Abstract

Stereoscopic 3D (S3D) displays provide an additional sense of depth compared to non-stereoscopic displays by sending slightly different images to the two eyes. But conventional S3D displays do not reproduce all natural depth cues. In particular, focus cues are incorrect causing mismatches between accommodation and vergence: The eyes must accommodate to the display screen to create sharp retinal images even when binocular disparity drives the eyes to converge to other distances. This mismatch causes visual discomfort and reduces visual performance. We propose and assess two new techniques that are designed to reduce the vergence-accommodation conflict and thereby decrease discomfort and increase visual performance. These techniques are much simpler to implement than previous conflict-reducing techniques. The first proposed technique uses variable-focus lenses between the display and the viewer’s eyes. The power of the lenses is yoked to the expected vergence distance thereby reducing the mismatch between vergence and accommodation. The second proposed technique uses a fixed lens in front of one eye and relies on the binocularly fused percept being determined by one eye and then the other, depending on simulated distance. We conducted performance tests and discomfort assessments with both techniques and compared the results to those of a conventional S3D display. The first proposed technique, but not the second, yielded clear improvements in performance and reductions in discomfort. This dynamic-lens technique therefore offers an easily implemented technique for reducing the vergence-accommodation conflict and thereby improving viewer experience.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed switchable lens enables the development of a volumetric stereoscopic display

Gordon D. Love, David M. Hoffman, Philip J.W. Hands, James Gao, Andrew K. Kirby, and Martin S. Banks
Opt. Express 17(18) 15716-15725 (2009)

Creating effective focus cues in multi-plane 3D displays

Sowmya Ravikumar, Kurt Akeley, and Martin S. Banks
Opt. Express 19(21) 20940-20952 (2011)

