. J. Prod. Res. 24, 1331–1348 (1986).
[Crossref]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

Gray, S.

Günther, P.

F. Dreier, P. Günther, T. Pfister, J. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62, 2297–2302 (2013).
[Crossref]

P. Günther, R. Kuschmierz, T. Pfister, and J. Czarske, “Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems,” J. Opt. Soc. Am. A 30, 2–7 (2013).
[Crossref]

F. Dreier, P. Günther, T. Pfister, and J. Czarske, “Miniaturized nonincremental interferometric fiber-optic distance sensor for turning process monitoring,” Opt. Eng. 51, 014402 (2012).
[Crossref]

P. Günther, T. Pfister, L. Büttner, and J. Czarske, “Laser Doppler distance sensor using phase evaluation,” Opt. Express 17, 2611 (2009).
[Crossref] [PubMed]

Haffner, K.

Hart, A. J.

P. J. Bills, R. Racasan, R. J. Underwood, P. Cann, J. Skinner, A. J. Hart, X. Jiang, and L. Blunt, “Volumetric wear assessment of retrieved metal-on-metal hip prostheses and the impact of measurement uncertainty,” Wear 274, 212–219 (2012).
[Crossref]

Huang, N. E.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London, Ser. A 454, 903–995 (1998).
[Crossref]

Jiang, X.

P. J. Bills, R. Racasan, R. J. Underwood, P. Cann, J. Skinner, A. J. Hart, X. Jiang, and L. Blunt, “Volumetric wear assessment of retrieved metal-on-metal hip prostheses and the impact of measurement uncertainty,” Wear 274, 212–219 (2012).
[Crossref]

Kempe, A.

Koukourakis, N.

Kuschmierz, R.

R. Kuschmierz, A. Davids, S. Metschke, F. Löffler, H. Bosse, J. Czarske, and A. Fischer, “Optical, in situ, three-dimensional, absolute shape measurements in CNC metal working lathes,” Int. J. Adv. Manuf. Tech. 8234, 1–11 (2016).

R. Kuschmierz, N. Koukourakis, A. Fischer, and J. Czarske, “On the speckle number of interferometric velocity and distance measurements of moving rough surfaces,” Opt. Lett. 39, 5622–5625 (2014).
[Crossref] [PubMed]

P. Günther, R. Kuschmierz, T. Pfister, and J. Czarske, “Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems,” J. Opt. Soc. Am. A 30, 2–7 (2013).
[Crossref]

Lee, C. C.

S. H. Lu and C. C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13, 1382–1387 (2002).
[Crossref]

Liu, H. H.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London, Ser. A 454, 903–995 (1998).
[Crossref]

Löffler, F.

R. Kuschmierz, A. Davids, S. Metschke, F. Löffler, H. Bosse, J. Czarske, and A. Fischer, “Optical, in situ, three-dimensional, absolute shape measurements in CNC metal working lathes,” Int. J. Adv. Manuf. Tech. 8234, 1–11 (2016).

Long, S. R.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London, Ser. A 454, 903–995 (1998).
[Crossref]

Lu, S. H.

S. H. Lu and C. C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13, 1382–1387 (2002).
[Crossref]

Matsubara, K.

Metschke, S.

R. Kuschmierz, A. Davids, S. Metschke, F. Löffler, H. Bosse, J. Czarske, and A. Fischer, “Optical, in situ, three-dimensional, absolute shape measurements in CNC metal working lathes,” Int. J. Adv. Manuf. Tech. 8234, 1–11 (2016).

Mobius, J.

J. Czarske, J. Mobius, K. Moldenhauer, and W. Ertmer, “External cavity laser sensor using synchronously-pumped laser diode for position measurements of rough surfaces,” Electron. Lett. 40, 1584–1586 (2004).
[Crossref]

Moldenhauer, K.

J. Czarske, J. Mobius, K. Moldenhauer, and W. Ertmer, “External cavity laser sensor using synchronously-pumped laser diode for position measurements of rough surfaces,” Electron. Lett. 40, 1584–1586 (2004).
[Crossref]

Müller-Glaser, K. D.

Nobach, H.

H. Nobach, “Analysis of dual-burst laser Doppler signals,” Meas. Sci. Technol. 13, 33–44 (2002).
[Crossref]

H. Nobach and E. H. R. van Maanen, “LDA and PDA signal analysis using wavelets,” Exp. Fluids 30, 613–625 (2001).
[Crossref]

Paz, F.

G. Sirat and F. Paz, “Conoscopic probes are set to transform industrial metrology,” Sens. Rev. 18, 108–110 (1998).
[Crossref]

Pfister, T.

F. Dreier, P. Günther, T. Pfister, J. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62, 2297–2302 (2013).
[Crossref]

P. Günther, R. Kuschmierz, T. Pfister, and J. Czarske, “Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems,” J. Opt. Soc. Am. A 30, 2–7 (2013).
[Crossref]

F. Dreier, P. Günther, T. Pfister, and J. Czarske, “Miniaturized nonincremental interferometric fiber-optic distance sensor for turning process monitoring,” Opt. Eng. 51, 014402 (2012).
[Crossref]

T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22, 055301 (2011).
[Crossref]

P. Günther, T. Pfister, L. Büttner, and J. Czarske, “Laser Doppler distance sensor using phase evaluation,” Opt. Express 17, 2611 (2009).
[Crossref] [PubMed]

Phillips, N.

