Abstract

We have theoretically and experimentally investigated the dual-peak feature of tilted fiber gratings with excessively tilted structure (named as Ex-TFGs). We have explained the dual-peak feature by solving eigenvalue equations for TM0m and TE0m of a circular waveguide, in which the TE (transverse electric) and TM (transverse magnetic) core modes are coupled into TE and TM cladding modes, respectively. Meanwhile, in the experiment, we have verified that one of the dual peaks at the shorter wavelength is due to the TM mode coupling whereas the other one at the longer wavelength arises from TE mode coupling when a linearly polarized light launched into the Ex-TFG. We have also investigated the peak separation of TE and TM cladding mode for different surrounding medium refractive indexes (SRI), revealed that the dual peaks separation is decreasing as increasing of SRI, which agrees very well with the theoretical analysis results.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index and temperature sensitivity characterization of excessively tilted fiber grating

Z. Yan, Q. Sun, C. Wang, Z. Sun, C. Mou, K. Zhou, D. Liu, and L. Zhang
Opt. Express 25(4) 3336-3346 (2017)

Theoretical analysis of tuning property of the graphene integrated excessively tilted fiber grating for sensitivity enhancement

Zhihong Li, Zhuying Yu, Boteng Yan, Xiukai Ruan, Yaoju Zhang, and Yuxing Dai
J. Opt. Soc. Am. B 36(1) 108-118 (2019)

Study on spectral and refractive index sensing characteristics of etched excessively tilted fiber gratings

Huafeng Lu, Binbin Luo, Shenghui Shi, Mingfu Zhao, Jiao Lu, Lu Ye, NianBing Zhong, Bin Tang, Xin Wang, and Yajie Wang
Appl. Opt. 57(10) 2590-2596 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photonsensitivity in optical fibre waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
    [Crossref]
  2. G. Meltz, W. W. Morey, and W. H. Glenn, “In-fibre Bragg grating tap,” Optical Fibre Communications Conference, 1990 OSA Technical Digest Series (Optical Society of America, 1990), paper TuG1.
  3. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg gratings sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [Crossref]
  4. Y. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
    [Crossref]
  5. T. Guo, L. Shao, H.-Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express 17(23), 20651–20660 (2009).
    [Crossref] [PubMed]
  6. B. Gu, W. Qi, Y. Zhou, Z. Wu, P. P. Shum, and F. Luan, “Reflective liquid level sensor based on modes conversion in thin-core fiber incorporating titled fiber Bragg grating,” Opt. Express 22(10), 11834–11839 (2014).
    [Crossref] [PubMed]
  7. K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45 ° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
    [Crossref] [PubMed]
  8. Z. Yan, K. Zhou, and L. Zhang, “In-fiber linear polarizer based on UV-inscribed 45° tilted grating in polarization maintaining fiber,” Opt. Lett. 37(18), 3819–3821 (2012).
    [Crossref] [PubMed]
  9. I. Peupelmann, E. Krause, A. Bandemer, and C. Schaffer, “Fibre-polarimeter based on grating taps,” Electron. Lett. 38(21), 1248–1250 (2002).
    [Crossref]
  10. K. Zhou, X. Cheng, Z. Yan, A. Adedotun, and L. Zhang, “Optical spectrum analyzer using a 45° tilted fiber grating,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper BW2E.7.
  11. A. Adebayo, Z. Yan, K. Zhou, L. Zhang, H. Fu, and D. Robinson, “Power tapping function in near infra-red region based on 45° tilted fiber gratings,” Opt. Photonics J. 3(02), 158 (2013).
    [Crossref]
  12. K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80 ° tilted structures,” Opt. Lett. 31(9), 1193–1195 (2006).
    [Crossref] [PubMed]
  13. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18, 2596–2598 (2006).
    [Crossref]
  14. R. Suo, X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fibre directional transverse loading sensor based on excessively tilted fibre Bragg gratings,” Meas. Sci. Technol. 20(3), 034015 (2009).
    [Crossref]
  15. K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80 ° tilted structures,” Opt. Lett. 31(9), 1193–1195 (2006).
    [Crossref] [PubMed]
  16. C. Mou, K. Zhou, Z. Yan, H. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
    [Crossref]
  17. Z. Yan, C. Mou, Z. Sun, K. Zhou, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Hybrid tilted fiber grating based refractive index and liquid level sensing system,” Opt. Commun. 351, 144–148 (2015).
    [Crossref]
  18. L.-Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express 18(11), 11464–11471 (2010).
    [Crossref] [PubMed]
  19. J. Albert, L.-Y. Shao, A. Beliaev, and C. Caucheteur, “Polarization properties of tilted fiber Bragg gratings for novel sensing modalities,” Proc. SPIE 8028, 802802 (2011).
    [Crossref]
  20. C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
    [Crossref] [PubMed]
  21. Q. Li, F. Yan, P. Liu, W. Peng, G. Yin, and T. Feng, “Analysis of transmission characteristics of tilted long period fiber gratings with full vector complex coupled mode theory,” Photonic Sensors 2(2), 158–165 (2012).
    [Crossref]
  22. G. Yin, S. Lou, Q. Li, and H. Zou, “Theory analysis of mode coupling in tilted long period fiber grating based on the full vector complex coupled mode theory,” Opt. Laser Technol. 48, 60–66 (2013).
    [Crossref]
  23. C. Mou, Z. Yan, K. Zhou, and L. Zhang, “Optical fibre sensors based on UV inscribed excessively tilted fibre grating,” Optical Sensors - New developments and Practical Applications, Dr Moh. Yasin, Ed. (InTech, 2014).
  24. B. Luo, Z. Yan, Z. Sun, J. Li, and L. Zhang, “Novel glucose sensor based on enzyme-immobilized 81° tilted fiber grating,” Opt. Express 22(25), 30571–30578 (2014).
    [Crossref] [PubMed]
  25. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).
  26. T. Erdogan, “Cladding-mode resonances in short- and long- period fibre grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997).
    [Crossref]
  27. T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11(10), 2100–2105 (1994).
    [Crossref]
  28. K. Zhou, X. Chen, L. Zhang, and I. Bennion, “Low thermal sensitivity grating devices based on Ex-45° tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24(12), 5087–5094 (2006).
    [Crossref]
  29. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]
  30. T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10(10), 1449–1451 (1998).
    [Crossref]
  31. S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-Induced polarization-dependant loss(PDL) in tilted fiber Bragg grating: Application of a PDL equalizer,” IEEE Proc. Optoelectron. 149(5), 211–216 (2002).
    [Crossref]