Systematic characterization and optimization of 3D light field displays

Hekun Huang and Hong Hua
Opt. Express 25(16) 18508-18525 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. G. Martens and K. N. Ogle, “Observations on accommodative convergence; especially its nonlinear relationships,” Am. J. Ophthalmol. 47(12), 455 (1959).
  2. E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957).
    [Crossref] [PubMed]
  3. V. V. Krishnan, D. Shirachi, and L. Stark, “Dynamic measures of vergence accommodation,” Am. J. Optom. Physiol. Opt. 54(7), 470–473 (1977).
    [Crossref] [PubMed]
  4. J. Semmlow and P. Wetzel, “Dynamic contributions of the components of binocular vergence,” J. Opt. Soc. Am. 69(5), 639–645 (1979).
    [Crossref] [PubMed]
  5. B. G. Cumming and S. J. Judge, “Disparity-induced and blur-induced convergence eye movement and accommodation in the monkey,” J. Neurophysiol. 55(5), 896–914 (1986).
    [PubMed]
  6. J. P. Wann and M. Mon-Williams, “Measurement of visual aftereffects following virtual environment exposure.” in Handbook of Virtual Environments: Design, Implementation, and Applications (2002), pp. 731–749.
  7. S. Yano, M. Emoto, and T. Mitsuhashi, “Two factors in visual fatigue caused by stereoscopic HDTV images,” Displays 25(4), 141–150 (2004).
    [Crossref]
  8. F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2), 99–108 (2004).
    [Crossref]
  9. M. Emoto, T. Niida, and F. Okano, “Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television,” J. Disp. Technol. 1(2), 328–340 (2005).
    [Crossref]
  10. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
    [Crossref] [PubMed]
  11. O. Berezin, “Digital cinema in Russia: Is 3D still a driver for the development of the cinema market?” Paper presented at the 3D Media 2010 statistic from kinopoisk.ru (2010).
  12. T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
    [Crossref] [PubMed]
  13. M. S. Banks, J. C. Read, R. S. Allison, and S. J. Watt, “Stereoscopy and the human visual system,” SMPTE Motion Imaging J. 121(4), 24–43 (2012).
    [Crossref] [PubMed]
  14. G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
    [Crossref]
  15. A. Sullivan, “DepthCube solid-state 3D volumetric display,” Proc. SPIE 5291, 279–284 (2004).
    [Crossref]
  16. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
    [Crossref]
  17. K. J. MacKenzie, D. M. Hoffman, and S. J. Watt, “Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control,” J. Vis. 10(8), 22 (2010).
    [Crossref] [PubMed]
  18. G. D. Love, D. M. Hoffman, P. J. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
    [Crossref] [PubMed]
  19. S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
    [Crossref] [PubMed]
  20. S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940–20952 (2011).
    [Crossref] [PubMed]
  21. X. Hu and H. Hua, “An optical see-through multi-focal-plane stereoscopic display prototype enabling nearly-correct focus cues,” Proc. SPIE 8648, 86481A (2013).
    [Crossref]
  22. X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
    [Crossref]
  23. G. Lippmann, “La Photographie Integrale,” Comptes-Rendus, Academie des Sciences. 146, 446–451 (1908).
  24. W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23(3), 814–824 (2004).
    [Crossref]
  25. F. E. Ives, “Parallax stereogram and process of making same,” United States Patent 725,567 (1903).
  26. K. Perlin, S. Paxia, and J. S. Kollin, “An autostereoscopic display,” ACM Trans. Graph. 208, 319–326 (2000).
  27. D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
    [Crossref]
  28. D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
    [Crossref]
  29. G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
    [Crossref]
  30. G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
    [Crossref]
  31. Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
    [Crossref]
  32. Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
    [Crossref] [PubMed]
  33. V. Pamplona, A. Mohan, M. Oliveira, and R. Raskar, “NETRA: interactive display for estimating refractive errors and focal range,” ACM Trans. Graph. 29(4), 77 (2010).
    [Crossref]
  34. A. Maimone, G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
    [Crossref]
  35. R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multi-plane displays,” ACM Trans. Graph. 34(4), 59 (2015).
    [Crossref]
  36. B. J. W. Evans, “Monovision: a review,” Ophthalmic Physiol. Opt. 27(5), 417–439 (2007).
    [Crossref] [PubMed]
  37. A. R. Franklin, “Presbyopia and contact lenses. Part 1: optical challenges of contact lenses in presbyopia,” Optician 229, 22–27 (2005).
  38. E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957).
    [Crossref] [PubMed]
  39. C. M. Schor, “A dynamic model of cross-coupling between accommodation and convergence: simulations of step and frequency responses,” Optom. Vis. Sci. 69(4), 258–269 (1992).
    [Crossref] [PubMed]
  40. C. Schor and P. Erickson, “Patterns of binocular suppression and accommodation in monovision,” Am. J. Optom. Physiol. Opt. 65(11), 853–861 (1988).
    [Crossref] [PubMed]
  41. M. Gutkowski and B. Cassin, “Stereopsis and monovision in the contact lens management of presbyopia,” Binocul. Vis. Strabismus Q. 6, 31–36 (1991).
  42. F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63(8), 1293–1313 (2001).
    [Crossref] [PubMed]
  43. F. A. Wichmann and N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63(8), 1314–1329 (2001).
    [Crossref] [PubMed]
  44. I. Fründ, N. V. Haenel, and F. A. Wichmann, “Inference for psychometric functions in the presence of nonstationary behavior,” J. Vis. 11(6), 16 (2011).
    [Crossref] [PubMed]
  45. J. Kim, D. Kane, and M. S. Banks, “The rate of change of vergence-accommodation conflict affects visual discomfort,” Vision Res. 105, 159–165 (2014).
    [Crossref] [PubMed]
  46. K. Talmi and J. Liu, “Eye and gaze tracking for visually controlled interactive stereoscopic displays,” Signal Process. Image 14(10), 799–810 (1999).
    [Crossref]
  47. A. T. Duchowski, B. Pelfrey, D. H. House, and R. Wang, “Measuring gaze depth with an eye tracker during stereoscopic display,” in Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (ACM, 2011) pp. 15–22.
    [Crossref]
  48. S. Jainta, J. Hoormann, and W. Jaschinski, “Objective and subjective measures of vergence step responses,” Vision Res. 47(26), 3238–3246 (2007).
    [Crossref] [PubMed]
  49. W. Jaschinski, S. Jainta, and J. Hoormann, “Comparison of shutter glasses and mirror stereoscope for measuring dynamic and static vergence,” J. Eye Mov. Res. 1(5), 1–7 (2008).
  50. W. W. Sprague, E. A. Cooper, I. Tošić, and M. S. Banks, “Stereopsis is adaptive for the natural environment,” Sci. Adv. 1(4), e1400254 (2015).
    [Crossref] [PubMed]
  51. L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998).
    [Crossref]
  52. F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung, “Saliency filters: Contrast based filtering for salient region detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012), pp. 733–740.
    [Crossref]
  53. X. Cui, Q. Liu, and D. Metaxas, “Temporal spectral residual: fast motion saliency detection,” in Proceedings of the 17th ACM International Conference on Multimedia (ACM, 2009), pp. 617–620.
    [Crossref]
  54. A. Belardinelli, F. Pirri, and A. Carbone, “Motion saliency maps from spatiotemporal filtering” in Attention in Cognitive Systems (Springer Berlin Heidelberg, 2009), pp. 112–123.
  55. K. Rapantzikos, N. Tsapatsoulis, Y. Avrithis, and S. Kollias, “Spatiotemporal saliency for video classification,” Signal Process. Image 24(7), 557–571 (2009).
    [Crossref]
  56. V. Mahadevan and N. Vasconcelos, “Spatiotemporal saliency in dynamic scenes,” IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 171–177 (2010).
    [Crossref] [PubMed]
  57. M. Lang, O. Wang, T. Aydin, A. Smolic, and M. H. Gross, “Practical temporal consistency for image-based graphics applications,” ACM Trans. Graph. 31(4), 34 (2012).
    [Crossref]
  58. Y. Niu, Y. Geng, X. Li, and L. Liu, “Leveraging stereopsis for saliency analysis,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2012), pp. 454–461.
  59. W. Blohm, I. P. Beldie, K. Schenke, K. Fazel, and S. Pastoor, “Stereoscopic image representation with synthetic depth of field,” J. Soc. Inf. Disp. 5(3), 307–313 (1997).
    [Crossref]
  60. T. Blum, M. Wieczorek, A. Aichert, R. Tibrewal, and N. Navab, “The effect of out-of-focus blur on visual discomfort when using stereo displays” in 2010 9th IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (IEEE, 2010), pp. 13–17.
  61. M. Mauderer, S. Conte, M. A. Nacenta, and D. Vishwanath, “Depth perception with gaze-contingent depth of field,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2013), pp. 217–226.
  62. G. Maiello, M. Chessa, F. Solari, and P. J. Bex, “Simulated disparity and peripheral blur interact during binocular fusion,” J. Vis. 14(8), 13 (2014).
    [Crossref] [PubMed]
  63. L. Leroy, P. Fuchs, and G. Moreau, “Real-time adaptive blur for reducing eye strain in stereoscopic displays,” ACM Trans. Appl. Percept. 9(2), 9 (2012).
    [Crossref]
  64. Y. J. Jung, H. Sohn, S. I. Lee, F. Speranza, and M. Y. Ro, “Visual importance-and discomfort region-selective low-pass filtering for reducing visual discomfort in stereoscopic displays,” IEEE Trans. Circ. Syst. Video Tech. 23(8), 1408–1421 (2013).
    [Crossref]
  65. M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imag. Sci. Tech. 53(3), 30201 (2009).
    [Crossref]
  66. R. Konrad, E. A. Cooper, and G. Wetzstein, “Novel optical configurations for virtual reality: evaluating user preference and performance with focus-tunable and monovision near-eye displays,” in Proc. of the ACM Conference on Human Factors in Computing Systems (2016).
    [Crossref]

