Abstract

We investigate the effect of surface curvature on characteristics of flexible surface plasmon resonance biosensors. For simplified analysis, segmentation-based approximation of curved substrates has been conducted in a range of curvature radius |r| > 225 μm in the parallel and perpendicular light incidence with respect to the surface. The results suggest that resonance characteristics in general broaden with increased curvature due to larger momentum dispersion, the effect of which appears more prominent and direct in the parallel light incidence. Resonance shifts as a result of biosensing, such as DNA immobilization and hybridization, overall decrease with curvature and perpendicular incidence is more robust with a curvature change. The approach was extended to multi-curvature structure and finds significant fluctuation of resonance shift for parallel light incidence. The study can be of profound importance for plasmonic devices using flexible substrates and in fiber-based in vivo applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design study of nanograting-based surface plasmon resonance biosensor in the near-infrared wavelength

M. Tahmasebpour, M. Bahrami, and A. Asgari
Appl. Opt. 53(7) 1449-1458 (2014)

Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness

Kyung Min Byun, Soon Joon Yoon, Donghyun Kim, and Sung June Kim
J. Opt. Soc. Am. A 24(2) 522-529 (2007)

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004).
    [Crossref] [PubMed]
  2. P. P. Markowicz, W. C. Law, A. Baev, P. N. Prasad, S. Patskovsky, and A. Kabashin, “Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing,” Opt. Express 15(4), 1745–1754 (2007).
    [Crossref] [PubMed]
  3. A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83(7), 2801–2806 (2011).
    [Crossref] [PubMed]
  4. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au- enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
    [Crossref]
  5. S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
    [Crossref] [PubMed]
  6. S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
    [Crossref] [PubMed]
  7. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32(13), 1902–1904 (2007).
    [Crossref] [PubMed]
  8. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20(31), 315501 (2009).
    [Crossref] [PubMed]
  9. K. Kim, J.-W. Choi, K. Ma, R. Lee, K.-H. Yoo, C.-O. Yun, and D. Kim, “Nanoisland-based random activation of fluorescence for visualizing endocytotic internalization of adenovirus,” Small 6(12), 1293–1299 (2010).
    [Crossref] [PubMed]
  10. K. Kim, J. Yajima, Y. Oh, W. Lee, S. Oowada, T. Nishizaka, and D. Kim, “Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules,” Small 8(6), 892–900 (2012).
    [Crossref] [PubMed]
  11. J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
    [Crossref]
  12. W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
    [Crossref] [PubMed]
  13. Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36(8), 1353–1355 (2011).
    [Crossref] [PubMed]
  14. Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin-streptavidin interactions,” Appl. Phys. Lett. 101(23), 233701 (2012).
    [Crossref] [PubMed]
  15. Y. Oh, W. Lee, Y. Kim, and D. Kim, “Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection,” Biosens. Bioelectron. 51, 401–407 (2014).
    [Crossref] [PubMed]
  16. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006).
    [Crossref] [PubMed]
  17. J. Oh, Y. W. Chang, H. J. Kim, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K. H. Yoo, “Carbon nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10(8), 2755–2760 (2010).
    [Crossref] [PubMed]
  18. P. A. van der Merwe and A. N. Barclay, “Analysis of cell-adhesion molecule interactions using surface plasmon resonance,” Curr. Opin. Immunol. 8(2), 257–261 (1996).
    [Crossref] [PubMed]
  19. K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
    [Crossref] [PubMed]
  20. S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
    [Crossref] [PubMed]
  21. N.-H. Kim, K. M. Byun, S. Hwang, Y. Lee, and S. B. Jun, “In vitro biocompatibility test of multi-layered plasmonic substrates with flint glasses and adhesion films,” J. Opt. Soc. Korea 18(2), 174–179 (2014).
    [Crossref]
  22. W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
    [Crossref] [PubMed]
  23. Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76(1), 016402 (2013).
    [Crossref] [PubMed]
  24. S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
    [Crossref] [PubMed]
  25. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [Crossref] [PubMed]
  26. J. Rooney and E. A. H. Hall, “Designing a curved surface SPR device,” Sens. Actuators B Chem. 114(2), 804–811 (2006).
    [Crossref]
  27. D. Kim and E. Sim, “Segmented coupled-wave analysis of a curved wire-grid polarizer,” J. Opt. Soc. Am. A 25(3), 558–565 (2008).
    [Crossref] [PubMed]
  28. J.-W. Liaw and P.-T. Wu, “Dispersion relation of surface plasmon wave propagating along a curved metal-dielectric interface,” Opt. Express 16(7), 4945–4951 (2008).
    [Crossref] [PubMed]
  29. A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B 71(11), 115425 (2005).
    [Crossref]
  30. X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “High-order modes of spoof surface plasmonic wave transmission on thin metal film structure,” Opt. Express 21(25), 31155–31165 (2013).
    [Crossref] [PubMed]
  31. P. Berini and J. Lu, “Curved long-range surface plasmon-polariton waveguides,” Opt. Express 14(6), 2365–2371 (2006).
    [Crossref] [PubMed]
  32. W.-K. Kim, W.-S. Yang, H.-M. Lee, H.-Y. Lee, M.-H. Lee, and W.-J. Jung, “Leaky modes of curved long-range surface plasmon-polariton waveguide,” Opt. Express 14(26), 13043–13049 (2006).
    [Crossref] [PubMed]
  33. T.-H. Xiao, L. Gan, and Z.-Y. Li, “Graphene surface plasmon polaritons transport on curved substrates,” Photon. Res. 3(6), 300–307 (2015).
    [Crossref]
  34. L. A. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71(22), 5116–5122 (1999).
    [Crossref]
  35. W. B. Lin, J. M. Chovelon, and N. Jaffrezic-Renault, “Fiber-optic surface-plasmon resonance for the determination of thickness and optical constants of thin metal films,” Appl. Opt. 39(19), 3261–3265 (2000).
    [Crossref] [PubMed]
  36. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
    [Crossref]
  37. Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber SPR sensor for living cell activation,” Biosens. Bioelectron. 25(5), 1244–1247 (2010).
    [Crossref] [PubMed]
  38. Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuators B Chem. 192, 229–233 (2014).
    [Crossref]
  39. B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
    [Crossref] [PubMed]
  40. M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
    [Crossref]
  41. W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
    [Crossref] [PubMed]
  42. Y. Wang, S. Meng, Y. Liang, L. Li, and W. Peng, “Fiber-Optic surface plasmon resonance sensor with multialternating metal layers for biological measurement,” Photonic Sens. 3(3), 202–207 (2013).
    [Crossref]
  43. R. Micheletto, K. Hamamoto, S. Kawai, and Y. Kawakami, “Modeling and test of fiber-optics fast SPR sensor for biological investigation,” Sens. Actuators A Phys. 119(2), 283–290 (2005).
    [Crossref]
  44. M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments,” Plasmonics 3(2-3), 49–57 (2008).
    [Crossref]
  45. H. S. Jang, K. N. Park, C. D. Kang, J. P. Kim, S. J. Sim, and K. S. Lee, “Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen,” Opt. Commun. 282(14), 2827–2830 (2009).
    [Crossref]
  46. J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
    [Crossref] [PubMed]
  47. K. Bremer and B. Roth, “Fibre optic surface plasmon resonance sensor system designed for smartphones,” Opt. Express 23(13), 17179–17184 (2015).
    [Crossref] [PubMed]
  48. H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
    [Crossref] [PubMed]
  49. B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B Chem. 107(1), 40–46 (2005).
    [Crossref]
  50. D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B Chem. 115(1), 227–231 (2006).
    [Crossref]
  51. M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A Phys. 125(2), 296–303 (2006).
    [Crossref]
  52. H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem. 132(1), 26–33 (2008).
    [Crossref]
  53. R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
    [Crossref]
  54. L. Polavarapu and L. M. Liz-Marzán, “Towards low-cost flexible substrates for nanoplasmonic sensing,” Phys. Chem. Chem. Phys. 15(15), 5288–5300 (2013).
    [Crossref] [PubMed]
  55. H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices,” ACS Appl. Mater. Interfaces 5(11), 4569–4574 (2013).
    [Crossref] [PubMed]
  56. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  57. K. Hasegawa, J. U. Nöckel, and M. Deutsch, “Curvature-induced radiation of surface plasmon polaritons propagating around bends,” Phys. Rev. A 75(6), 063816 (2007).
    [Crossref]
  58. A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, and H. Schuessler, “Propagation length of surface plasmons in a metal film with roughness,” Appl. Opt. 48(30), 5683–5691 (2009).
    [Crossref] [PubMed]
  59. S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
    [Crossref] [PubMed]
  60. X. Chen, S. Li, C. Xue, M. J. Banholzer, G. C. Schatz, and C. A. Mirkin, “Plasmonic focusing in rod-sheath heteronanostructures,” ACS Nano 3(1), 87–92 (2009).
    [Crossref] [PubMed]
  61. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988), Ch. 2.

