Abstract

Flying insects are common vectors for transmission of pathogens and inflict significant harm to humans and agricultural production in many parts of the world. We present proof of principle for an optical system capable of highly specific vector control. This system utilizes a combination of optical sources, detectors, and sophisticated software to search, detect, and identify flying insects in real-time, with the capability of eradication using a lethal laser pulse. We present data on two insect species to show species distinction; Diaphorina citri, a vector of the causal agent of citrus greening disease, and Anopheles stephensi, a malaria vector.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

24 May 2016: A correction was made to the author listing.


OSA Recommended Articles
Insects as unidentified flying objects

Philip S. Callahan and R. W. Mankin
Appl. Opt. 17(21) 3355-3360 (1978)

Precision Laser Automatic Tracking System

R. F. Lucy, C. J. Peters, E. J. McGann, and K. T. Lang
Appl. Opt. 5(4) 517-524 (1966)

APPLICATIONS OF LASERS (EXCLUDING HOLOGRAPHY) A Laser Tracking and Ranging System

G. Ammon and S. Russell
Appl. Opt. 9(10) 2256-2260 (1970)

References

  • View by:
  • |
  • |
  • |

  1. V. A. Drake and D. R. Reynolds, Radar Entomology: Observing Insect Flight and Migration (Centre for Agriculture and Biostatistics International, 2012).
  2. J. Muller and R. Brandl, “Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages,” J. Appl. Entomol. 46(4), 897–905 (2009).
  3. A. Gebru, E. Rohwer, P. Neething, and M. Brydegaard, “Investigation of atmospheric insect wing-beat frequencies and iridescence features using a multispectral kHz remote detection system,” J. Appl. Remote Sens. 9221, 922106 (2014).
  4. V. A. Drake and H. Wang, “Recognition and characterization of migratory movements of Australian plague locusts, Chortoicetes terminifera, with an insect monitoring radar,” J. Appl. Remote Sens. 7(1), 075095 (2013).
    [Crossref]
  5. Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and E. Keogh, “Flying insect detection and classification with inexpensive sensors,” J. Vis. Exp. 92(92), e52111 (2014).
    [PubMed]
  6. J. E. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact,” Sci. Rep. 5, 13392 (2015).
    [Crossref] [PubMed]
  7. S. Butail, N. Manoukis, M. Diallo, J. M. Ribeiro, T. Lehmann, and D. A. Paley, “Reconstructing the flight kinematics of swarming and mating in wild mosquitoes,” J. R. Soc. Interface 9(75), 2624–2638 (2012).
    [Crossref] [PubMed]
  8. A. D. Straw, K. Branson, T. R. Neumann, and M. H. Dickinson, “Multi-camera real-time three-dimensional tracking of multiple flying insects,” J. R. Soc. Interface 2010, 0230 (2010).
    [PubMed]
  9. D. Pimentel, “Amounts of pesticides reaching target pests: environmental impacts and ethics,” J. Agric. Environ. Ethics 8(1), 17–29 (1995).
    [Crossref]
  10. S. Tiwari, H. Lewis-Rosenblum, K. Pelz-Stelinski, and L. L. Stelinski, “Incidence of Candidatus Liberibacter asiaticus infection in abandoned citrus occurring in proximity to commercially managed groves,” J. Econ. Entomol. 103(6), 1972–1978 (2010).
    [Crossref] [PubMed]
  11. K. L. Manjunath, S. E. Halbert, C. Ramadugu, S. Webb, and R. F. Lee, “Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus Huanglongbing in Florida,” Phytopathology 98(4), 387–396 (2008).
    [Crossref] [PubMed]
  12. S. E. Halbert and K. L. Manjunath, “Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida,” Fla. Entomol. 87(3), 330–353 (2004).
    [Crossref]
  13. J. V. da Garca, “Citrus greening disease,” Annu. Rev. Phytopathol. 29(1), 109–136 (1991).
    [Crossref]
  14. T. R. Gottwald, “Current epidemiological understanding of citrus Huanglongbing,” Annu. Rev. Phytopathol. 48(1), 119–139 (2010).
    [Crossref] [PubMed]
  15. H. Briegel, “Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria,” J. Med. Entomol. 27(5), 839–850 (1990).
    [Crossref] [PubMed]
  16. WHO, World Malaria Report 2014 (World Health Organization, 2014).
  17. S. N. Fry, N. Rohrseitz, A. D. Straw, and M. H. Dickinson, “TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies,” J. Neurosci. Methods 171(1), 110–117 (2008).
    [Crossref] [PubMed]
  18. S. N. Fry, M. Bichsel, P. Müller, and D. Robert, “Tracking of flying insects using pan-tilt cameras,” J. Neurosci. Methods 101(1), 59–67 (2000).
    [Crossref] [PubMed]
  19. A. D. Straw, S. Lee, and M. H. Dickinson, “Visual control of altitude in flying drosophila,” Curr. Biol. 20(17), 1550–1556 (2010).
    [Crossref] [PubMed]
  20. R. A. Hyde, E. Johanson, J. T. Kare, N. P. Myhrvold, T. J. Nugent, N. R. Peterson, and L. L. Wood Jr., “Photonic Fence,” United States Patent US8705017 B2 (2010).
  21. M. D. Keller, D. J. Leahy, B. J. Norton, E. R. Johanson, M. Mullen, Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6, 20936 (2016).
    [Crossref] [PubMed]
  22. D. Richtmeyer and K. W. Morton, Difference Methods for Initial Value Problems, 2nd ed., (Wiley Publishing Incorporated, 1967).
  23. S. Butterworth, “On the theory of filter amplifiers,” Experimental Wireless and the Wireless Engineer 7, 536–541 (1930).
  24. P. D. Welch, “The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967).
    [Crossref]
  25. J. V. da Graça, J. V. French, P. S. Haslem, M. Skaria, M. Sétamou, and B. Salas, “Survey for the Asian citrus psyllid, diaphorina citri, and citrus huanglongbing (greening disease) in Texas,” Subtrop. Plant Sci. 60, 21–26 (2008).
  26. WHO, Guidelines for Laboratory and Field-Testing of Long-Lasting Insecticidal Nets (World Health Organization, 2013).
  27. H. Samet and M. Tamminen, “Efficient component labeling of images of arbitrary dimension represented by linear bintrees,” IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 579–586 (1988).
    [Crossref]
  28. C. A. Stutt, “Low-frequency spectrum of lock-in amplifiers,” MIT Tech. Rep. 105, 1–18 (1949).
  29. M. Hori, K. Shibuya, M. Sato, and Y. Saito, “Lethal effects of short-wavelength visible light on insects,” Sci. Rep. 4, 7383 (2014).
    [Crossref] [PubMed]
  30. M. A. B. Deakin, “Formulae for insect wingbeat frequency,” J. Insect Sci. 10(96), 96 (2010).
    [Crossref] [PubMed]