2015 (2)

R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multi-plane displays,” ACM Trans. Graph. 34(4), 59 (2015).
[Crossref]

W. W. Sprague, E. A. Cooper, I. Tošić, and M. S. Banks, “Stereopsis is adaptive for the natural environment,” Sci. Adv. 1(4), e1400254 (2015).
[Crossref] [PubMed]

2014 (3)

J. Kim, D. Kane, and M. S. Banks, “The rate of change of vergence-accommodation conflict affects visual discomfort,” Vision Res. 105, 159–165 (2014).
[Crossref] [PubMed]

G. Maiello, M. Chessa, F. Solari, and P. J. Bex, “Simulated disparity and peripheral blur interact during binocular fusion,” J. Vis. 14(8), 13 (2014).
[Crossref] [PubMed]

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

2013 (4)

X. Hu and H. Hua, “An optical see-through multi-focal-plane stereoscopic display prototype enabling nearly-correct focus cues,” Proc. SPIE 8648, 86481A (2013).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

Y. J. Jung, H. Sohn, S. I. Lee, F. Speranza, and M. Y. Ro, “Visual importance-and discomfort region-selective low-pass filtering for reducing visual discomfort in stereoscopic displays,” IEEE Trans. Circ. Syst. Video Tech. 23(8), 1408–1421 (2013).
[Crossref]

A. Maimone, G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

2012 (4)

L. Leroy, P. Fuchs, and G. Moreau, “Real-time adaptive blur for reducing eye strain in stereoscopic displays,” ACM Trans. Appl. Percept. 9(2), 9 (2012).
[Crossref]

M. Lang, O. Wang, T. Aydin, A. Smolic, and M. H. Gross, “Practical temporal consistency for image-based graphics applications,” ACM Trans. Graph. 31(4), 34 (2012).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

M. S. Banks, J. C. Read, R. S. Allison, and S. J. Watt, “Stereoscopy and the human visual system,” SMPTE Motion Imaging J. 121(4), 24–43 (2012).
[Crossref] [PubMed]

2011 (5)

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940–20952 (2011).
[Crossref] [PubMed]

Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
[Crossref] [PubMed]

I. Fründ, N. V. Haenel, and F. A. Wichmann, “Inference for psychometric functions in the presence of nonstationary behavior,” J. Vis. 11(6), 16 (2011).
[Crossref] [PubMed]

2010 (5)

V. Pamplona, A. Mohan, M. Oliveira, and R. Raskar, “NETRA: interactive display for estimating refractive errors and focal range,” ACM Trans. Graph. 29(4), 77 (2010).
[Crossref]

V. Mahadevan and N. Vasconcelos, “Spatiotemporal saliency in dynamic scenes,” IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 171–177 (2010).
[Crossref] [PubMed]

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

K. J. MacKenzie, D. M. Hoffman, and S. J. Watt, “Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control,” J. Vis. 10(8), 22 (2010).
[Crossref] [PubMed]

2009 (3)

G. D. Love, D. M. Hoffman, P. J. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref] [PubMed]

M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imag. Sci. Tech. 53(3), 30201 (2009).
[Crossref]

K. Rapantzikos, N. Tsapatsoulis, Y. Avrithis, and S. Kollias, “Spatiotemporal saliency for video classification,” Signal Process. Image 24(7), 557–571 (2009).
[Crossref]

2008 (2)

W. Jaschinski, S. Jainta, and J. Hoormann, “Comparison of shutter glasses and mirror stereoscope for measuring dynamic and static vergence,” J. Eye Mov. Res. 1(5), 1–7 (2008).