2015 (3)

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

K. Bremer and B. Roth, “Fibre optic surface plasmon resonance sensor system designed for smartphones,” Opt. Express 23(13), 17179–17184 (2015).
[Crossref] [PubMed]

T.-H. Xiao, L. Gan, and Z.-Y. Li, “Graphene surface plasmon polaritons transport on curved substrates,” Photon. Res. 3(6), 300–307 (2015).
[Crossref]

2014 (4)

N.-H. Kim, K. M. Byun, S. Hwang, Y. Lee, and S. B. Jun, “In vitro biocompatibility test of multi-layered plasmonic substrates with flint glasses and adhesion films,” J. Opt. Soc. Korea 18(2), 174–179 (2014).
[Crossref]

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

Y. Oh, W. Lee, Y. Kim, and D. Kim, “Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection,” Biosens. Bioelectron. 51, 401–407 (2014).
[Crossref] [PubMed]

Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuators B Chem. 192, 229–233 (2014).
[Crossref]

2013 (7)

L. Polavarapu and L. M. Liz-Marzán, “Towards low-cost flexible substrates for nanoplasmonic sensing,” Phys. Chem. Chem. Phys. 15(15), 5288–5300 (2013).
[Crossref] [PubMed]

H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices,” ACS Appl. Mater. Interfaces 5(11), 4569–4574 (2013).
[Crossref] [PubMed]

Y. Wang, S. Meng, Y. Liang, L. Li, and W. Peng, “Fiber-Optic surface plasmon resonance sensor with multialternating metal layers for biological measurement,” Photonic Sens. 3(3), 202–207 (2013).
[Crossref]

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76(1), 016402 (2013).
[Crossref] [PubMed]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “High-order modes of spoof surface plasmonic wave transmission on thin metal film structure,” Opt. Express 21(25), 31155–31165 (2013).
[Crossref] [PubMed]

B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
[Crossref] [PubMed]

2012 (4)

H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
[Crossref] [PubMed]

K. Kim, J. Yajima, Y. Oh, W. Lee, S. Oowada, T. Nishizaka, and D. Kim, “Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules,” Small 8(6), 892–900 (2012).
[Crossref] [PubMed]

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin-streptavidin interactions,” Appl. Phys. Lett. 101(23), 233701 (2012).
[Crossref] [PubMed]

2011 (5)

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83(7), 2801–2806 (2011).
[Crossref] [PubMed]

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
[Crossref] [PubMed]

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36(8), 1353–1355 (2011).
[Crossref] [PubMed]

2010 (4)

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
[Crossref] [PubMed]

J. Oh, Y. W. Chang, H. J. Kim, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K. H. Yoo, “Carbon nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10(8), 2755–2760 (2010).
[Crossref] [PubMed]

K. Kim, J.-W. Choi, K. Ma, R. Lee, K.-H. Yoo, C.-O. Yun, and D. Kim, “Nanoisland-based random activation of fluorescence for visualizing endocytotic internalization of adenovirus,” Small 6(12), 1293–1299 (2010).
[Crossref] [PubMed]

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber SPR sensor for living cell activation,” Biosens. Bioelectron. 25(5), 1244–1247 (2010).
[Crossref] [PubMed]

2009 (5)

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20(31), 315501 (2009).
[Crossref] [PubMed]