2015 (1)

Z. Yan, C. Mou, Z. Sun, K. Zhou, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Hybrid tilted fiber grating based refractive index and liquid level sensing system,” Opt. Commun. 351, 144–148 (2015).
[Crossref]

2014 (2)

2013 (4)

G. Yin, S. Lou, Q. Li, and H. Zou, “Theory analysis of mode coupling in tilted long period fiber grating based on the full vector complex coupled mode theory,” Opt. Laser Technol. 48, 60–66 (2013).
[Crossref]

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg gratings sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

A. Adebayo, Z. Yan, K. Zhou, L. Zhang, H. Fu, and D. Robinson, “Power tapping function in near infra-red region based on 45° tilted fiber gratings,” Opt. Photonics J. 3(02), 158 (2013).
[Crossref]

C. Mou, K. Zhou, Z. Yan, H. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

2012 (2)

Z. Yan, K. Zhou, and L. Zhang, “In-fiber linear polarizer based on UV-inscribed 45° tilted grating in polarization maintaining fiber,” Opt. Lett. 37(18), 3819–3821 (2012).
[Crossref] [PubMed]

Q. Li, F. Yan, P. Liu, W. Peng, G. Yin, and T. Feng, “Analysis of transmission characteristics of tilted long period fiber gratings with full vector complex coupled mode theory,” Photonic Sensors 2(2), 158–165 (2012).
[Crossref]

2011 (2)

J. Albert, L.-Y. Shao, A. Beliaev, and C. Caucheteur, “Polarization properties of tilted fiber Bragg gratings for novel sensing modalities,” Proc. SPIE 8028, 802802 (2011).
[Crossref]