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

2007 (2)

B. J. W. Evans, “Monovision: a review,” Ophthalmic Physiol. Opt. 27(5), 417–439 (2007).
[Crossref] [PubMed]

S. Jainta, J. Hoormann, and W. Jaschinski, “Objective and subjective measures of vergence step responses,” Vision Res. 47(26), 3238–3246 (2007).
[Crossref] [PubMed]

2006 (1)

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

2005 (2)

A. R. Franklin, “Presbyopia and contact lenses. Part 1: optical challenges of contact lenses in presbyopia,” Optician 229, 22–27 (2005).

M. Emoto, T. Niida, and F. Okano, “Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television,” J. Disp. Technol. 1(2), 328–340 (2005).
[Crossref]

2004 (5)

S. Yano, M. Emoto, and T. Mitsuhashi, “Two factors in visual fatigue caused by stereoscopic HDTV images,” Displays 25(4), 141–150 (2004).
[Crossref]

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2), 99–108 (2004).
[Crossref]

A. Sullivan, “DepthCube solid-state 3D volumetric display,” Proc. SPIE 5291, 279–284 (2004).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23(3), 814–824 (2004).
[Crossref]

2002 (1)

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

2001 (2)

F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63(8), 1293–1313 (2001).
[Crossref] [PubMed]

F. A. Wichmann and N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63(8), 1314–1329 (2001).
[Crossref] [PubMed]

2000 (1)

K. Perlin, S. Paxia, and J. S. Kollin, “An autostereoscopic display,” ACM Trans. Graph. 208, 319–326 (2000).

1999 (1)

K. Talmi and J. Liu, “Eye and gaze tracking for visually controlled interactive stereoscopic displays,” Signal Process. Image 14(10), 799–810 (1999).
[Crossref]

1998 (1)

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998).
[Crossref]

1997 (1)

W. Blohm, I. P. Beldie, K. Schenke, K. Fazel, and S. Pastoor, “Stereoscopic image representation with synthetic depth of field,” J. Soc. Inf. Disp. 5(3), 307–313 (1997).
[Crossref]

1992 (1)

C. M. Schor, “A dynamic model of cross-coupling between accommodation and convergence: simulations of step and frequency responses,” Optom. Vis. Sci. 69(4), 258–269 (1992).
[Crossref] [PubMed]

1991 (1)

M. Gutkowski and B. Cassin, “Stereopsis and monovision in the contact lens management of presbyopia,” Binocul. Vis. Strabismus Q. 6, 31–36 (1991).

1988 (1)

C. Schor and P. Erickson, “Patterns of binocular suppression and accommodation in monovision,” Am. J. Optom. Physiol. Opt. 65(11), 853–861 (1988).
[Crossref] [PubMed]

1986 (1)

B. G. Cumming and S. J. Judge, “Disparity-induced and blur-induced convergence eye movement and accommodation in the monkey,” J. Neurophysiol. 55(5), 896–914 (1986).
[PubMed]

1979 (1)

1977 (1)

V. V. Krishnan, D. Shirachi, and L. Stark, “Dynamic measures of vergence accommodation,” Am. J. Optom. Physiol. Opt. 54(7), 470–473 (1977).
[Crossref] [PubMed]

1959 (1)

T. G. Martens and K. N. Ogle, “Observations on accommodative convergence; especially its nonlinear relationships,” Am. J. Ophthalmol. 47(12), 455 (1959).

1957 (2)

E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957).
[Crossref] [PubMed]

E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957).
[Crossref] [PubMed]

1908 (1)

G. Lippmann, “La Photographie Integrale,” Comptes-Rendus, Academie des Sciences. 146, 446–451 (1908).

Akeley, K.

S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940–20952 (2011).
[Crossref] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Albert, R. A.

R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multi-plane displays,” ACM Trans. Graph. 34(4), 59 (2015).
[Crossref]

Allison, R. S.

M. S. Banks, J. C. Read, R. S. Allison, and S. J. Watt, “Stereoscopy and the human visual system,” SMPTE Motion Imaging J. 121(4), 24–43 (2012).
[Crossref] [PubMed]

Avrithis, Y.

K. Rapantzikos, N. Tsapatsoulis, Y. Avrithis, and S. Kollias, “Spatiotemporal saliency for video classification,” Signal Process. Image 24(7), 557–571 (2009).
[Crossref]

Aydin, T.