A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, and H. Schuessler, “Propagation length of surface plasmons in a metal film with roughness,” Appl. Opt. 48(30), 5683–5691 (2009).
[Crossref] [PubMed]

H. S. Jang, K. N. Park, C. D. Kang, J. P. Kim, S. J. Sim, and K. S. Lee, “Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen,” Opt. Commun. 282(14), 2827–2830 (2009).
[Crossref]

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

X. Chen, S. Li, C. Xue, M. J. Banholzer, G. C. Schatz, and C. A. Mirkin, “Plasmonic focusing in rod-sheath heteronanostructures,” ACS Nano 3(1), 87–92 (2009).
[Crossref] [PubMed]

2008 (5)

D. Kim and E. Sim, “Segmented coupled-wave analysis of a curved wire-grid polarizer,” J. Opt. Soc. Am. A 25(3), 558–565 (2008).
[Crossref] [PubMed]

J.-W. Liaw and P.-T. Wu, “Dispersion relation of surface plasmon wave propagating along a curved metal-dielectric interface,” Opt. Express 16(7), 4945–4951 (2008).
[Crossref] [PubMed]

M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments,” Plasmonics 3(2-3), 49–57 (2008).
[Crossref]

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem. 132(1), 26–33 (2008).
[Crossref]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

2007 (4)

2006 (6)

P. Berini and J. Lu, “Curved long-range surface plasmon-polariton waveguides,” Opt. Express 14(6), 2365–2371 (2006).
[Crossref] [PubMed]

B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006).
[Crossref] [PubMed]

W.-K. Kim, W.-S. Yang, H.-M. Lee, H.-Y. Lee, M.-H. Lee, and W.-J. Jung, “Leaky modes of curved long-range surface plasmon-polariton waveguide,” Opt. Express 14(26), 13043–13049 (2006).
[Crossref] [PubMed]

D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B Chem. 115(1), 227–231 (2006).
[Crossref]

M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A Phys. 125(2), 296–303 (2006).
[Crossref]

J. Rooney and E. A. H. Hall, “Designing a curved surface SPR device,” Sens. Actuators B Chem. 114(2), 804–811 (2006).
[Crossref]

2005 (4)

A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B 71(11), 115425 (2005).
[Crossref]

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B Chem. 107(1), 40–46 (2005).
[Crossref]

R. Micheletto, K. Hamamoto, S. Kawai, and Y. Kawakami, “Modeling and test of fiber-optics fast SPR sensor for biological investigation,” Sens. Actuators A Phys. 119(2), 283–290 (2005).
[Crossref]

W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
[Crossref] [PubMed]

2004 (3)

S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004).
[Crossref] [PubMed]

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
[Crossref] [PubMed]

M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
[Crossref]

2000 (2)

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au- enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

W. B. Lin, J. M. Chovelon, and N. Jaffrezic-Renault, “Fiber-optic surface-plasmon resonance for the determination of thickness and optical constants of thin metal films,” Appl. Opt. 39(19), 3261–3265 (2000).
[Crossref] [PubMed]

1999 (2)

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

L. A. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71(22), 5116–5122 (1999).
[Crossref]

1996 (1)

P. A. van der Merwe and A. N. Barclay, “Analysis of cell-adhesion molecule interactions using surface plasmon resonance,” Curr. Opin. Immunol. 8(2), 257–261 (1996).
[Crossref] [PubMed]

Aksu, S.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Altug, H.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Araki, A.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber SPR sensor for living cell activation,” Biosens. Bioelectron. 25(5), 1244–1247 (2010).
[Crossref] [PubMed]

Armelles, G.

Artar, A.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Baev, A.

Banerji, S.

Banholzer, M. J.

X. Chen, S. Li, C. Xue, M. J. Banholzer, G. C. Schatz, and C. A. Mirkin, “Plasmonic focusing in rod-sheath heteronanostructures,” ACS Nano 3(1), 87–92 (2009).
[Crossref] [PubMed]

Barclay, A. N.

P. A. van der Merwe and A. N. Barclay, “Analysis of cell-adhesion molecule interactions using surface plasmon resonance,” Curr. Opin. Immunol. 8(2), 257–261 (1996).
[Crossref] [PubMed]

Bastmeyer, M.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Bechinger, C.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Benkovic, S. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au- enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

Berini, P.

Booksh, K. S.

W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
[Crossref] [PubMed]

L. A. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71(22), 5116–5122 (1999).
[Crossref]

Bozhevolnyi, S. I.

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76(1), 016402 (2013).
[Crossref] [PubMed]

Bremer, K.

Byun, K. M.

Calle, A.

Chang, Y. W.

J. Oh, Y. W. Chang, H. J. Kim, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K. H. Yoo, “Carbon nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10(8), 2755–2760 (2010).
[Crossref] [PubMed]

Chegal, W.

S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
[Crossref] [PubMed]

Chen, N. K.

Chen, X.

X. Chen, S. Li, C. Xue, M. J. Banholzer, G. C. Schatz, and C. A. Mirkin, “Plasmonic focusing in rod-sheath heteronanostructures,” ACS Nano 3(1), 87–92 (2009).
[Crossref] [PubMed]

Chen, Y.

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83(7), 2801–2806 (2011).
[Crossref] [PubMed]

Cheng, G. L.

Cho, H. M.

S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
[Crossref] [PubMed]

Choi, J.

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

Choi, J.-W.

K. Kim, J.-W. Choi, K. Ma, R. Lee, K.-H. Yoo, C.-O. Yun, and D. Kim, “Nanoisland-based random activation of fluorescence for visualizing endocytotic internalization of adenovirus,” Small 6(12), 1293–1299 (2010).
[Crossref] [PubMed]

Chovelon, J. M.

Chui, H. C.

Chung, K.

Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin-streptavidin interactions,” Appl. Phys. Lett. 101(23), 233701 (2012).
[Crossref] [PubMed]

Corn, R. M.

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83(7), 2801–2806 (2011).
[Crossref] [PubMed]

Cuenot, S.

M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments,” Plasmonics 3(2-3), 49–57 (2008).
[Crossref]

Cui, T. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Delport, F.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Deng, Z.

Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuators B Chem. 192, 229–233 (2014).
[Crossref]

Deutsch, M.

K. Hasegawa, J. U. Nöckel, and M. Deutsch, “Curvature-induced radiation of surface plasmon polaritons propagating around bends,” Phys. Rev. A 75(6), 063816 (2007).
[Crossref]

Doh, J.

S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
[Crossref] [PubMed]

Dokmeci, M. R.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Elhadj, S.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
[Crossref] [PubMed]

Fan, F.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Feng, Y.

Ferrell, T. L.

A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B 71(11), 115425 (2005).
[Crossref]

Gan, L.

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Giebel, K.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Gupta, B. D.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B Chem. 107(1), 40–46 (2005).
[Crossref]

Haam, S.

Hall, E. A. H.

J. Rooney and E. A. H. Hall, “Designing a curved surface SPR device,” Sens. Actuators B Chem. 114(2), 804–811 (2006).
[Crossref]

Halpern, A. R.

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83(7), 2801–2806 (2011).
[Crossref] [PubMed]

Hamamoto, K.

R. Micheletto, K. Hamamoto, S. Kawai, and Y. Kawakami, “Modeling and test of fiber-optics fast SPR sensor for biological investigation,” Sens. Actuators A Phys. 119(2), 283–290 (2005).
[Crossref]

Han, Z.

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76(1), 016402 (2013).
[Crossref] [PubMed]

Hasegawa, K.

K. Hasegawa, J. U. Nöckel, and M. Deutsch, “Curvature-induced radiation of surface plasmon polaritons propagating around bends,” Phys. Rev. A 75(6), 063816 (2007).
[Crossref]

He, L.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au- enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

Heo, C.-J.

H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices,” ACS Appl. Mater. Interfaces 5(11), 4569–4574 (2013).
[Crossref] [PubMed]

Herminghaus, S.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Hide, M.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber SPR sensor for living cell activation,” Biosens. Bioelectron. 25(5), 1244–1247 (2010).
[Crossref] [PubMed]

Higo, M.

M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A Phys. 125(2), 296–303 (2006).
[Crossref]

Hiragun, T.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber SPR sensor for living cell activation,” Biosens. Bioelectron. 25(5), 1244–1247 (2010).
[Crossref] [PubMed]

Ho, H. P.

Huang, C. H.

Huang, M.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Hwang, S.

Iga, M.

M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
[Crossref]

Im, S.

J. Oh, Y. W. Chang, H. J. Kim, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K. H. Yoo, “Carbon nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10(8), 2755–2760 (2010).
[Crossref] [PubMed]

Jaffrezic-Renault, N.

Jang, H. S.

H. S. Jang, K. N. Park, C. D. Kang, J. P. Kim, S. J. Sim, and K. S. Lee, “Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen,” Opt. Commun. 282(14), 2827–2830 (2009).
[Crossref]

Jans, K.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Janssen, K. P. F.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Jeon, H. C.

H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices,” ACS Appl. Mater. Interfaces 5(11), 4569–4574 (2013).
[Crossref] [PubMed]

Jha, R.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Jiang, T.

Jiang, Y. X.

Jun, S. B.

Jung, W.-J.

Kabashin, A.

Kang, C. D.

H. S. Jang, K. N. Park, C. D. Kang, J. P. Kim, S. J. Sim, and K. S. Lee, “Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen,” Opt. Commun. 282(14), 2827–2830 (2009).
[Crossref]

Kang, H.

H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices,” ACS Appl. Mater. Interfaces 5(11), 4569–4574 (2013).
[Crossref] [PubMed]

Kanso, M.

M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments,” Plasmonics 3(2-3), 49–57 (2008).
[Crossref]

Kawai, S.

R. Micheletto, K. Hamamoto, S. Kawai, and Y. Kawakami, “Modeling and test of fiber-optics fast SPR sensor for biological investigation,” Sens. Actuators A Phys. 119(2), 283–290 (2005).
[Crossref]

Kawakami, Y.

R. Micheletto, K. Hamamoto, S. Kawai, and Y. Kawakami, “Modeling and test of fiber-optics fast SPR sensor for biological investigation,” Sens. Actuators A Phys. 119(2), 283–290 (2005).
[Crossref]

Keating, C. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au- enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

Kim, A. L.

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

Kim, D.

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

Y. Oh, W. Lee, Y. Kim, and D. Kim, “Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection,” Biosens. Bioelectron. 51, 401–407 (2014).
[Crossref] [PubMed]

Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin-streptavidin interactions,” Appl. Phys. Lett. 101(23), 233701 (2012).
[Crossref] [PubMed]

K. Kim, J. Yajima, Y. Oh, W. Lee, S. Oowada, T. Nishizaka, and D. Kim, “Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules,” Small 8(6), 892–900 (2012).
[Crossref] [PubMed]

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83(7), 2801–2806 (2011).
[Crossref] [PubMed]

Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36(8), 1353–1355 (2011).
[Crossref] [PubMed]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
[Crossref] [PubMed]

K. Kim, J.-W. Choi, K. Ma, R. Lee, K.-H. Yoo, C.-O. Yun, and D. Kim, “Nanoisland-based random activation of fluorescence for visualizing endocytotic internalization of adenovirus,” Small 6(12), 1293–1299 (2010).
[Crossref] [PubMed]

J. Oh, Y. W. Chang, H. J. Kim, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K. H. Yoo, “Carbon nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10(8), 2755–2760 (2010).
[Crossref] [PubMed]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20(31), 315501 (2009).
[Crossref] [PubMed]

D. Kim and E. Sim, “Segmented coupled-wave analysis of a curved wire-grid polarizer,” J. Opt. Soc. Am. A 25(3), 558–565 (2008).
[Crossref] [PubMed]

K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32(13), 1902–1904 (2007).
[Crossref] [PubMed]

Kim, D. H.

Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin-streptavidin interactions,” Appl. Phys. Lett. 101(23), 233701 (2012).
[Crossref] [PubMed]

Kim, D. J.