C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (3)

R. Suo, X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fibre directional transverse loading sensor based on excessively tilted fibre Bragg gratings,” Meas. Sci. Technol. 20(3), 034015 (2009).
[Crossref]

Y. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

T. Guo, L. Shao, H.-Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express 17(23), 20651–20660 (2009).
[Crossref] [PubMed]

2006 (4)

2005 (1)

2002 (3)

I. Peupelmann, E. Krause, A. Bandemer, and C. Schaffer, “Fibre-polarimeter based on grating taps,” Electron. Lett. 38(21), 1248–1250 (2002).
[Crossref]

X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[Crossref]

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-Induced polarization-dependant loss(PDL) in tilted fiber Bragg grating: Application of a PDL equalizer,” IEEE Proc. Optoelectron. 149(5), 211–216 (2002).
[Crossref]

1998 (1)

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

1997 (1)

1994 (1)

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photonsensitivity in optical fibre waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Adebayo, A.

A. Adebayo, Z. Yan, K. Zhou, L. Zhang, H. Fu, and D. Robinson, “Power tapping function in near infra-red region based on 45° tilted fiber gratings,” Opt. Photonics J. 3(02), 158 (2013).
[Crossref]

Albert, J.

Bandemer, A.

I. Peupelmann, E. Krause, A. Bandemer, and C. Schaffer, “Fibre-polarimeter based on grating taps,” Electron. Lett. 38(21), 1248–1250 (2002).
[Crossref]

Beliaev, A.

J. Albert, L.-Y. Shao, A. Beliaev, and C. Caucheteur, “Polarization properties of tilted fiber Bragg gratings for novel sensing modalities,” Proc. SPIE 8028, 802802 (2011).
[Crossref]

Bennion, I.

R. Suo, X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fibre directional transverse loading sensor based on excessively tilted fibre Bragg gratings,” Meas. Sci. Technol. 20(3), 034015 (2009).
[Crossref]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80 ° tilted structures,” Opt. Lett. 31(9), 1193–1195 (2006).
[Crossref] [PubMed]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80 ° tilted structures,” Opt. Lett. 31(9), 1193–1195 (2006).
[Crossref] [PubMed]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18, 2596–2598 (2006).
[Crossref]

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “Low thermal sensitivity grating devices based on Ex-45° tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24(12), 5087–5094 (2006).
[Crossref]

K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45 ° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
[Crossref] [PubMed]

X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[Crossref]

Caucheteur, C.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg gratings sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

J. Albert, L.-Y. Shao, A. Beliaev, and C. Caucheteur, “Polarization properties of tilted fiber Bragg gratings for novel sensing modalities,” Proc. SPIE 8028, 802802 (2011).
[Crossref]

C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
[Crossref] [PubMed]

Chen, L.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-Induced polarization-dependant loss(PDL) in tilted fiber Bragg grating: Application of a PDL equalizer,” IEEE Proc. Optoelectron. 149(5), 211–216 (2002).
[Crossref]

Chen, X.

Dai, X.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-Induced polarization-dependant loss(PDL) in tilted fiber Bragg grating: Application of a PDL equalizer,” IEEE Proc. Optoelectron. 149(5), 211–216 (2002).
[Crossref]

Ding, H.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-Induced polarization-dependant loss(PDL) in tilted fiber Bragg grating: Application of a PDL equalizer,” IEEE Proc. Optoelectron. 149(5), 211–216 (2002).
[Crossref]

Erdogan, T.

Feng, T.

Q. Li, F. Yan, P. Liu, W. Peng, G. Yin, and T. Feng, “Analysis of transmission characteristics of tilted long period fiber gratings with full vector complex coupled mode theory,” Photonic Sensors 2(2), 158–165 (2012).
[Crossref]

Fu, H.

C. Mou, K. Zhou, Z. Yan, H. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

A. Adebayo, Z. Yan, K. Zhou, L. Zhang, H. Fu, and D. Robinson, “Power tapping function in near infra-red region based on 45° tilted fiber gratings,” Opt. Photonics J. 3(02), 158 (2013).
[Crossref]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photonsensitivity in optical fibre waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Gu, B.