M. Lang, O. Wang, T. Aydin, A. Smolic, and M. H. Gross, “Practical temporal consistency for image-based graphics applications,” ACM Trans. Graph. 31(4), 34 (2012).
[Crossref]

Banks, M. S.

R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multi-plane displays,” ACM Trans. Graph. 34(4), 59 (2015).
[Crossref]

W. W. Sprague, E. A. Cooper, I. Tošić, and M. S. Banks, “Stereopsis is adaptive for the natural environment,” Sci. Adv. 1(4), e1400254 (2015).
[Crossref] [PubMed]

J. Kim, D. Kane, and M. S. Banks, “The rate of change of vergence-accommodation conflict affects visual discomfort,” Vision Res. 105, 159–165 (2014).
[Crossref] [PubMed]

M. S. Banks, J. C. Read, R. S. Allison, and S. J. Watt, “Stereoscopy and the human visual system,” SMPTE Motion Imaging J. 121(4), 24–43 (2012).
[Crossref] [PubMed]

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940–20952 (2011).
[Crossref] [PubMed]

G. D. Love, D. M. Hoffman, P. J. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Beldie, I. P.

W. Blohm, I. P. Beldie, K. Schenke, K. Fazel, and S. Pastoor, “Stereoscopic image representation with synthetic depth of field,” J. Soc. Inf. Disp. 5(3), 307–313 (1997).
[Crossref]

Bex, P. J.

G. Maiello, M. Chessa, F. Solari, and P. J. Bex, “Simulated disparity and peripheral blur interact during binocular fusion,” J. Vis. 14(8), 13 (2014).
[Crossref] [PubMed]

Blohm, W.

W. Blohm, I. P. Beldie, K. Schenke, K. Fazel, and S. Pastoor, “Stereoscopic image representation with synthetic depth of field,” J. Soc. Inf. Disp. 5(3), 307–313 (1997).
[Crossref]

Bulbul, A.

R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multi-plane displays,” ACM Trans. Graph. 34(4), 59 (2015).
[Crossref]

Cassin, B.

M. Gutkowski and B. Cassin, “Stereopsis and monovision in the contact lens management of presbyopia,” Binocul. Vis. Strabismus Q. 6, 31–36 (1991).

Cheng, D.

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

Chessa, M.

G. Maiello, M. Chessa, F. Solari, and P. J. Bex, “Simulated disparity and peripheral blur interact during binocular fusion,” J. Vis. 14(8), 13 (2014).
[Crossref] [PubMed]

Chun, W. S.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Conte, S.

M. Mauderer, S. Conte, M. A. Nacenta, and D. Vishwanath, “Depth perception with gaze-contingent depth of field,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2013), pp. 217–226.

Cooper, E. A.

W. W. Sprague, E. A. Cooper, I. Tošić, and M. S. Banks, “Stereopsis is adaptive for the natural environment,” Sci. Adv. 1(4), e1400254 (2015).
[Crossref] [PubMed]

R. Konrad, E. A. Cooper, and G. Wetzstein, “Novel optical configurations for virtual reality: evaluating user preference and performance with focus-tunable and monovision near-eye displays,” in Proc. of the ACM Conference on Human Factors in Computing Systems (2016).
[Crossref]

Cui, X.

X. Cui, Q. Liu, and D. Metaxas, “Temporal spectral residual: fast motion saliency detection,” in Proceedings of the 17th ACM International Conference on Multimedia (ACM, 2009), pp. 617–620.
[Crossref]

Cumming, B. G.

B. G. Cumming and S. J. Judge, “Disparity-induced and blur-induced convergence eye movement and accommodation in the monkey,” J. Neurophysiol. 55(5), 896–914 (1986).
[PubMed]

Dorval, R. K.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Duchowski, A. T.

A. T. Duchowski, B. Pelfrey, D. H. House, and R. Wang, “Measuring gaze depth with an eye tracker during stereoscopic display,” in Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (ACM, 2011) pp. 15–22.
[Crossref]

Emoto, M.

M. Emoto, T. Niida, and F. Okano, “Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television,” J. Disp. Technol. 1(2), 328–340 (2005).
[Crossref]

S. Yano, M. Emoto, and T. Mitsuhashi, “Two factors in visual fatigue caused by stereoscopic HDTV images,” Displays 25(4), 141–150 (2004).
[Crossref]

Erickson, P.

C. Schor and P. Erickson, “Patterns of binocular suppression and accommodation in monovision,” Am. J. Optom. Physiol. Opt. 65(11), 853–861 (1988).
[Crossref] [PubMed]

Evans, B. J. W.

B. J. W. Evans, “Monovision: a review,” Ophthalmic Physiol. Opt. 27(5), 417–439 (2007).
[Crossref] [PubMed]

Favalora, G. E.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Fazel, K.

