Abstract

We report on the development of Germanium-on-SOI waveguides for mid-infrared wavelengths. The strip waveguides have been formed in 0.85 and 2 μm thick Ge grown on SOI substrate with 220 nm thick Si overlayer. The propagation loss for various waveguide widths has been measured using the Fabry-Perot method with temperature tuning. The minimum loss of ~8 dB/cm has been achieved for 0.85 μm thick Ge core using 3.682 μm laser excitation. The transparency of these waveguides has been measured up to at least 3.82 μm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared Vernier racetrack resonator tunable filter implemented on a germanium on SOI waveguide platform [Invited]

Sanja Radosavljevic, Nuria Teigell Beneitez, Andrew Katumba, Muhammad Muneeb, Michael Vanslembrouck, Bart Kuyken, and Gunther Roelkens
Opt. Mater. Express 8(4) 824-835 (2018)

Mid-infrared octave spanning supercontinuum generation to 8.5  μm in silicon-germanium waveguides

Milan Sinobad, Christelle Monat, Barry Luther-davies, Pan Ma, Stephen Madden, David J. Moss, Arnan Mitchell, David Allioux, Regis Orobtchouk, Salim Boutami, Jean-Michel Hartmann, Jean-Marc Fedeli, and Christian Grillet
Optica 5(4) 360-366 (2018)

Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm

Milos Nedeljkovic, Jordi Soler Penades, Vinita Mittal, Ganapathy Senthil Murugan, Ali Z. Khokhar, Callum Littlejohns, Lewis G. Carpenter, Corin B. E. Gawith, James S. Wilkinson, and Goran Z. Mashanovich
Opt. Express 25(22) 27431-27441 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman,“Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
    [Crossref]
  2. R. A. Soref, S. J. Emelett, and W. R. Buchwald,“Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
    [Crossref]
  3. G. Z. Mashanovich, M. M. Miloevi, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).
    [Crossref] [PubMed]
  4. A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808, (2013).
    [Crossref]
  5. A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
    [Crossref]
  6. A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in Proc. of IEEE Photonics Conference 2013 (IEEE2013) pp. 104105.
  7. L. Shen, N. Healy, C. Mitchell, J. Penades, M. Nedeljkovic, G. Mashanovich, and A. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40, 268–271 (2015).
    [Crossref] [PubMed]
  8. Y. Chang, V. Paeder, L. Hvozdara, J. Hartmann, and H. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37, 2883–2885 (2012).
    [Crossref] [PubMed]
  9. A. Malik, S. Dwivedi, L. V. Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. V. Campenhout, W. Vanherle, T. V. Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22, 28479–28488 (2014).
    [Crossref] [PubMed]
  10. K.-W. Ang, T. Y. Liow, M. B. Yu, Q. Fang, J. Song, G. Q. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16, 106–113 (2010).
    [Crossref]
  11. M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (~50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
    [Crossref]
  12. G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683–706 (1993).
    [Crossref]

2015 (1)

2014 (1)

2013 (2)

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808, (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

2012 (2)

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (~50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[Crossref]

Y. Chang, V. Paeder, L. Hvozdara, J. Hartmann, and H. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37, 2883–2885 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

K.-W. Ang, T. Y. Liow, M. B. Yu, Q. Fang, J. Song, G. Q. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16, 106–113 (2010).
[Crossref]

2006 (1)

R. A. Soref, S. J. Emelett, and W. R. Buchwald,“Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

1999 (1)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman,“Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

1993 (1)

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683–706 (1993).
[Crossref]

Ang, K.-W.

K.-W. Ang, T. Y. Liow, M. B. Yu, Q. Fang, J. Song, G. Q. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16, 106–113 (2010).
[Crossref]

Arie, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman,“Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

Buchwald, W. R.

R. A. Soref, S. J. Emelett, and W. R. Buchwald,“Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Campenhout, J. V.

A. Malik, S. Dwivedi, L. V. Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. V. Campenhout, W. Vanherle, T. V. Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22, 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808, (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in Proc. of IEEE Photonics Conference 2013 (IEEE2013) pp. 104105.

Chang, Y.

Docherty, K. E.

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (~50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[Crossref]

Dwivedi, S.

Emelett, S. J.

R. A. Soref, S. J. Emelett, and W. R. Buchwald,“Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Fang, Q.

K.-W. Ang, T. Y. Liow, M. B. Yu, Q. Fang, J. Song, G. Q. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16, 106–113 (2010).
[Crossref]

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman,“Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

Hartmann, J.

Healy, N.

Herzig, H.

Hu, Y.

Hvozdara, L.

Karthe, W.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683–706 (1993).
[Crossref]

Kwong, D. L.

K.-W. Ang, T. Y. Liow, M. B. Yu, Q. Fang, J. Song, G. Q. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16, 106–113 (2010).
[Crossref]

Landschoot, L. V.

Lepage, G.

Li, X.

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (~50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[Crossref]

Liow, T. Y.