Guo, T.

Haggans, C. W.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photonsensitivity in optical fibre waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Jackson, M. A.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photonsensitivity in optical fibre waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photonsensitivity in optical fibre waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Krause, E.

I. Peupelmann, E. Krause, A. Bandemer, and C. Schaffer, “Fibre-polarimeter based on grating taps,” Electron. Lett. 38(21), 1248–1250 (2002).
[Crossref]

Krug, P. A.

Li, J.

Li, Q.

G. Yin, S. Lou, Q. Li, and H. Zou, “Theory analysis of mode coupling in tilted long period fiber grating based on the full vector complex coupled mode theory,” Opt. Laser Technol. 48, 60–66 (2013).
[Crossref]

Q. Li, F. Yan, P. Liu, W. Peng, G. Yin, and T. Feng, “Analysis of transmission characteristics of tilted long period fiber gratings with full vector complex coupled mode theory,” Photonic Sensors 2(2), 158–165 (2012).
[Crossref]

Li, Y.

Y. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

Liu, B.

Y. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

Liu, P.

Q. Li, F. Yan, P. Liu, W. Peng, G. Yin, and T. Feng, “Analysis of transmission characteristics of tilted long period fiber gratings with full vector complex coupled mode theory,” Photonic Sensors 2(2), 158–165 (2012).
[Crossref]

Lou, S.

G. Yin, S. Lou, Q. Li, and H. Zou, “Theory analysis of mode coupling in tilted long period fiber grating based on the full vector complex coupled mode theory,” Opt. Laser Technol. 48, 60–66 (2013).
[Crossref]

Lu, P.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-Induced polarization-dependant loss(PDL) in tilted fiber Bragg grating: Application of a PDL equalizer,” IEEE Proc. Optoelectron. 149(5), 211–216 (2002).
[Crossref]

Luan, F.

Luo, B.

MacDougall, T. W.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

Miao, Y.

Y. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

Mihailov, S. J.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-Induced polarization-dependant loss(PDL) in tilted fiber Bragg grating: Application of a PDL equalizer,” IEEE Proc. Optoelectron. 149(5), 211–216 (2002).
[Crossref]

Mizrahi, V.

Mou, C.

Z. Yan, C. Mou, Z. Sun, K. Zhou, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Hybrid tilted fiber grating based refractive index and liquid level sensing system,” Opt. Commun. 351, 144–148 (2015).
[Crossref]

C. Mou, K. Zhou, Z. Yan, H. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Peng, W.

Q. Li, F. Yan, P. Liu, W. Peng, G. Yin, and T. Feng, “Analysis of transmission characteristics of tilted long period fiber gratings with full vector complex coupled mode theory,” Photonic Sensors 2(2), 158–165 (2012).
[Crossref]

Peupelmann, I.

I. Peupelmann, E. Krause, A. Bandemer, and C. Schaffer, “Fibre-polarimeter based on grating taps,” Electron. Lett. 38(21), 1248–1250 (2002).
[Crossref]

Pilevar, S.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

Qi, W.

Robinson, D.

A. Adebayo, Z. Yan, K. Zhou, L. Zhang, H. Fu, and D. Robinson, “Power tapping function in near infra-red region based on 45° tilted fiber gratings,” Opt. Photonics J. 3(02), 158 (2013).
[Crossref]

Schaffer, C.

I. Peupelmann, E. Krause, A. Bandemer, and C. Schaffer, “Fibre-polarimeter based on grating taps,” Electron. Lett. 38(21), 1248–1250 (2002).
[Crossref]

Shao, L.

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg gratings sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Shao, L.-Y.

Shevchenko, Y.

Shu, X.

Shum, P. P.

Simpson, G.

Smelser, C.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-Induced polarization-dependant loss(PDL) in tilted fiber Bragg grating: Application of a PDL equalizer,” IEEE Proc. Optoelectron. 149(5), 211–216 (2002).
[Crossref]

Sun, H.

Y. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

Sun, Z.