W. Blohm, I. P. Beldie, K. Schenke, K. Fazel, and S. Pastoor, “Stereoscopic image representation with synthetic depth of field,” J. Soc. Inf. Disp. 5(3), 307–313 (1997).
[Crossref]

Fincham, E. F.

E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957).
[Crossref] [PubMed]

E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957).
[Crossref] [PubMed]

Fortuin, M.

M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imag. Sci. Tech. 53(3), 30201 (2009).
[Crossref]

Franklin, A. R.

A. R. Franklin, “Presbyopia and contact lenses. Part 1: optical challenges of contact lenses in presbyopia,” Optician 229, 22–27 (2005).

Fründ, I.

I. Fründ, N. V. Haenel, and F. A. Wichmann, “Inference for psychometric functions in the presence of nonstationary behavior,” J. Vis. 11(6), 16 (2011).
[Crossref] [PubMed]

Fuchs, H.

A. Maimone, G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

Fuchs, P.

L. Leroy, P. Fuchs, and G. Moreau, “Real-time adaptive blur for reducing eye strain in stereoscopic displays,” ACM Trans. Appl. Percept. 9(2), 9 (2012).
[Crossref]

Gao, J.

Geng, Y.

Y. Niu, Y. Geng, X. Li, and L. Liu, “Leveraging stereopsis for saliency analysis,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2012), pp. 454–461.

Giovinco, M.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Gross, M. H.

M. Lang, O. Wang, T. Aydin, A. Smolic, and M. H. Gross, “Practical temporal consistency for image-based graphics applications,” ACM Trans. Graph. 31(4), 34 (2012).
[Crossref]

Gutkowski, M.

M. Gutkowski and B. Cassin, “Stereopsis and monovision in the contact lens management of presbyopia,” Binocul. Vis. Strabismus Q. 6, 31–36 (1991).

Haenel, N. V.

I. Fründ, N. V. Haenel, and F. A. Wichmann, “Inference for psychometric functions in the presence of nonstationary behavior,” J. Vis. 11(6), 16 (2011).
[Crossref] [PubMed]

Hall, D. M.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Hands, P. J.

Heidrich, W.

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

Heynderickx, I.

M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imag. Sci. Tech. 53(3), 30201 (2009).
[Crossref]

Hill, N. J.

F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63(8), 1293–1313 (2001).
[Crossref] [PubMed]

F. A. Wichmann and N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63(8), 1314–1329 (2001).
[Crossref] [PubMed]

Hirsch, M.

A. Maimone, G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

Hoffman, D. M.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

K. J. MacKenzie, D. M. Hoffman, and S. J. Watt, “Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control,” J. Vis. 10(8), 22 (2010).
[Crossref] [PubMed]

G. D. Love, D. M. Hoffman, P. J. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Hoormann, J.

W. Jaschinski, S. Jainta, and J. Hoormann, “Comparison of shutter glasses and mirror stereoscope for measuring dynamic and static vergence,” J. Eye Mov. Res. 1(5), 1–7 (2008).

S. Jainta, J. Hoormann, and W. Jaschinski, “Objective and subjective measures of vergence step responses,” Vision Res. 47(26), 3238–3246 (2007).
[Crossref] [PubMed]

Hornung, A.

F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung, “Saliency filters: Contrast based filtering for salient region detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012), pp. 733–740.
[Crossref]

House, D. H.

A. T. Duchowski, B. Pelfrey, D. H. House, and R. Wang, “Measuring gaze depth with an eye tracker during stereoscopic display,” in Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (ACM, 2011) pp. 15–22.
[Crossref]

Hu, X.

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

X. Hu and H. Hua, “An optical see-through multi-focal-plane stereoscopic display prototype enabling nearly-correct focus cues,” Proc. SPIE 8648, 86481A (2013).
[Crossref]

Hua, H.

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

X. Hu and H. Hua, “An optical see-through multi-focal-plane stereoscopic display prototype enabling nearly-correct focus cues,” Proc. SPIE 8648, 86481A (2013).
[Crossref]

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

IJsselsteijn, W.

M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imag. Sci. Tech. 53(3), 30201 (2009).
[Crossref]

Itti, L.

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998).
[Crossref]

Jainta, S.

W. Jaschinski, S. Jainta, and J. Hoormann, “Comparison of shutter glasses and mirror stereoscope for measuring dynamic and static vergence,” J. Eye Mov. Res. 1(5), 1–7 (2008).

S. Jainta, J. Hoormann, and W. Jaschinski, “Objective and subjective measures of vergence step responses,” Vision Res. 47(26), 3238–3246 (2007).
[Crossref] [PubMed]

Jaschinski, W.

W. Jaschinski, S. Jainta, and J. Hoormann, “Comparison of shutter glasses and mirror stereoscope for measuring dynamic and static vergence,” J. Eye Mov. Res. 1(5), 1–7 (2008).

S. Jainta, J. Hoormann, and W. Jaschinski, “Objective and subjective measures of vergence step responses,” Vision Res. 47(26), 3238–3246 (2007).
[Crossref] [PubMed]

Judge, S. J.