2016 (1)

M. D. Keller, D. J. Leahy, B. J. Norton, E. R. Johanson, M. Mullen, Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6, 20936 (2016).
[Crossref] [PubMed]

2015 (1)

J. E. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact,” Sci. Rep. 5, 13392 (2015).
[Crossref] [PubMed]

2014 (3)

A. Gebru, E. Rohwer, P. Neething, and M. Brydegaard, “Investigation of atmospheric insect wing-beat frequencies and iridescence features using a multispectral kHz remote detection system,” J. Appl. Remote Sens. 9221, 922106 (2014).

Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and E. Keogh, “Flying insect detection and classification with inexpensive sensors,” J. Vis. Exp. 92(92), e52111 (2014).
[PubMed]

M. Hori, K. Shibuya, M. Sato, and Y. Saito, “Lethal effects of short-wavelength visible light on insects,” Sci. Rep. 4, 7383 (2014).
[Crossref] [PubMed]

2013 (1)

V. A. Drake and H. Wang, “Recognition and characterization of migratory movements of Australian plague locusts, Chortoicetes terminifera, with an insect monitoring radar,” J. Appl. Remote Sens. 7(1), 075095 (2013).
[Crossref]

2012 (1)

S. Butail, N. Manoukis, M. Diallo, J. M. Ribeiro, T. Lehmann, and D. A. Paley, “Reconstructing the flight kinematics of swarming and mating in wild mosquitoes,” J. R. Soc. Interface 9(75), 2624–2638 (2012).
[Crossref] [PubMed]

2010 (5)

A. D. Straw, K. Branson, T. R. Neumann, and M. H. Dickinson, “Multi-camera real-time three-dimensional tracking of multiple flying insects,” J. R. Soc. Interface 2010, 0230 (2010).
[PubMed]

S. Tiwari, H. Lewis-Rosenblum, K. Pelz-Stelinski, and L. L. Stelinski, “Incidence of Candidatus Liberibacter asiaticus infection in abandoned citrus occurring in proximity to commercially managed groves,” J. Econ. Entomol. 103(6), 1972–1978 (2010).
[Crossref] [PubMed]

T. R. Gottwald, “Current epidemiological understanding of citrus Huanglongbing,” Annu. Rev. Phytopathol. 48(1), 119–139 (2010).
[Crossref] [PubMed]

M. A. B. Deakin, “Formulae for insect wingbeat frequency,” J. Insect Sci. 10(96), 96 (2010).
[Crossref] [PubMed]

A. D. Straw, S. Lee, and M. H. Dickinson, “Visual control of altitude in flying drosophila,” Curr. Biol. 20(17), 1550–1556 (2010).
[Crossref] [PubMed]

2009 (1)

J. Muller and R. Brandl, “Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages,” J. Appl. Entomol. 46(4), 897–905 (2009).