Z. Yan, C. Mou, Z. Sun, K. Zhou, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Hybrid tilted fiber grating based refractive index and liquid level sensing system,” Opt. Commun. 351, 144–148 (2015).
[Crossref]

B. Luo, Z. Yan, Z. Sun, J. Li, and L. Zhang, “Novel glucose sensor based on enzyme-immobilized 81° tilted fiber grating,” Opt. Express 22(25), 30571–30578 (2014).
[Crossref] [PubMed]

Suo, R.

R. Suo, X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fibre directional transverse loading sensor based on excessively tilted fibre Bragg gratings,” Meas. Sci. Technol. 20(3), 034015 (2009).
[Crossref]

Tam, H.-Y.

Walker, R. B.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-Induced polarization-dependant loss(PDL) in tilted fiber Bragg grating: Application of a PDL equalizer,” IEEE Proc. Optoelectron. 149(5), 211–216 (2002).
[Crossref]

Wang, H.

Z. Yan, C. Mou, Z. Sun, K. Zhou, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Hybrid tilted fiber grating based refractive index and liquid level sensing system,” Opt. Commun. 351, 144–148 (2015).
[Crossref]

Wang, Y.

Z. Yan, C. Mou, Z. Sun, K. Zhou, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Hybrid tilted fiber grating based refractive index and liquid level sensing system,” Opt. Commun. 351, 144–148 (2015).
[Crossref]

Wu, Z.

Wuilpart, M.

Yan, F.

Q. Li, F. Yan, P. Liu, W. Peng, G. Yin, and T. Feng, “Analysis of transmission characteristics of tilted long period fiber gratings with full vector complex coupled mode theory,” Photonic Sensors 2(2), 158–165 (2012).
[Crossref]

Yan, Z.

Z. Yan, C. Mou, Z. Sun, K. Zhou, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Hybrid tilted fiber grating based refractive index and liquid level sensing system,” Opt. Commun. 351, 144–148 (2015).
[Crossref]

B. Luo, Z. Yan, Z. Sun, J. Li, and L. Zhang, “Novel glucose sensor based on enzyme-immobilized 81° tilted fiber grating,” Opt. Express 22(25), 30571–30578 (2014).
[Crossref] [PubMed]

C. Mou, K. Zhou, Z. Yan, H. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

A. Adebayo, Z. Yan, K. Zhou, L. Zhang, H. Fu, and D. Robinson, “Power tapping function in near infra-red region based on 45° tilted fiber gratings,” Opt. Photonics J. 3(02), 158 (2013).
[Crossref]

Z. Yan, K. Zhou, and L. Zhang, “In-fiber linear polarizer based on UV-inscribed 45° tilted grating in polarization maintaining fiber,” Opt. Lett. 37(18), 3819–3821 (2012).
[Crossref] [PubMed]

Yin, G.

G. Yin, S. Lou, Q. Li, and H. Zou, “Theory analysis of mode coupling in tilted long period fiber grating based on the full vector complex coupled mode theory,” Opt. Laser Technol. 48, 60–66 (2013).
[Crossref]

Q. Li, F. Yan, P. Liu, W. Peng, G. Yin, and T. Feng, “Analysis of transmission characteristics of tilted long period fiber gratings with full vector complex coupled mode theory,” Photonic Sensors 2(2), 158–165 (2012).
[Crossref]

Zhang, H.

Y. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

Zhang, L.

Z. Yan, C. Mou, Z. Sun, K. Zhou, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Hybrid tilted fiber grating based refractive index and liquid level sensing system,” Opt. Commun. 351, 144–148 (2015).
[Crossref]

B. Luo, Z. Yan, Z. Sun, J. Li, and L. Zhang, “Novel glucose sensor based on enzyme-immobilized 81° tilted fiber grating,” Opt. Express 22(25), 30571–30578 (2014).
[Crossref] [PubMed]

C. Mou, K. Zhou, Z. Yan, H. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

A. Adebayo, Z. Yan, K. Zhou, L. Zhang, H. Fu, and D. Robinson, “Power tapping function in near infra-red region based on 45° tilted fiber gratings,” Opt. Photonics J. 3(02), 158 (2013).
[Crossref]