B. G. Cumming and S. J. Judge, “Disparity-induced and blur-induced convergence eye movement and accommodation in the monkey,” J. Neurophysiol. 55(5), 896–914 (1986).
[PubMed]

Jung, Y. J.

Y. J. Jung, H. Sohn, S. I. Lee, F. Speranza, and M. Y. Ro, “Visual importance-and discomfort region-selective low-pass filtering for reducing visual discomfort in stereoscopic displays,” IEEE Trans. Circ. Syst. Video Tech. 23(8), 1408–1421 (2013).
[Crossref]

Kane, D.

J. Kim, D. Kane, and M. S. Banks, “The rate of change of vergence-accommodation conflict affects visual discomfort,” Vision Res. 105, 159–165 (2014).
[Crossref] [PubMed]

Kim, J.

J. Kim, D. Kane, and M. S. Banks, “The rate of change of vergence-accommodation conflict affects visual discomfort,” Vision Res. 105, 159–165 (2014).
[Crossref] [PubMed]

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Kim, Y.

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

Kirby, A. K.

Koch, C.

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998).
[Crossref]

Kollias, S.

K. Rapantzikos, N. Tsapatsoulis, Y. Avrithis, and S. Kollias, “Spatiotemporal saliency for video classification,” Signal Process. Image 24(7), 557–571 (2009).
[Crossref]

Kollin, J. S.

K. Perlin, S. Paxia, and J. S. Kollin, “An autostereoscopic display,” ACM Trans. Graph. 208, 319–326 (2000).

Konrad, R.

R. Konrad, E. A. Cooper, and G. Wetzstein, “Novel optical configurations for virtual reality: evaluating user preference and performance with focus-tunable and monovision near-eye displays,” in Proc. of the ACM Conference on Human Factors in Computing Systems (2016).
[Crossref]

Kooi, F. L.

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2), 99–108 (2004).
[Crossref]

Krahenbuhl, P.

F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung, “Saliency filters: Contrast based filtering for salient region detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012), pp. 733–740.
[Crossref]

Krishnan, V. V.

V. V. Krishnan, D. Shirachi, and L. Stark, “Dynamic measures of vergence accommodation,” Am. J. Optom. Physiol. Opt. 54(7), 470–473 (1977).
[Crossref] [PubMed]

Lambooij, M.

M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imag. Sci. Tech. 53(3), 30201 (2009).
[Crossref]

Lang, M.

M. Lang, O. Wang, T. Aydin, A. Smolic, and M. H. Gross, “Practical temporal consistency for image-based graphics applications,” ACM Trans. Graph. 31(4), 34 (2012).
[Crossref]

Lanman, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

A. Maimone, G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

Lee, S. I.

Y. J. Jung, H. Sohn, S. I. Lee, F. Speranza, and M. Y. Ro, “Visual importance-and discomfort region-selective low-pass filtering for reducing visual discomfort in stereoscopic displays,” IEEE Trans. Circ. Syst. Video Tech. 23(8), 1408–1421 (2013).
[Crossref]

Leroy, L.

L. Leroy, P. Fuchs, and G. Moreau, “Real-time adaptive blur for reducing eye strain in stereoscopic displays,” ACM Trans. Appl. Percept. 9(2), 9 (2012).
[Crossref]

Li, X.

Y. Niu, Y. Geng, X. Li, and L. Liu, “Leveraging stereopsis for saliency analysis,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2012), pp. 454–461.

Lippmann, G.

G. Lippmann, “La Photographie Integrale,” Comptes-Rendus, Academie des Sciences. 146, 446–451 (1908).

Liu, J.

K. Talmi and J. Liu, “Eye and gaze tracking for visually controlled interactive stereoscopic displays,” Signal Process. Image 14(10), 799–810 (1999).
[Crossref]

Liu, L.

Y. Niu, Y. Geng, X. Li, and L. Liu, “Leveraging stereopsis for saliency analysis,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2012), pp. 454–461.

Liu, Q.

X. Cui, Q. Liu, and D. Metaxas, “Temporal spectral residual: fast motion saliency detection,” in Proceedings of the 17th ACM International Conference on Multimedia (ACM, 2009), pp. 617–620.
[Crossref]

Liu, S.

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

Love, G. D.

Luebke, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

MacKenzie, K. J.

K. J. MacKenzie, D. M. Hoffman, and S. J. Watt, “Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control,” J. Vis. 10(8), 22 (2010).
[Crossref] [PubMed]

Mahadevan, V.

V. Mahadevan and N. Vasconcelos, “Spatiotemporal saliency in dynamic scenes,” IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 171–177 (2010).
[Crossref] [PubMed]

Maiello, G.

G. Maiello, M. Chessa, F. Solari, and P. J. Bex, “Simulated disparity and peripheral blur interact during binocular fusion,” J. Vis. 14(8), 13 (2014).
[Crossref] [PubMed]

Maimone, A.