K. H. Goh, N. Phillips, and R. Bell, “The applicability of a laser triangulation probe to non-contacting inspection,” Int. J. Prod. Res. 24, 1331–1348 (1986).
[Crossref]

Racasan, R.

P. J. Bills, R. Racasan, R. J. Underwood, P. Cann, J. Skinner, A. J. Hart, X. Jiang, and L. Blunt, “Volumetric wear assessment of retrieved metal-on-metal hip prostheses and the impact of measurement uncertainty,” Wear 274, 212–219 (2012).
[Crossref]

Rösgen, T.

Schertenleib, W.

W. Schertenleib, Optical 3-D Measurement Techniques III (Wichmann, 1995).

Schlamp, S.

Schnell, U.

Seta, K.

X. L. Dai and K. Seta, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031–1035 (1998).
[Crossref]

Shen, Z.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London, Ser. A 454, 903–995 (1998).
[Crossref]

Shih, H. H.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London, Ser. A 454, 903–995 (1998).
[Crossref]

Sirat, G.

G. Sirat and F. Paz, “Conoscopic probes are set to transform industrial metrology,” Sens. Rev. 18, 108–110 (1998).
[Crossref]

Skinner, J.

P. J. Bills, R. Racasan, R. J. Underwood, P. Cann, J. Skinner, A. J. Hart, X. Jiang, and L. Blunt, “Volumetric wear assessment of retrieved metal-on-metal hip prostheses and the impact of measurement uncertainty,” Wear 274, 212–219 (2012).
[Crossref]

Sommargren, G. E.

Stork, W.

Tropea, C.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer Verlag, 2003).
[Crossref]

Truax, B. E.

Tung, C. C.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London, Ser. A 454, 903–995 (1998).
[Crossref]

Underwood, R. J.

P. J. Bills, R. Racasan, R. J. Underwood, P. Cann, J. Skinner, A. J. Hart, X. Jiang, and L. Blunt, “Volumetric wear assessment of retrieved metal-on-metal hip prostheses and the impact of measurement uncertainty,” Wear 274, 212–219 (2012).
[Crossref]

van Maanen, E. H. R.

H. Nobach and E. H. R. van Maanen, “LDA and PDA signal analysis using wavelets,” Exp. Fluids 30, 613–625 (2001).
[Crossref]

Wagner, A.

Wu, M. C.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London, Ser. A 454, 903–995 (1998).
[Crossref]

Yen, N.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London, Ser. A 454, 903–995 (1998).
[Crossref]

Zheng, Q.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London, Ser. A 454, 903–995 (1998).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (1)

J. Czarske, J. Mobius, K. Moldenhauer, and W. Ertmer, “External cavity laser sensor using synchronously-pumped laser diode for position measurements of rough surfaces,” Electron. Lett. 40, 1584–1586 (2004).
[Crossref]

Exp. Fluids (1)

H. Nobach and E. H. R. van Maanen, “LDA and PDA signal analysis using wavelets,” Exp. Fluids 30, 613–625 (2001).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

F. Dreier, P. Günther, T. Pfister, J. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62, 2297–2302 (2013).
[Crossref]

Int. J. Adv. Manuf. Tech. (1)

R. Kuschmierz, A. Davids, S. Metschke, F. Löffler, H. Bosse, J. Czarske, and A. Fischer, “Optical, in situ, three-dimensional, absolute shape measurements in CNC metal working lathes,” Int. J. Adv. Manuf. Tech. 8234, 1–11 (2016).

Int. J. Prod. Res. (1)

K. H. Goh, N. Phillips, and R. Bell, “The applicability of a laser triangulation probe to non-contacting inspection,” Int. J. Prod. Res. 24, 1331–1348 (1986).
[Crossref]

J. Opt. Soc. Am. A (1)

P. Günther, R. Kuschmierz, T. Pfister, and J. Czarske, “Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems,” J. Opt. Soc. Am. A 30, 2–7 (2013).
[Crossref]

Meas. Sci. Technol. (4)

X. L. Dai and K. Seta, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031–1035 (1998).
[Crossref]

T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22, 055301 (2011).
[Crossref]

S. H. Lu and C. C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13, 1382–1387 (2002).
[Crossref]

H. Nobach, “Analysis of dual-burst laser Doppler signals,” Meas. Sci. Technol. 13, 33–44 (2002).
[Crossref]

Opt. Eng. (1)

F. Dreier, P. Günther, T. Pfister, and J. Czarske, “Miniaturized nonincremental interferometric fiber-optic distance sensor for turning process monitoring,” Opt. Eng. 51, 014402 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Proc. R. Soc. London, Ser. A (1)

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London, Ser. A 454, 903–995 (1998).
[Crossref]

Sens. Rev. (1)

G. Sirat and F. Paz, “Conoscopic probes are set to transform industrial metrology,” Sens. Rev. 18, 108–110 (1998).
[Crossref]