2008 (3)

S. N. Fry, N. Rohrseitz, A. D. Straw, and M. H. Dickinson, “TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies,” J. Neurosci. Methods 171(1), 110–117 (2008).
[Crossref] [PubMed]

K. L. Manjunath, S. E. Halbert, C. Ramadugu, S. Webb, and R. F. Lee, “Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus Huanglongbing in Florida,” Phytopathology 98(4), 387–396 (2008).
[Crossref] [PubMed]

J. V. da Graça, J. V. French, P. S. Haslem, M. Skaria, M. Sétamou, and B. Salas, “Survey for the Asian citrus psyllid, diaphorina citri, and citrus huanglongbing (greening disease) in Texas,” Subtrop. Plant Sci. 60, 21–26 (2008).

2004 (1)

S. E. Halbert and K. L. Manjunath, “Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida,” Fla. Entomol. 87(3), 330–353 (2004).
[Crossref]

2000 (1)

S. N. Fry, M. Bichsel, P. Müller, and D. Robert, “Tracking of flying insects using pan-tilt cameras,” J. Neurosci. Methods 101(1), 59–67 (2000).
[Crossref] [PubMed]

1995 (1)

D. Pimentel, “Amounts of pesticides reaching target pests: environmental impacts and ethics,” J. Agric. Environ. Ethics 8(1), 17–29 (1995).
[Crossref]

1991 (1)

J. V. da Garca, “Citrus greening disease,” Annu. Rev. Phytopathol. 29(1), 109–136 (1991).
[Crossref]

1990 (1)

H. Briegel, “Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria,” J. Med. Entomol. 27(5), 839–850 (1990).
[Crossref] [PubMed]

1988 (1)

H. Samet and M. Tamminen, “Efficient component labeling of images of arbitrary dimension represented by linear bintrees,” IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 579–586 (1988).
[Crossref]

1967 (1)

P. D. Welch, “The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967).
[Crossref]

1949 (1)

C. A. Stutt, “Low-frequency spectrum of lock-in amplifiers,” MIT Tech. Rep. 105, 1–18 (1949).

1930 (1)

S. Butterworth, “On the theory of filter amplifiers,” Experimental Wireless and the Wireless Engineer 7, 536–541 (1930).

Abe, M.

J. E. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact,” Sci. Rep. 5, 13392 (2015).
[Crossref] [PubMed]

Angarita-Jaimes, N.

J. E. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact,” Sci. Rep. 5, 13392 (2015).
[Crossref] [PubMed]

Batista, G.

Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and E. Keogh, “Flying insect detection and classification with inexpensive sensors,” J. Vis. Exp. 92(92), e52111 (2014).
[PubMed]

Bichsel, M.

S. N. Fry, M. Bichsel, P. Müller, and D. Robert, “Tracking of flying insects using pan-tilt cameras,” J. Neurosci. Methods 101(1), 59–67 (2000).
[Crossref] [PubMed]

Brandl, R.

J. Muller and R. Brandl, “Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages,” J. Appl. Entomol. 46(4), 897–905 (2009).

Branson, K.

A. D. Straw, K. Branson, T. R. Neumann, and M. H. Dickinson, “Multi-camera real-time three-dimensional tracking of multiple flying insects,” J. R. Soc. Interface 2010, 0230 (2010).
[PubMed]

Briegel, H.

H. Briegel, “Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria,” J. Med. Entomol. 27(5), 839–850 (1990).
[Crossref] [PubMed]

Brydegaard, M.

A. Gebru, E. Rohwer, P. Neething, and M. Brydegaard, “Investigation of atmospheric insect wing-beat frequencies and iridescence features using a multispectral kHz remote detection system,” J. Appl. Remote Sens. 9221, 922106 (2014).

Butail, S.

S. Butail, N. Manoukis, M. Diallo, J. M. Ribeiro, T. Lehmann, and D. A. Paley, “Reconstructing the flight kinematics of swarming and mating in wild mosquitoes,” J. R. Soc. Interface 9(75), 2624–2638 (2012).
[Crossref] [PubMed]

Butterworth, S.

S. Butterworth, “On the theory of filter amplifiers,” Experimental Wireless and the Wireless Engineer 7, 536–541 (1930).

Chen, Y.

Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and E. Keogh, “Flying insect detection and classification with inexpensive sensors,” J. Vis. Exp. 92(92), e52111 (2014).
[PubMed]

da Garca, J. V.