Z. Yan, K. Zhou, and L. Zhang, “In-fiber linear polarizer based on UV-inscribed 45° tilted grating in polarization maintaining fiber,” Opt. Lett. 37(18), 3819–3821 (2012).
[Crossref] [PubMed]

R. Suo, X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fibre directional transverse loading sensor based on excessively tilted fibre Bragg gratings,” Meas. Sci. Technol. 20(3), 034015 (2009).
[Crossref]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80 ° tilted structures,” Opt. Lett. 31(9), 1193–1195 (2006).
[Crossref] [PubMed]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80 ° tilted structures,” Opt. Lett. 31(9), 1193–1195 (2006).
[Crossref] [PubMed]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18, 2596–2598 (2006).
[Crossref]

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “Low thermal sensitivity grating devices based on Ex-45° tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24(12), 5087–5094 (2006).
[Crossref]

K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45 ° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
[Crossref] [PubMed]

X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[Crossref]

Zhang, W.

Y. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

Zhao, Q.

Y. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

Zhao, W.

Z. Yan, C. Mou, Z. Sun, K. Zhou, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Hybrid tilted fiber grating based refractive index and liquid level sensing system,” Opt. Commun. 351, 144–148 (2015).
[Crossref]

Zhou, H.

Y. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

Zhou, K.

Z. Yan, C. Mou, Z. Sun, K. Zhou, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Hybrid tilted fiber grating based refractive index and liquid level sensing system,” Opt. Commun. 351, 144–148 (2015).
[Crossref]

C. Mou, K. Zhou, Z. Yan, H. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

A. Adebayo, Z. Yan, K. Zhou, L. Zhang, H. Fu, and D. Robinson, “Power tapping function in near infra-red region based on 45° tilted fiber gratings,” Opt. Photonics J. 3(02), 158 (2013).
[Crossref]

Z. Yan, K. Zhou, and L. Zhang, “In-fiber linear polarizer based on UV-inscribed 45° tilted grating in polarization maintaining fiber,” Opt. Lett. 37(18), 3819–3821 (2012).
[Crossref] [PubMed]

R. Suo, X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fibre directional transverse loading sensor based on excessively tilted fibre Bragg gratings,” Meas. Sci. Technol. 20(3), 034015 (2009).
[Crossref]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18, 2596–2598 (2006).
[Crossref]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80 ° tilted structures,” Opt. Lett. 31(9), 1193–1195 (2006).
[Crossref] [PubMed]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80 ° tilted structures,” Opt. Lett. 31(9), 1193–1195 (2006).
[Crossref] [PubMed]

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “Low thermal sensitivity grating devices based on Ex-45° tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24(12), 5087–5094 (2006).
[Crossref]

K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45 ° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
[Crossref] [PubMed]

Zhou, Y.

Zou, H.

G. Yin, S. Lou, Q. Li, and H. Zou, “Theory analysis of mode coupling in tilted long period fiber grating based on the full vector complex coupled mode theory,” Opt. Laser Technol. 48, 60–66 (2013).
[Crossref]

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photonsensitivity in optical fibre waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Electron. Lett. (1)

I. Peupelmann, E. Krause, A. Bandemer, and C. Schaffer, “Fibre-polarimeter based on grating taps,” Electron. Lett. 38(21), 1248–1250 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (3)

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

Y. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18, 2596–2598 (2006).
[Crossref]

IEEE Proc. Optoelectron. (1)

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-Induced polarization-dependant loss(PDL) in tilted fiber Bragg grating: Application of a PDL equalizer,” IEEE Proc. Optoelectron. 149(5), 211–216 (2002).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg gratings sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Meas. Sci. Technol. (1)

R. Suo, X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fibre directional transverse loading sensor based on excessively tilted fibre Bragg gratings,” Meas. Sci. Technol. 20(3), 034015 (2009).
[Crossref]

Opt. Commun. (2)

C. Mou, K. Zhou, Z. Yan, H. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Z. Yan, C. Mou, Z. Sun, K. Zhou, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Hybrid tilted fiber grating based refractive index and liquid level sensing system,” Opt. Commun. 351, 144–148 (2015).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