Wear (1)

P. J. Bills, R. Racasan, R. J. Underwood, P. Cann, J. Skinner, A. J. Hart, X. Jiang, and L. Blunt, “Volumetric wear assessment of retrieved metal-on-metal hip prostheses and the impact of measurement uncertainty,” Wear 274, 212–219 (2012).
[Crossref]

Other (3)

W. Schertenleib, Optical 3-D Measurement Techniques III (Wichmann, 1995).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer Verlag, 2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Principle of P-LDD sensor: superposition of two interference fringe systems with constant and equal fringe spacing d, which are tilted towards each other by an angle ψ. The scattered light from each fringe system is detected with a photo detector (wavelength multiplexing). On the right, one fringe system in the x-y-plane in the center of the measurement volume is depicted.
Fig. 2
Fig. 2 (a) 5 separated speckle signals with the same Doppler frequency but with random amplitudes and arrival times and (b) the corresponding surface signal with the superposed speckle signals. The superposition results in random phase jumps due to the random arrival times, which result in the fluctuations in (c), and distorts the amplitude-frequency spectra (d).
Fig. 3
Fig. 3 Simulation of the scattered light intensity images for a P-LDD sensor at four consecutive time steps. The step size is one half of the fringe spacing. Therefore the images for n = 1 and n = 3 look almost identical but slightly shifted, since the surface movement equals exactly one fringe spacing. The same holds for the images n = 2 and n = 4. However, the images for n = 1 and n = 2 are totally different, because complete different surface positions are illuminated. As an example, note the fluctuation of the intensity of a dominant speckle (red box), which occurs with the Doppler frequency. Note further that only sections of the calculated intensity field of 200 × 200 are presented and the grayscale is inverted for a distinct show.
Fig. 4
Fig. 4 Simulation of the detected signals for (a) the camera-based measurement approach and (b) when using a photo detector. It can be seen in (a) that the phase of signal over time is different for the different camera rows.
Fig. 5
Fig. 5 Determined amplitude spectrum with the camera-based approach (green curve), where the amplitude spectra are determined for each (summed up) camera row and then averaged. For comparison, the formerly resulting amplitude spectrum with a single photo detector is shown (blue curve), i.e. when calculating the amplitude spectrum for the integrated image.
Fig. 6
Fig. 6 The reduction of the relative surface velocity due to speckle. (a) shows the effect of the line width on the relative surface velocity due to speckle in the case of one single line. (b) shows the influence of the different number of lines on the relative surface velocity due to speckle.
Fig. 7
Fig. 7 Camera-based P-LDD sensor setup.
Fig. 8
Fig. 8 Measured amplitude spectrum for the camera-based approach (B(f)) and when using a single photo detector (S(f)).
Fig. 9
Fig. 9 Samples of the measured camera images for the different numerical apertures.
Fig. 10
Fig. 10 Camera-based relative velocity uncertainty due to speckle as a function of the line width for different numerical apertures, i.e. for different speckle sizes. The larger the numerical aperture the smaller the speckle size and the lower the relative velocity uncertainty. For a single photo detector, i.e. a single line with maximum line width (circles), the relative velocity uncertainty is maximal and amounts to 4.7 × 10−3, 5.7 × 10−3 and 6.1 × 10−3, respectively. Note that the dash lines are theoretical curves for each numerical apertures.

Tables (1)

Tables Icon

Table 1 Measurement uncertainty budget for a 3-D shape measurement containing the most significant contributors. The numerical values are derived experimentally. The uncertainties are calculated for a representative 3-D shape measurement with stepwise scanning along the height of the workpiece with M = 104 (102 measurement points per revolution ×102 scanning steps along the y direction, cf. Fig. 1), N = 105 (M × 10 revolutions per scanning step), the mean radius of the workpiece R = 20 mm and a temperature variation of ΔT = 1K.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

v = f D d .
z = φ s 1 ,
r ( α ) = R + Δ r ( α ) = v ¯ ω ( z ¯ z ( α ) ) .
σ v = σ v , noise 2 + σ v , speckle 2 + ( v σ d d ) 2 , σ z = σ z , noise 2 + σ z , speckle 2 .
σ r = R ( ( σ v , noise v N ) 2 + ( σ v , speckle v M ) 2 + ( σ ω ω ) 2 + ( σ d d ) 2 ) + σ z , noise 2 N / M + σ z , speckle 2 ,
b ( n ) = A e 2 f D 2 ( n / f s t a ) 2 t w 2 cos ( 2 π f D ( n / f s t a ) ) , n = 0 , 1 , , N 1 ,
s ( n ) = k = 1 K b k ( n ) , n = 0 , 1 , , N 1 .
E o ( x , y ) = E I ( x , y ) exp { i 2 π / λ 2 h ( x , y ) } .
E d ( x ¯ , y ¯ ) = 2 D 1 { 2 D { E o ( x , y ) } H ( f x , f y ) } ,
S row ( y ¯ , n ) = j = 1 N c s ( x ¯ j , y ¯ , n ) ,
d s = 2 λ π NA ,

Metrics