J. V. da Garca, “Citrus greening disease,” Annu. Rev. Phytopathol. 29(1), 109–136 (1991).
[Crossref]

da Graça, J. V.

J. V. da Graça, J. V. French, P. S. Haslem, M. Skaria, M. Sétamou, and B. Salas, “Survey for the Asian citrus psyllid, diaphorina citri, and citrus huanglongbing (greening disease) in Texas,” Subtrop. Plant Sci. 60, 21–26 (2008).

Deakin, M. A. B.

M. A. B. Deakin, “Formulae for insect wingbeat frequency,” J. Insect Sci. 10(96), 96 (2010).
[Crossref] [PubMed]

Diallo, M.

S. Butail, N. Manoukis, M. Diallo, J. M. Ribeiro, T. Lehmann, and D. A. Paley, “Reconstructing the flight kinematics of swarming and mating in wild mosquitoes,” J. R. Soc. Interface 9(75), 2624–2638 (2012).
[Crossref] [PubMed]

Dickinson, M. H.

A. D. Straw, K. Branson, T. R. Neumann, and M. H. Dickinson, “Multi-camera real-time three-dimensional tracking of multiple flying insects,” J. R. Soc. Interface 2010, 0230 (2010).
[PubMed]

A. D. Straw, S. Lee, and M. H. Dickinson, “Visual control of altitude in flying drosophila,” Curr. Biol. 20(17), 1550–1556 (2010).
[Crossref] [PubMed]

S. N. Fry, N. Rohrseitz, A. D. Straw, and M. H. Dickinson, “TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies,” J. Neurosci. Methods 171(1), 110–117 (2008).
[Crossref] [PubMed]

Drake, V. A.

V. A. Drake and H. Wang, “Recognition and characterization of migratory movements of Australian plague locusts, Chortoicetes terminifera, with an insect monitoring radar,” J. Appl. Remote Sens. 7(1), 075095 (2013).
[Crossref]

French, J. V.

J. V. da Graça, J. V. French, P. S. Haslem, M. Skaria, M. Sétamou, and B. Salas, “Survey for the Asian citrus psyllid, diaphorina citri, and citrus huanglongbing (greening disease) in Texas,” Subtrop. Plant Sci. 60, 21–26 (2008).

Fry, S. N.

S. N. Fry, N. Rohrseitz, A. D. Straw, and M. H. Dickinson, “TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies,” J. Neurosci. Methods 171(1), 110–117 (2008).
[Crossref] [PubMed]

S. N. Fry, M. Bichsel, P. Müller, and D. Robert, “Tracking of flying insects using pan-tilt cameras,” J. Neurosci. Methods 101(1), 59–67 (2000).
[Crossref] [PubMed]

Gebru, A.

A. Gebru, E. Rohwer, P. Neething, and M. Brydegaard, “Investigation of atmospheric insect wing-beat frequencies and iridescence features using a multispectral kHz remote detection system,” J. Appl. Remote Sens. 9221, 922106 (2014).

Gottwald, T. R.

T. R. Gottwald, “Current epidemiological understanding of citrus Huanglongbing,” Annu. Rev. Phytopathol. 48(1), 119–139 (2010).
[Crossref] [PubMed]

Halbert, S. E.

K. L. Manjunath, S. E. Halbert, C. Ramadugu, S. Webb, and R. F. Lee, “Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus Huanglongbing in Florida,” Phytopathology 98(4), 387–396 (2008).
[Crossref] [PubMed]

S. E. Halbert and K. L. Manjunath, “Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida,” Fla. Entomol. 87(3), 330–353 (2004).
[Crossref]

Haslem, P. S.

J. V. da Graça, J. V. French, P. S. Haslem, M. Skaria, M. Sétamou, and B. Salas, “Survey for the Asian citrus psyllid, diaphorina citri, and citrus huanglongbing (greening disease) in Texas,” Subtrop. Plant Sci. 60, 21–26 (2008).

Hori, M.

M. Hori, K. Shibuya, M. Sato, and Y. Saito, “Lethal effects of short-wavelength visible light on insects,” Sci. Rep. 4, 7383 (2014).
[Crossref] [PubMed]

Johanson, E. R.

M. D. Keller, D. J. Leahy, B. J. Norton, E. R. Johanson, M. Mullen, Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6, 20936 (2016).
[Crossref] [PubMed]

Keller, M. D.

M. D. Keller, D. J. Leahy, B. J. Norton, E. R. Johanson, M. Mullen, Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6, 20936 (2016).
[Crossref] [PubMed]

Keogh, E.

Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and E. Keogh, “Flying insect detection and classification with inexpensive sensors,” J. Vis. Exp. 92(92), e52111 (2014).
[PubMed]

Leahy, D. J.