G. Yin, S. Lou, Q. Li, and H. Zou, “Theory analysis of mode coupling in tilted long period fiber grating based on the full vector complex coupled mode theory,” Opt. Laser Technol. 48, 60–66 (2013).
[Crossref]

Opt. Lett. (4)

Opt. Photonics J. (1)

A. Adebayo, Z. Yan, K. Zhou, L. Zhang, H. Fu, and D. Robinson, “Power tapping function in near infra-red region based on 45° tilted fiber gratings,” Opt. Photonics J. 3(02), 158 (2013).
[Crossref]

Photonic Sensors (1)

Q. Li, F. Yan, P. Liu, W. Peng, G. Yin, and T. Feng, “Analysis of transmission characteristics of tilted long period fiber gratings with full vector complex coupled mode theory,” Photonic Sensors 2(2), 158–165 (2012).
[Crossref]

Proc. SPIE (1)

J. Albert, L.-Y. Shao, A. Beliaev, and C. Caucheteur, “Polarization properties of tilted fiber Bragg gratings for novel sensing modalities,” Proc. SPIE 8028, 802802 (2011).
[Crossref]

Other (4)

G. Meltz, W. W. Morey, and W. H. Glenn, “In-fibre Bragg grating tap,” Optical Fibre Communications Conference, 1990 OSA Technical Digest Series (Optical Society of America, 1990), paper TuG1.

K. Zhou, X. Cheng, Z. Yan, A. Adedotun, and L. Zhang, “Optical spectrum analyzer using a 45° tilted fiber grating,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper BW2E.7.

C. Mou, Z. Yan, K. Zhou, and L. Zhang, “Optical fibre sensors based on UV inscribed excessively tilted fibre grating,” Optical Sensors - New developments and Practical Applications, Dr Moh. Yasin, Ed. (InTech, 2014).

J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) The mode indexes of TE and TM cladding modes (inset shows the enlarged scale for 30th modes) and (b) the mode index difference between TE and TM cladding modes as a function of the wavelength.
Fig. 2
Fig. 2 The schematic and vector phase matching diagram of an Ex-TFG.
Fig. 3
Fig. 3 Simulated resonance wavelength versus the axial period of Ex-TFG with TE (solid line) and TM (dash line) modes for different orders: (a) m = 1 to 9; (b) m = 10 to 20; (c) m = 21 to 30; (d) m = 29 to 45.
Fig. 4
Fig. 4 The separation of TM and TE resonance cladding modes as a function of mode order for 1300nm, 1550nm and 1700nm. Inset in Fig. 4 shows the enlarged separation data from mode 20 to 35.
Fig. 5
Fig. 5 Schematic of (a) the front view and (b) the top view of amplitude mask and fiber with 0 order diffraction inside the fiber core.
Fig. 6
Fig. 6 The transmission spectra of 81°-TFG: (a) a series of dual-peak resonances from 1300 to 1700 nm and (b) zoomed dual peaks at around 1530nm when launched with unpolarized light (black line) and orthogonally polarized lights (blue line – TM and red line - TE).
Fig. 7
Fig. 7 The experimental setup investigating the polarization dependent loss of the 81°-TFG.
Fig. 8
Fig. 8 the transmission spectra of 81°-TFG measured by launching a linear polarization light with different azimuth angles with respect to the fast axis of grating.
Fig. 9
Fig. 9 The simulated (a) and experimental (b) results of peak separation of 32nd dual peak cladding mode versus surrounding medium refractive index.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

J 1 (u) u J 0 (u) +(12Δn) K 1 (w) w K 0 (w) =0
J 1 (u) u J 0 (u) + K 1 (w) w K 0 (w) =0
λ=( n co eff (λ) n cl,m i,eff (λ)) Λ G cosθ i=TE or TM
Λ= Λ G cosθ
λ=( n co eff (λ) n cl,m i,eff (λ))Λ i=TE or TM
Δλ= λ TM λ TE = Δ n cl,m (TETM),eff Λ 1Λ( d n co eff dλ d n cl TM,eff dλ ) = γ TM Δ n cl,m (TETM),eff Λ
Λ G = Λ AM cos( π 2 tan 1 [ 1 n UV tan( θ ext ) ]) cos θ ext

Metrics