J. Oh, Y. W. Chang, H. J. Kim, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K. H. Yoo, “Carbon nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10(8), 2755–2760 (2010).
[Crossref] [PubMed]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
[Crossref] [PubMed]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20(31), 315501 (2009).
[Crossref] [PubMed]

Kim, H. C.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

Kim, H. J.

J. Oh, Y. W. Chang, H. J. Kim, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K. H. Yoo, “Carbon nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10(8), 2755–2760 (2010).
[Crossref] [PubMed]

Kim, J. P.

H. S. Jang, K. N. Park, C. D. Kang, J. P. Kim, S. J. Sim, and K. S. Lee, “Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen,” Opt. Commun. 282(14), 2827–2830 (2009).
[Crossref]

Kim, K.

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

K. Kim, J. Yajima, Y. Oh, W. Lee, S. Oowada, T. Nishizaka, and D. Kim, “Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules,” Small 8(6), 892–900 (2012).
[Crossref] [PubMed]

K. Kim, J.-W. Choi, K. Ma, R. Lee, K.-H. Yoo, C.-O. Yun, and D. Kim, “Nanoisland-based random activation of fluorescence for visualizing endocytotic internalization of adenovirus,” Small 6(12), 1293–1299 (2010).
[Crossref] [PubMed]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
[Crossref] [PubMed]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20(31), 315501 (2009).
[Crossref] [PubMed]

Kim, N.-H.

Kim, S. J.

Kim, S. Y.

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

Kim, S.-H.

S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
[Crossref] [PubMed]

Kim, W.-K.

Kim, Y.

Y. Oh, W. Lee, Y. Kim, and D. Kim, “Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection,” Biosens. Bioelectron. 51, 401–407 (2014).
[Crossref] [PubMed]

Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin-streptavidin interactions,” Appl. Phys. Lett. 101(23), 233701 (2012).
[Crossref] [PubMed]

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

Kim, Y. C.

Kimura, T.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber SPR sensor for living cell activation,” Biosens. Bioelectron. 25(5), 1244–1247 (2010).
[Crossref] [PubMed]

Kinosita, Y.

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

Kolomenski, A.

Kolomenskii, A.

Kondoh, J.

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem. 132(1), 26–33 (2008).
[Crossref]

Kong, S. K.

Lammertyn, J.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Law, W. C.

Lechuga, L. M.

Lee, H.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
[Crossref] [PubMed]

Lee, H.-M.

Lee, H.-Y.

Lee, K.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
[Crossref] [PubMed]

Lee, K. S.

H. S. Jang, K. N. Park, C. D. Kang, J. P. Kim, S. J. Sim, and K. S. Lee, “Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen,” Opt. Commun. 282(14), 2827–2830 (2009).
[Crossref]

Lee, M.-H.

Lee, R.

K. Kim, J.-W. Choi, K. Ma, R. Lee, K.-H. Yoo, C.-O. Yun, and D. Kim, “Nanoisland-based random activation of fluorescence for visualizing endocytotic internalization of adenovirus,” Small 6(12), 1293–1299 (2010).
[Crossref] [PubMed]

Lee, S. Y.

H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices,” ACS Appl. Mater. Interfaces 5(11), 4569–4574 (2013).
[Crossref] [PubMed]

Lee, W.

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

Y. Oh, W. Lee, Y. Kim, and D. Kim, “Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection,” Biosens. Bioelectron. 51, 401–407 (2014).
[Crossref] [PubMed]

Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin-streptavidin interactions,” Appl. Phys. Lett. 101(23), 233701 (2012).
[Crossref] [PubMed]

K. Kim, J. Yajima, Y. Oh, W. Lee, S. Oowada, T. Nishizaka, and D. Kim, “Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules,” Small 8(6), 892–900 (2012).
[Crossref] [PubMed]

Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36(8), 1353–1355 (2011).
[Crossref] [PubMed]

Lee, Y.

Leiderer, P.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Lereu, A. L.

A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B 71(11), 115425 (2005).
[Crossref]

Li, L.

Y. Wang, S. Meng, Y. Liang, L. Li, and W. Peng, “Fiber-Optic surface plasmon resonance sensor with multialternating metal layers for biological measurement,” Photonic Sens. 3(3), 202–207 (2013).
[Crossref]

Li, S.

X. Chen, S. Li, C. Xue, M. J. Banholzer, G. C. Schatz, and C. A. Mirkin, “Plasmonic focusing in rod-sheath heteronanostructures,” ACS Nano 3(1), 87–92 (2009).
[Crossref] [PubMed]

Li, Z.-Y.

Liang, Y.

Y. Wang, S. Meng, Y. Liang, L. Li, and W. Peng, “Fiber-Optic surface plasmon resonance sensor with multialternating metal layers for biological measurement,” Photonic Sens. 3(3), 202–207 (2013).
[Crossref]

Liaw, J.-W.

Lin, C.

Lin, H. Y.

Lin, W. B.

Liu, B. H.

Liu, X.

Liz-Marzán, L. M.

L. Polavarapu and L. M. Liz-Marzán, “Towards low-cost flexible substrates for nanoplasmonic sensing,” Phys. Chem. Chem. Phys. 15(15), 5288–5300 (2013).
[Crossref] [PubMed]

Louarn, G.

M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments,” Plasmonics 3(2-3), 49–57 (2008).
[Crossref]

Lu, J.

Ma, K.

K. Kim, J.-W. Choi, K. Ma, R. Lee, K.-H. Yoo, C.-O. Yun, and D. Kim, “Nanoisland-based random activation of fluorescence for visualizing endocytotic internalization of adenovirus,” Small 6(12), 1293–1299 (2010).
[Crossref] [PubMed]

Maes, G.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Markowicz, P. P.

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Matsui, Y.

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem. 132(1), 26–33 (2008).
[Crossref]

Meng, S.

Y. Wang, S. Meng, Y. Liang, L. Li, and W. Peng, “Fiber-Optic surface plasmon resonance sensor with multialternating metal layers for biological measurement,” Photonic Sens. 3(3), 202–207 (2013).
[Crossref]

Micheletto, R.