M. D. Keller, D. J. Leahy, B. J. Norton, E. R. Johanson, M. Mullen, Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6, 20936 (2016).
[Crossref] [PubMed]

Lee, R. F.

K. L. Manjunath, S. E. Halbert, C. Ramadugu, S. Webb, and R. F. Lee, “Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus Huanglongbing in Florida,” Phytopathology 98(4), 387–396 (2008).
[Crossref] [PubMed]

Lee, S.

A. D. Straw, S. Lee, and M. H. Dickinson, “Visual control of altitude in flying drosophila,” Curr. Biol. 20(17), 1550–1556 (2010).
[Crossref] [PubMed]

Lehmann, T.

S. Butail, N. Manoukis, M. Diallo, J. M. Ribeiro, T. Lehmann, and D. A. Paley, “Reconstructing the flight kinematics of swarming and mating in wild mosquitoes,” J. R. Soc. Interface 9(75), 2624–2638 (2012).
[Crossref] [PubMed]

Lewis-Rosenblum, H.

S. Tiwari, H. Lewis-Rosenblum, K. Pelz-Stelinski, and L. L. Stelinski, “Incidence of Candidatus Liberibacter asiaticus infection in abandoned citrus occurring in proximity to commercially managed groves,” J. Econ. Entomol. 103(6), 1972–1978 (2010).
[Crossref] [PubMed]

Mafra-Neto, A.

Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and E. Keogh, “Flying insect detection and classification with inexpensive sensors,” J. Vis. Exp. 92(92), e52111 (2014).
[PubMed]

Makagon, A.

M. D. Keller, D. J. Leahy, B. J. Norton, E. R. Johanson, M. Mullen, Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6, 20936 (2016).
[Crossref] [PubMed]

Manjunath, K. L.

K. L. Manjunath, S. E. Halbert, C. Ramadugu, S. Webb, and R. F. Lee, “Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus Huanglongbing in Florida,” Phytopathology 98(4), 387–396 (2008).
[Crossref] [PubMed]

S. E. Halbert and K. L. Manjunath, “Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida,” Fla. Entomol. 87(3), 330–353 (2004).
[Crossref]

Manoukis, N.

S. Butail, N. Manoukis, M. Diallo, J. M. Ribeiro, T. Lehmann, and D. A. Paley, “Reconstructing the flight kinematics of swarming and mating in wild mosquitoes,” J. R. Soc. Interface 9(75), 2624–2638 (2012).
[Crossref] [PubMed]

Marvit,

M. D. Keller, D. J. Leahy, B. J. Norton, E. R. Johanson, M. Mullen, Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6, 20936 (2016).
[Crossref] [PubMed]

McCall, P. J.

J. E. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact,” Sci. Rep. 5, 13392 (2015).
[Crossref] [PubMed]

Mullen, M.

M. D. Keller, D. J. Leahy, B. J. Norton, E. R. Johanson, M. Mullen, Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6, 20936 (2016).
[Crossref] [PubMed]

Muller, J.

J. Muller and R. Brandl, “Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages,” J. Appl. Entomol. 46(4), 897–905 (2009).

Müller, P.

S. N. Fry, M. Bichsel, P. Müller, and D. Robert, “Tracking of flying insects using pan-tilt cameras,” J. Neurosci. Methods 101(1), 59–67 (2000).
[Crossref] [PubMed]

Neething, P.

A. Gebru, E. Rohwer, P. Neething, and M. Brydegaard, “Investigation of atmospheric insect wing-beat frequencies and iridescence features using a multispectral kHz remote detection system,” J. Appl. Remote Sens. 9221, 922106 (2014).

Neumann, T. R.

A. D. Straw, K. Branson, T. R. Neumann, and M. H. Dickinson, “Multi-camera real-time three-dimensional tracking of multiple flying insects,” J. R. Soc. Interface 2010, 0230 (2010).
[PubMed]

Norton, B. J.

M. D. Keller, D. J. Leahy, B. J. Norton, E. R. Johanson, M. Mullen, Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6, 20936 (2016).
[Crossref] [PubMed]

Paley, D. A.

S. Butail, N. Manoukis, M. Diallo, J. M. Ribeiro, T. Lehmann, and D. A. Paley, “Reconstructing the flight kinematics of swarming and mating in wild mosquitoes,” J. R. Soc. Interface 9(75), 2624–2638 (2012).
[Crossref] [PubMed]

Parker, J. E.

J. E. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact,” Sci. Rep. 5, 13392 (2015).
[Crossref] [PubMed]

Pelz-Stelinski, K.

S. Tiwari, H. Lewis-Rosenblum, K. Pelz-Stelinski, and L. L. Stelinski, “Incidence of Candidatus Liberibacter asiaticus infection in abandoned citrus occurring in proximity to commercially managed groves,” J. Econ. Entomol. 103(6), 1972–1978 (2010).
[Crossref] [PubMed]

Pimentel, D.