K.-W. Ang, T. Y. Liow, M. B. Yu, Q. Fang, J. Song, G. Q. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16, 106–113 (2010).
[Crossref]

Lo, G. Q.

K.-W. Ang, T. Y. Liow, M. B. Yu, Q. Fang, J. Song, G. Q. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16, 106–113 (2010).
[Crossref]

Loo, R.

A. Malik, S. Dwivedi, L. V. Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. V. Campenhout, W. Vanherle, T. V. Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22, 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808, (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in Proc. of IEEE Photonics Conference 2013 (IEEE2013) pp. 104105.

Malik, A.

A. Malik, S. Dwivedi, L. V. Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. V. Campenhout, W. Vanherle, T. V. Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22, 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808, (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in Proc. of IEEE Photonics Conference 2013 (IEEE2013) pp. 104105.

Mashanovich, G.

Mashanovich, G. Z.

Miloevi, M. M.

Mirza, M. M.

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (~50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[Crossref]

Mitchell, C.

Muneeb, M.

A. Malik, S. Dwivedi, L. V. Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. V. Campenhout, W. Vanherle, T. V. Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22, 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808, (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in Proc. of IEEE Photonics Conference 2013 (IEEE2013) pp. 104105.

Nedeljkovic, M.

Opstal, T. V.

Owens, N.

Paeder, V.

Pathak, S.

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808, (2013).
[Crossref]

Paul, D. J.

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (~50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[Crossref]

Peacock, A.

Penades, J.

Richter, B.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683–706 (1993).
[Crossref]

Roelkens, G.

A. Malik, S. Dwivedi, L. V. Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. V. Campenhout, W. Vanherle, T. V. Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22, 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808, (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in Proc. of IEEE Photonics Conference 2013 (IEEE2013) pp. 104105.

Rosenman, G.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman,“Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

Samarelli, A.

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (~50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[Crossref]

Shen, L.

Shimura, Y.

A. Malik, S. Dwivedi, L. V. Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. V. Campenhout, W. Vanherle, T. V. Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22, 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808, (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in Proc. of IEEE Photonics Conference 2013 (IEEE2013) pp. 104105.

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman,“Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

Song, J.

K.-W. Ang, T. Y. Liow, M. B. Yu, Q. Fang, J. Song, G. Q. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16, 106–113 (2010).
[Crossref]

Soref, R. A.

R. A. Soref, S. J. Emelett, and W. R. Buchwald,“Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Teo, E. J.

Ternent, G.

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (~50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[Crossref]

Tittelbach, G.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683–706 (1993).
[Crossref]

Vanherle, W.

Velha, P.

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (~50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[Crossref]

Xiong, B.

Yu, M. B.

K.-W. Ang, T. Y. Liow, M. B. Yu, Q. Fang, J. Song, G. Q. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16, 106–113 (2010).
[Crossref]

Zhou, H.

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (~50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[Crossref]

Appl. Phys. Lett. (2)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman,“Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K.-W. Ang, T. Y. Liow, M. B. Yu, Q. Fang, J. Song, G. Q. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16, 106–113 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808, (2013).
[Crossref]

J. Opt. A (1)

R. A. Soref, S. J. Emelett, and W. R. Buchwald,“Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

J. Vac. Sci. Technol. B (1)

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (~50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Pure Appl. Opt. (1)

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683–706 (1993).
[Crossref]

Other (1)

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in Proc. of IEEE Photonics Conference 2013 (IEEE2013) pp. 104105.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 SEM image of a strip waveguide fabricated in 2 μm thick Ge-on-SOI. The inset shows the sidewall profile achieved using the optimized ICP etch recipe.
Fig. 2
Fig. 2 (a) Schematic of the measurement setup. (b) The excited waveguide mode captured using the mid-IR camera.
Fig. 3
Fig. 3 (a) The cavity oscillations recorded for 1.85 μm wide waveguide in 2 μm thick Ge core. (b) Propagation loss of waveguides calculated using the recorded oscillations (dotted lines are a linear fit to the data only for illustration). The waveguides have been fabricated in 0.85 and 2 μm thick Ge core.
Fig. 4
Fig. 4 The calculated 1/e width of the waveguide mode (TE00), normalized to its waveguide width, for (a) 0.85 μm thick Ge core, and (b) 2 μm thick Ge core.
Fig. 5
Fig. 5 The computed ηeff of the first two guided TE modes in (a) 0.85 μm, and (b) 2 μm thick Ge cores.
Fig. 6
Fig. 6 The measured transmission of a 4 μm wide waveguide formed in 0.85 μm thick Ge core. The transmission has been normalized with the free-space source power which is measured using neutral density filters.
Fig. 7
Fig. 7 Cross-sectional TEM images of the waveguide fabricated in (a) 0.85 μm, and (b) 2 μm thick Ge cores on SOI, respectively. The insets show the mode profiles of the sample waveguides.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α L = ln ( R 1 + P min / P max 1 P min / P max )
R = ( η 0 η eff η 0 + η eff ) 2

Metrics