R. Micheletto, K. Hamamoto, S. Kawai, and Y. Kawakami, “Modeling and test of fiber-optics fast SPR sensor for biological investigation,” Sens. Actuators A Phys. 119(2), 283–290 (2005).
[Crossref]

Mikami, N.

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

Mirkin, C. A.

X. Chen, S. Li, C. Xue, M. J. Banholzer, G. C. Schatz, and C. A. Mirkin, “Plasmonic focusing in rod-sheath heteronanostructures,” ACS Nano 3(1), 87–92 (2009).
[Crossref] [PubMed]

Mitsushio, M.

M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A Phys. 125(2), 296–303 (2006).
[Crossref]

Miyashita, K.

M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A Phys. 125(2), 296–303 (2006).
[Crossref]

Miyata, M.

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

Monzón-Hernández, D.

D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B Chem. 115(1), 227–231 (2006).
[Crossref]

Moon, D. W.

S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
[Crossref] [PubMed]

Moon, S.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
[Crossref] [PubMed]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20(31), 315501 (2009).
[Crossref] [PubMed]

Musick, M. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au- enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

Nakatani, T.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber SPR sensor for living cell activation,” Biosens. Bioelectron. 25(5), 1244–1247 (2010).
[Crossref] [PubMed]

Natan, M. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au- enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

Nicewarner, S. R.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au- enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

Nishizaka, T.

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

K. Kim, J. Yajima, Y. Oh, W. Lee, S. Oowada, T. Nishizaka, and D. Kim, “Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules,” Small 8(6), 892–900 (2012).
[Crossref] [PubMed]

Nöckel, J. U.

K. Hasegawa, J. U. Nöckel, and M. Deutsch, “Curvature-induced radiation of surface plasmon polaritons propagating around bends,” Phys. Rev. A 75(6), 063816 (2007).
[Crossref]

Noel, J.

Obando, L. A.

L. A. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71(22), 5116–5122 (1999).
[Crossref]

Oh, J.

J. Oh, Y. W. Chang, H. J. Kim, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K. H. Yoo, “Carbon nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10(8), 2755–2760 (2010).
[Crossref] [PubMed]

Oh, Y.

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

Y. Oh, W. Lee, Y. Kim, and D. Kim, “Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection,” Biosens. Bioelectron. 51, 401–407 (2014).
[Crossref] [PubMed]

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

K. Kim, J. Yajima, Y. Oh, W. Lee, S. Oowada, T. Nishizaka, and D. Kim, “Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules,” Small 8(6), 892–900 (2012).
[Crossref] [PubMed]

Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36(8), 1353–1355 (2011).
[Crossref] [PubMed]

Okamoto, K.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber SPR sensor for living cell activation,” Biosens. Bioelectron. 25(5), 1244–1247 (2010).
[Crossref] [PubMed]

Oowada, S.

K. Kim, J. Yajima, Y. Oh, W. Lee, S. Oowada, T. Nishizaka, and D. Kim, “Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules,” Small 8(6), 892–900 (2012).
[Crossref] [PubMed]

Park, K. N.

H. S. Jang, K. N. Park, C. D. Kang, J. P. Kim, S. J. Sim, and K. S. Lee, “Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen,” Opt. Commun. 282(14), 2827–2830 (2009).
[Crossref]

Park, Y. J.

J. Oh, Y. W. Chang, H. J. Kim, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K. H. Yoo, “Carbon nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10(8), 2755–2760 (2010).
[Crossref] [PubMed]

Passian, A.

A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B 71(11), 115425 (2005).
[Crossref]

Patskovsky, S.

Peng, S.

Peng, W.

Y. Wang, S. Meng, Y. Liang, L. Li, and W. Peng, “Fiber-Optic surface plasmon resonance sensor with multialternating metal layers for biological measurement,” Photonic Sens. 3(3), 202–207 (2013).
[Crossref]

W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
[Crossref] [PubMed]

Pfeiffer, H.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Polavarapu, L.

L. Polavarapu and L. M. Liz-Marzán, “Towards low-cost flexible substrates for nanoplasmonic sensing,” Phys. Chem. Chem. Phys. 15(15), 5288–5300 (2013).
[Crossref] [PubMed]

Pollet, J.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Prasad, P. N.

Riedel, M.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Ritchie, R. H.

A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B 71(11), 115425 (2005).
[Crossref]

Rooney, J.

J. Rooney and E. A. H. Hall, “Designing a curved surface SPR device,” Sens. Actuators B Chem. 114(2), 804–811 (2006).
[Crossref]

Roth, B.

Salinas, F. G.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au- enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

Saraf, R. F.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
[Crossref] [PubMed]

Schatz, G. C.

X. Chen, S. Li, C. Xue, M. J. Banholzer, G. C. Schatz, and C. A. Mirkin, “Plasmonic focusing in rod-sheath heteronanostructures,” ACS Nano 3(1), 87–92 (2009).
[Crossref] [PubMed]

Schuessler, H.

Seki, A.

M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
[Crossref]

Selvarasah, S.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Sepúlveda, B.

Sharma, A. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B Chem. 107(1), 40–46 (2005).
[Crossref]

Shen, X.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Shi, Y. W.

Shin, J.-S.

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

Sim, E.

Sim, S. J.

H. S. Jang, K. N. Park, C. D. Kang, J. P. Kim, S. J. Sim, and K. S. Lee, “Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen,” Opt. Commun. 282(14), 2827–2830 (2009).
[Crossref]

Singh, G.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
[Crossref] [PubMed]

Sugimoto, M.

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem. 132(1), 26–33 (2008).
[Crossref]

Suzuki, H.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber SPR sensor for living cell activation,” Biosens. Bioelectron. 25(5), 1244–1247 (2010).
[Crossref] [PubMed]

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem. 132(1), 26–33 (2008).
[Crossref]

Tang, X. L.

Thundat, T.

A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B 71(11), 115425 (2005).
[Crossref]

Tsutsui, T.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber SPR sensor for living cell activation,” Biosens. Bioelectron. 25(5), 1244–1247 (2010).
[Crossref] [PubMed]

van der Merwe, P. A.