D. Pimentel, “Amounts of pesticides reaching target pests: environmental impacts and ethics,” J. Agric. Environ. Ethics 8(1), 17–29 (1995).
[Crossref]

Ramadugu, C.

K. L. Manjunath, S. E. Halbert, C. Ramadugu, S. Webb, and R. F. Lee, “Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus Huanglongbing in Florida,” Phytopathology 98(4), 387–396 (2008).
[Crossref] [PubMed]

Ribeiro, J. M.

S. Butail, N. Manoukis, M. Diallo, J. M. Ribeiro, T. Lehmann, and D. A. Paley, “Reconstructing the flight kinematics of swarming and mating in wild mosquitoes,” J. R. Soc. Interface 9(75), 2624–2638 (2012).
[Crossref] [PubMed]

Robert, D.

S. N. Fry, M. Bichsel, P. Müller, and D. Robert, “Tracking of flying insects using pan-tilt cameras,” J. Neurosci. Methods 101(1), 59–67 (2000).
[Crossref] [PubMed]

Rohrseitz, N.

S. N. Fry, N. Rohrseitz, A. D. Straw, and M. H. Dickinson, “TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies,” J. Neurosci. Methods 171(1), 110–117 (2008).
[Crossref] [PubMed]

Rohwer, E.

A. Gebru, E. Rohwer, P. Neething, and M. Brydegaard, “Investigation of atmospheric insect wing-beat frequencies and iridescence features using a multispectral kHz remote detection system,” J. Appl. Remote Sens. 9221, 922106 (2014).

Saito, Y.

M. Hori, K. Shibuya, M. Sato, and Y. Saito, “Lethal effects of short-wavelength visible light on insects,” Sci. Rep. 4, 7383 (2014).
[Crossref] [PubMed]

Salas, B.

J. V. da Graça, J. V. French, P. S. Haslem, M. Skaria, M. Sétamou, and B. Salas, “Survey for the Asian citrus psyllid, diaphorina citri, and citrus huanglongbing (greening disease) in Texas,” Subtrop. Plant Sci. 60, 21–26 (2008).

Samet, H.

H. Samet and M. Tamminen, “Efficient component labeling of images of arbitrary dimension represented by linear bintrees,” IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 579–586 (1988).
[Crossref]

Sato, M.

M. Hori, K. Shibuya, M. Sato, and Y. Saito, “Lethal effects of short-wavelength visible light on insects,” Sci. Rep. 4, 7383 (2014).
[Crossref] [PubMed]

Sétamou, M.

J. V. da Graça, J. V. French, P. S. Haslem, M. Skaria, M. Sétamou, and B. Salas, “Survey for the Asian citrus psyllid, diaphorina citri, and citrus huanglongbing (greening disease) in Texas,” Subtrop. Plant Sci. 60, 21–26 (2008).

Shibuya, K.

M. Hori, K. Shibuya, M. Sato, and Y. Saito, “Lethal effects of short-wavelength visible light on insects,” Sci. Rep. 4, 7383 (2014).
[Crossref] [PubMed]

Skaria, M.

J. V. da Graça, J. V. French, P. S. Haslem, M. Skaria, M. Sétamou, and B. Salas, “Survey for the Asian citrus psyllid, diaphorina citri, and citrus huanglongbing (greening disease) in Texas,” Subtrop. Plant Sci. 60, 21–26 (2008).

Stelinski, L. L.

S. Tiwari, H. Lewis-Rosenblum, K. Pelz-Stelinski, and L. L. Stelinski, “Incidence of Candidatus Liberibacter asiaticus infection in abandoned citrus occurring in proximity to commercially managed groves,” J. Econ. Entomol. 103(6), 1972–1978 (2010).
[Crossref] [PubMed]

Straw, A. D.

A. D. Straw, K. Branson, T. R. Neumann, and M. H. Dickinson, “Multi-camera real-time three-dimensional tracking of multiple flying insects,” J. R. Soc. Interface 2010, 0230 (2010).
[PubMed]

A. D. Straw, S. Lee, and M. H. Dickinson, “Visual control of altitude in flying drosophila,” Curr. Biol. 20(17), 1550–1556 (2010).
[Crossref] [PubMed]

S. N. Fry, N. Rohrseitz, A. D. Straw, and M. H. Dickinson, “TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies,” J. Neurosci. Methods 171(1), 110–117 (2008).
[Crossref] [PubMed]

Stutt, C. A.

C. A. Stutt, “Low-frequency spectrum of lock-in amplifiers,” MIT Tech. Rep. 105, 1–18 (1949).

Tamminen, M.