P. A. van der Merwe and A. N. Barclay, “Analysis of cell-adhesion molecule interactions using surface plasmon resonance,” Curr. Opin. Immunol. 8(2), 257–261 (1996).
[Crossref] [PubMed]

Verma, R. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Villatoro, J.

D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B Chem. 115(1), 227–231 (2006).
[Crossref]

Wang, Q.

Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuators B Chem. 192, 229–233 (2014).
[Crossref]

Wang, W.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, S. Meng, Y. Liang, L. Li, and W. Peng, “Fiber-Optic surface plasmon resonance sensor with multialternating metal layers for biological measurement,” Photonic Sens. 3(3), 202–207 (2013).
[Crossref]

Wang, Z. L.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Watanabe, K.

M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
[Crossref]

Weiland, U.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Wevers, M.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Wu, P.-T.

Wu, S. Y.

Xiao, T.-H.

Xu, H.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Xue, C.

X. Chen, S. Li, C. Xue, M. J. Banholzer, G. C. Schatz, and C. A. Mirkin, “Plasmonic focusing in rod-sheath heteronanostructures,” ACS Nano 3(1), 87–92 (2009).
[Crossref] [PubMed]

Yajima, J.

K. Kim, J. Yajima, Y. Oh, W. Lee, S. Oowada, T. Nishizaka, and D. Kim, “Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules,” Small 8(6), 892–900 (2012).
[Crossref] [PubMed]

Yanase, Y.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber SPR sensor for living cell activation,” Biosens. Bioelectron. 25(5), 1244–1247 (2010).
[Crossref] [PubMed]

Yang, H.

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

Yang, Q.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Yang, S.-M.

H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices,” ACS Appl. Mater. Interfaces 5(11), 4569–4574 (2013).
[Crossref] [PubMed]

Yang, W.-S.

Yanik, A. A.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Yoo, K. H.

J. Oh, Y. W. Chang, H. J. Kim, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K. H. Yoo, “Carbon nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10(8), 2755–2760 (2010).
[Crossref] [PubMed]

Yoo, K.-H.

K. Kim, J.-W. Choi, K. Ma, R. Lee, K.-H. Yoo, C.-O. Yun, and D. Kim, “Nanoisland-based random activation of fluorescence for visualizing endocytotic internalization of adenovirus,” Small 6(12), 1293–1299 (2010).
[Crossref] [PubMed]

Yoo, S.

J. Oh, Y. W. Chang, H. J. Kim, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K. H. Yoo, “Carbon nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10(8), 2755–2760 (2010).
[Crossref] [PubMed]

Yoon, S. J.

Yun, C.-O.

K. Kim, J.-W. Choi, K. Ma, R. Lee, K.-H. Yoo, C.-O. Yun, and D. Kim, “Nanoisland-based random activation of fluorescence for visualizing endocytotic internalization of adenovirus,” Small 6(12), 1293–1299 (2010).
[Crossref] [PubMed]

Zhao, J.

Zhao, Y.

Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuators B Chem. 192, 229–233 (2014).
[Crossref]

Zhu, B.

Zhu, X. S.

ACS Appl. Mater. Interfaces (1)

H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices,” ACS Appl. Mater. Interfaces 5(11), 4569–4574 (2013).
[Crossref] [PubMed]

ACS Nano (2)

X. Chen, S. Li, C. Xue, M. J. Banholzer, G. C. Schatz, and C. A. Mirkin, “Plasmonic focusing in rod-sheath heteronanostructures,” ACS Nano 3(1), 87–92 (2009).
[Crossref] [PubMed]

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

Anal. Chem. (2)

L. A. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71(22), 5116–5122 (1999).
[Crossref]

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83(7), 2801–2806 (2011).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, “Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotin-streptavidin interactions,” Appl. Phys. Lett. 101(23), 233701 (2012).
[Crossref] [PubMed]

Biophys. J. (2)

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
[Crossref] [PubMed]

Biosens. Bioelectron. (4)

Y. Oh, W. Lee, Y. Kim, and D. Kim, “Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection,” Biosens. Bioelectron. 51, 401–407 (2014).
[Crossref] [PubMed]

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber SPR sensor for living cell activation,” Biosens. Bioelectron. 25(5), 1244–1247 (2010).
[Crossref] [PubMed]

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Curr. Opin. Immunol. (1)

P. A. van der Merwe and A. N. Barclay, “Analysis of cell-adhesion molecule interactions using surface plasmon resonance,” Curr. Opin. Immunol. 8(2), 257–261 (1996).
[Crossref] [PubMed]

IEEE Sens. J. (1)

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

J. Am. Chem. Soc. (1)

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au- enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Korea (1)

Langmuir (1)

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
[Crossref] [PubMed]

Nano Lett. (2)

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

J. Oh, Y. W. Chang, H. J. Kim, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K. H. Yoo, “Carbon nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements,” Nano Lett. 10(8), 2755–2760 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20(31), 315501 (2009).
[Crossref] [PubMed]

Opt. Commun. (2)

H. S. Jang, K. N. Park, C. D. Kang, J. P. Kim, S. J. Sim, and K. S. Lee, “Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen,” Opt. Commun. 282(14), 2827–2830 (2009).
[Crossref]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Opt. Express (8)

K. Bremer and B. Roth, “Fibre optic surface plasmon resonance sensor system designed for smartphones,” Opt. Express 23(13), 17179–17184 (2015).
[Crossref] [PubMed]

H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
[Crossref] [PubMed]

P. P. Markowicz, W. C. Law, A. Baev, P. N. Prasad, S. Patskovsky, and A. Kabashin, “Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing,” Opt. Express 15(4), 1745–1754 (2007).
[Crossref] [PubMed]

X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “High-order modes of spoof surface plasmonic wave transmission on thin metal film structure,” Opt. Express 21(25), 31155–31165 (2013).
[Crossref] [PubMed]

P. Berini and J. Lu, “Curved long-range surface plasmon-polariton waveguides,” Opt. Express 14(6), 2365–2371 (2006).
[Crossref] [PubMed]

W.-K. Kim, W.-S. Yang, H.-M. Lee, H.-Y. Lee, M.-H. Lee, and W.-J. Jung, “Leaky modes of curved long-range surface plasmon-polariton waveguide,” Opt. Express 14(26), 13043–13049 (2006).
[Crossref] [PubMed]