H. Samet and M. Tamminen, “Efficient component labeling of images of arbitrary dimension represented by linear bintrees,” IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 579–586 (1988).
[Crossref]

Tiwari, S.

S. Tiwari, H. Lewis-Rosenblum, K. Pelz-Stelinski, and L. L. Stelinski, “Incidence of Candidatus Liberibacter asiaticus infection in abandoned citrus occurring in proximity to commercially managed groves,” J. Econ. Entomol. 103(6), 1972–1978 (2010).
[Crossref] [PubMed]

Towers, C. E.

J. E. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact,” Sci. Rep. 5, 13392 (2015).
[Crossref] [PubMed]

Towers, D.

J. E. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact,” Sci. Rep. 5, 13392 (2015).
[Crossref] [PubMed]

Wang, H.

V. A. Drake and H. Wang, “Recognition and characterization of migratory movements of Australian plague locusts, Chortoicetes terminifera, with an insect monitoring radar,” J. Appl. Remote Sens. 7(1), 075095 (2013).
[Crossref]

Webb, S.

K. L. Manjunath, S. E. Halbert, C. Ramadugu, S. Webb, and R. F. Lee, “Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus Huanglongbing in Florida,” Phytopathology 98(4), 387–396 (2008).
[Crossref] [PubMed]

Welch, P. D.

P. D. Welch, “The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967).
[Crossref]

Why, A.

Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and E. Keogh, “Flying insect detection and classification with inexpensive sensors,” J. Vis. Exp. 92(92), e52111 (2014).
[PubMed]

Annu. Rev. Phytopathol. (2)

J. V. da Garca, “Citrus greening disease,” Annu. Rev. Phytopathol. 29(1), 109–136 (1991).
[Crossref]

T. R. Gottwald, “Current epidemiological understanding of citrus Huanglongbing,” Annu. Rev. Phytopathol. 48(1), 119–139 (2010).
[Crossref] [PubMed]

Curr. Biol. (1)

A. D. Straw, S. Lee, and M. H. Dickinson, “Visual control of altitude in flying drosophila,” Curr. Biol. 20(17), 1550–1556 (2010).
[Crossref] [PubMed]

Experimental Wireless and the Wireless Engineer (1)

S. Butterworth, “On the theory of filter amplifiers,” Experimental Wireless and the Wireless Engineer 7, 536–541 (1930).

Fla. Entomol. (1)

S. E. Halbert and K. L. Manjunath, “Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida,” Fla. Entomol. 87(3), 330–353 (2004).
[Crossref]

IEEE Trans. Audio Electroacoust. (1)

P. D. Welch, “The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

H. Samet and M. Tamminen, “Efficient component labeling of images of arbitrary dimension represented by linear bintrees,” IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 579–586 (1988).
[Crossref]

J. Agric. Environ. Ethics (1)

D. Pimentel, “Amounts of pesticides reaching target pests: environmental impacts and ethics,” J. Agric. Environ. Ethics 8(1), 17–29 (1995).
[Crossref]

J. Appl. Entomol. (1)

J. Muller and R. Brandl, “Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages,” J. Appl. Entomol. 46(4), 897–905 (2009).

J. Appl. Remote Sens. (2)

A. Gebru, E. Rohwer, P. Neething, and M. Brydegaard, “Investigation of atmospheric insect wing-beat frequencies and iridescence features using a multispectral kHz remote detection system,” J. Appl. Remote Sens. 9221, 922106 (2014).

V. A. Drake and H. Wang, “Recognition and characterization of migratory movements of Australian plague locusts, Chortoicetes terminifera, with an insect monitoring radar,” J. Appl. Remote Sens. 7(1), 075095 (2013).
[Crossref]

J. Econ. Entomol. (1)

S. Tiwari, H. Lewis-Rosenblum, K. Pelz-Stelinski, and L. L. Stelinski, “Incidence of Candidatus Liberibacter asiaticus infection in abandoned citrus occurring in proximity to commercially managed groves,” J. Econ. Entomol. 103(6), 1972–1978 (2010).
[Crossref] [PubMed]

J. Insect Sci. (1)

M. A. B. Deakin, “Formulae for insect wingbeat frequency,” J. Insect Sci. 10(96), 96 (2010).
[Crossref] [PubMed]

J. Med. Entomol. (1)

H. Briegel, “Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria,” J. Med. Entomol. 27(5), 839–850 (1990).
[Crossref] [PubMed]

J. Neurosci. Methods (2)

S. N. Fry, N. Rohrseitz, A. D. Straw, and M. H. Dickinson, “TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies,” J. Neurosci. Methods 171(1), 110–117 (2008).
[Crossref] [PubMed]

S. N. Fry, M. Bichsel, P. Müller, and D. Robert, “Tracking of flying insects using pan-tilt cameras,” J. Neurosci. Methods 101(1), 59–67 (2000).
[Crossref] [PubMed]

J. R. Soc. Interface (2)

S. Butail, N. Manoukis, M. Diallo, J. M. Ribeiro, T. Lehmann, and D. A. Paley, “Reconstructing the flight kinematics of swarming and mating in wild mosquitoes,” J. R. Soc. Interface 9(75), 2624–2638 (2012).
[Crossref] [PubMed]

A. D. Straw, K. Branson, T. R. Neumann, and M. H. Dickinson, “Multi-camera real-time three-dimensional tracking of multiple flying insects,” J. R. Soc. Interface 2010, 0230 (2010).
[PubMed]

J. Vis. Exp. (1)

Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and E. Keogh, “Flying insect detection and classification with inexpensive sensors,” J. Vis. Exp. 92(92), e52111 (2014).
[PubMed]

MIT Tech. Rep. (1)

C. A. Stutt, “Low-frequency spectrum of lock-in amplifiers,” MIT Tech. Rep. 105, 1–18 (1949).

Phytopathology (1)

K. L. Manjunath, S. E. Halbert, C. Ramadugu, S. Webb, and R. F. Lee, “Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus Huanglongbing in Florida,” Phytopathology 98(4), 387–396 (2008).
[Crossref] [PubMed]

Sci. Rep. (3)

J. E. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact,” Sci. Rep. 5, 13392 (2015).
[Crossref] [PubMed]

M. Hori, K. Shibuya, M. Sato, and Y. Saito, “Lethal effects of short-wavelength visible light on insects,” Sci. Rep. 4, 7383 (2014).
[Crossref] [PubMed]

M. D. Keller, D. J. Leahy, B. J. Norton, E. R. Johanson, M. Mullen, Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6, 20936 (2016).
[Crossref] [PubMed]

Subtrop. Plant Sci. (1)

J. V. da Graça, J. V. French, P. S. Haslem, M. Skaria, M. Sétamou, and B. Salas, “Survey for the Asian citrus psyllid, diaphorina citri, and citrus huanglongbing (greening disease) in Texas,” Subtrop. Plant Sci. 60, 21–26 (2008).

Other (5)

WHO, Guidelines for Laboratory and Field-Testing of Long-Lasting Insecticidal Nets (World Health Organization, 2013).

D. Richtmeyer and K. W. Morton, Difference Methods for Initial Value Problems, 2nd ed., (Wiley Publishing Incorporated, 1967).

R. A. Hyde, E. Johanson, J. T. Kare, N. P. Myhrvold, T. J. Nugent, N. R. Peterson, and L. L. Wood Jr., “Photonic Fence,” United States Patent US8705017 B2 (2010).

V. A. Drake and D. R. Reynolds, Radar Entomology: Observing Insect Flight and Migration (Centre for Agriculture and Biostatistics International, 2012).

WHO, World Malaria Report 2014 (World Health Organization, 2014).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (835 KB)      Video of Tracking

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) A photograph of the PF tracking and identification module. The compact unit consists of an illumination source, a camera, and the tracking laser. The eradication module also attaches to the unit, but is not shown for clarity. (b) A diagram depicting the system level operation of the PF unit. Flying insects crossing a virtual boundary are tracked and identified through measurement of wing beat frequency.

Fig. 2
Fig. 2

The lethality test apparatus is shown. The eradication laser was tested in an operator-controlled environment for accurate lethality measurements. Survival is assessed using WHO guidelines for pesticides as described in the text.

Fig. 3
Fig. 3

The algorithm for tracking is shown (Top). The tracking module detects flying insects through motion, through subtraction of time-sequenced digitized frame. Also shown are the real images (bottom). In this sequence, the motion of the insects (in red) is barely perceptible to the eye, while the tracking algorithm performs this task efficiently. The collected video relating to the frames below is in Visualization 1.

Fig. 4
Fig. 4

A photodiode signal of the wingbeat used for identification of insects. The intensity pattern varies temporally. The signal increases as occlusion decreases.

Fig. 5
Fig. 5

(a) The spectral signatures of D. citri and An. stephensi. The fundamental frequencies are distinct, with multiple harmonic peaks shown in the D. citri spectra. (b) Spectral signatures for a male and female individual An. stephensi. The entire spectra are shown in Fig. 7.

Fig. 6
Fig. 6

Mortality of D. citri. The insects were exposed to different energy levels through variation of pulse time. The wavelength of the eradication laser is 445 nm at a power level of 670 mW. LD:50 occurs at approximately 7 mJ.

Fig. 7
Fig. 7

Full spectra.

Metrics