J.-W. Liaw and P.-T. Wu, “Dispersion relation of surface plasmon wave propagating along a curved metal-dielectric interface,” Opt. Express 16(7), 4945–4951 (2008).
[Crossref] [PubMed]

B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
[Crossref] [PubMed]

Opt. Lett. (5)

Photon. Res. (1)

Photonic Sens. (1)

Y. Wang, S. Meng, Y. Liang, L. Li, and W. Peng, “Fiber-Optic surface plasmon resonance sensor with multialternating metal layers for biological measurement,” Photonic Sens. 3(3), 202–207 (2013).
[Crossref]

Phys. Chem. Chem. Phys. (1)

L. Polavarapu and L. M. Liz-Marzán, “Towards low-cost flexible substrates for nanoplasmonic sensing,” Phys. Chem. Chem. Phys. 15(15), 5288–5300 (2013).
[Crossref] [PubMed]

Phys. Rev. A (1)

K. Hasegawa, J. U. Nöckel, and M. Deutsch, “Curvature-induced radiation of surface plasmon polaritons propagating around bends,” Phys. Rev. A 75(6), 063816 (2007).
[Crossref]

Phys. Rev. B (1)

A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B 71(11), 115425 (2005).
[Crossref]

Plasmonics (1)

M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments,” Plasmonics 3(2-3), 49–57 (2008).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76(1), 016402 (2013).
[Crossref] [PubMed]

Sens. Actuators A Phys. (2)

R. Micheletto, K. Hamamoto, S. Kawai, and Y. Kawakami, “Modeling and test of fiber-optics fast SPR sensor for biological investigation,” Sens. Actuators A Phys. 119(2), 283–290 (2005).
[Crossref]

M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A Phys. 125(2), 296–303 (2006).
[Crossref]

Sens. Actuators B Chem. (6)

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem. 132(1), 26–33 (2008).
[Crossref]

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B Chem. 107(1), 40–46 (2005).
[Crossref]

D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B Chem. 115(1), 227–231 (2006).
[Crossref]

J. Rooney and E. A. H. Hall, “Designing a curved surface SPR device,” Sens. Actuators B Chem. 114(2), 804–811 (2006).
[Crossref]

M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
[Crossref]

Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuators B Chem. 192, 229–233 (2014).
[Crossref]

Small (2)

K. Kim, J.-W. Choi, K. Ma, R. Lee, K.-H. Yoo, C.-O. Yun, and D. Kim, “Nanoisland-based random activation of fluorescence for visualizing endocytotic internalization of adenovirus,” Small 6(12), 1293–1299 (2010).
[Crossref] [PubMed]

K. Kim, J. Yajima, Y. Oh, W. Lee, S. Oowada, T. Nishizaka, and D. Kim, “Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules,” Small 8(6), 892–900 (2012).
[Crossref] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988), Ch. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of the curved surface used for numerical calculation: (a) parallel and (b) perpendicular light incidence with positive curvature (r > 0). In contrast, (c) parallel and (d) perpendicular incidence with negative curvature (r < 0). Thick solid arrows represent the direction of light incidence. In the parallel light incidence, wave vector is contained in the yz plane with p-polarization in the yz plane and s-polarization parallel to x-axis. In the perpendicular incidence, wave vector is contained in the xz plane with p-polarization in the xz plane and s-polarization parallel to y-axis. Curved surface is approximated in segments (seven shown in the schematic and 13 used in the calculation).
Fig. 2
Fig. 2 Resonance curves with respect to the curvature radius in the range of r > 225 μm: (a) parallel and (b) perpendicular incidence with p-polarized light incidence. Filled square symbols follow the resonance at each curvature. Respectively same incidence in (c) and (d) with s-polarization. Arrows represent a decrease of curvature radius (increased curvature) from flat surface (r = ∞) to r = 225 μm.
Fig. 3
Fig. 3 (a) Resonance wavelength λsp, (b) width of resonance characteristics δλsp (filled symbols, left), and reflected intensity at resonance Rsp (open symbols, right) in the parallel and the perpendicular incidence as the curvature is varied on a logarithmic scale. Inset in (a) shows λsp with respect to curvature which is an inverse of curvature radius. Arrows in (a) represent inflection points for the parallel (black) and the perpendicular incidence (red).
Fig. 4
Fig. 4 Resonance wavelength shift Δλsp produced by DNA immobilization and hybridization in the parallel and the perpendicular incidence. Arrows represent threshold curvature below which resonance shift decreases significantly. The red circle is the area in which the shift increases despite increased curvature.
Fig. 5
Fig. 5 Segmental plasmon momentum at SPR with curvature radius: (a) parallel and (b) perpendicular incidence. Inset shows segment index running between 1 and 13 with 7 as the center (13 segments in total). Calculation of SPR was performed in water ambiance without DNA. Momentum variance ΔKsp is also shown at r = 3750 μm.
Fig. 6
Fig. 6 Resonance characteristics of multi-curvature surface: curvature radius on the lefthand side is fixed at r = 225 μm, while it varies in the range of |r| ≥ 225 μm. Resonance curves: (a) parallel and (b) perpendicular light incidence. Color scheme for (a) and (b) from r = −225 to + 225 μm in blue to red. Shift of resonance wavelengths (λsp) calculated on bare substrates under buffer ambiance: (c) with curvature and (d) in terms of curvature radius (black: parallel and red: perpendicular incidence). (e) Resonance shifts (Δλsp) due to immobilization of ssDNA and hybridization into dsDNA. Curvature radius at r = ∞ represents flat surface.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R ( λ ) curved = 1 N i=1 N R i ( λ, k i )cos θ in i ,
K SP = w c ε m ε d ε m + ε d = K 0 sin θ sp .
θ in i = θ sp +i α N .
cos θ in i =cos θ sp cosi α N .
λ sp m+i = 2πc w ε m + ε d ε m ε d sin( θ sp + iα /N )
λ sp m+i = 2πc w ε m + ε d ε m ε d [ 1 cos 2 θ sp cos 2 ( iα /N ) ]

Metrics