A. Maimone, G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

Martens, T. G.

T. G. Martens and K. N. Ogle, “Observations on accommodative convergence; especially its nonlinear relationships,” Am. J. Ophthalmol. 47(12), 455 (1959).

Matusik, W.

W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23(3), 814–824 (2004).
[Crossref]

Mauderer, M.

M. Mauderer, S. Conte, M. A. Nacenta, and D. Vishwanath, “Depth perception with gaze-contingent depth of field,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2013), pp. 217–226.

Metaxas, D.

X. Cui, Q. Liu, and D. Metaxas, “Temporal spectral residual: fast motion saliency detection,” in Proceedings of the 17th ACM International Conference on Multimedia (ACM, 2009), pp. 617–620.
[Crossref]

Mitsuhashi, T.

S. Yano, M. Emoto, and T. Mitsuhashi, “Two factors in visual fatigue caused by stereoscopic HDTV images,” Displays 25(4), 141–150 (2004).
[Crossref]

Mohan, A.

V. Pamplona, A. Mohan, M. Oliveira, and R. Raskar, “NETRA: interactive display for estimating refractive errors and focal range,” ACM Trans. Graph. 29(4), 77 (2010).
[Crossref]

Moreau, G.

L. Leroy, P. Fuchs, and G. Moreau, “Real-time adaptive blur for reducing eye strain in stereoscopic displays,” ACM Trans. Appl. Percept. 9(2), 9 (2012).
[Crossref]

Nacenta, M. A.

M. Mauderer, S. Conte, M. A. Nacenta, and D. Vishwanath, “Depth perception with gaze-contingent depth of field,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2013), pp. 217–226.

Nakamura, J.

Napoli, J.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Narain, R.

R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multi-plane displays,” ACM Trans. Graph. 34(4), 59 (2015).
[Crossref]

Niebur, E.

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998).
[Crossref]

Niida, T.

M. Emoto, T. Niida, and F. Okano, “Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television,” J. Disp. Technol. 1(2), 328–340 (2005).
[Crossref]

Niu, Y.

Y. Niu, Y. Geng, X. Li, and L. Liu, “Leveraging stereopsis for saliency analysis,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2012), pp. 454–461.

O’Brien, J. F.

R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multi-plane displays,” ACM Trans. Graph. 34(4), 59 (2015).
[Crossref]

Ogle, K. N.

T. G. Martens and K. N. Ogle, “Observations on accommodative convergence; especially its nonlinear relationships,” Am. J. Ophthalmol. 47(12), 455 (1959).

Okano, F.

M. Emoto, T. Niida, and F. Okano, “Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television,” J. Disp. Technol. 1(2), 328–340 (2005).
[Crossref]

Oliveira, M.

V. Pamplona, A. Mohan, M. Oliveira, and R. Raskar, “NETRA: interactive display for estimating refractive errors and focal range,” ACM Trans. Graph. 29(4), 77 (2010).
[Crossref]

Pamplona, V.

V. Pamplona, A. Mohan, M. Oliveira, and R. Raskar, “NETRA: interactive display for estimating refractive errors and focal range,” ACM Trans. Graph. 29(4), 77 (2010).
[Crossref]

Pastoor, S.

W. Blohm, I. P. Beldie, K. Schenke, K. Fazel, and S. Pastoor, “Stereoscopic image representation with synthetic depth of field,” J. Soc. Inf. Disp. 5(3), 307–313 (1997).
[Crossref]

Paxia, S.

K. Perlin, S. Paxia, and J. S. Kollin, “An autostereoscopic display,” ACM Trans. Graph. 208, 319–326 (2000).

Pelfrey, B.

A. T. Duchowski, B. Pelfrey, D. H. House, and R. Wang, “Measuring gaze depth with an eye tracker during stereoscopic display,” in Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (ACM, 2011) pp. 15–22.
[Crossref]

Perazzi, F.

F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung, “Saliency filters: Contrast based filtering for salient region detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012), pp. 733–740.
[Crossref]

Perlin, K.

K. Perlin, S. Paxia, and J. S. Kollin, “An autostereoscopic display,” ACM Trans. Graph. 208, 319–326 (2000).

Pfister, H.

W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23(3), 814–824 (2004).
[Crossref]

Pritch, Y.

F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung, “Saliency filters: Contrast based filtering for salient region detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012), pp. 733–740.
[Crossref]

Rapantzikos, K.

K. Rapantzikos, N. Tsapatsoulis, Y. Avrithis, and S. Kollias, “Spatiotemporal saliency for video classification,” Signal Process. Image 24(7), 557–571 (2009).
[Crossref]

Raskar, R.

A. Maimone, G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

V. Pamplona, A. Mohan, M. Oliveira, and R. Raskar, “NETRA: interactive display for estimating refractive errors and focal range,” ACM Trans. Graph. 29(4), 77 (2010).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

Ravikumar, S.

Read, J. C.

M. S. Banks, J. C. Read, R. S. Allison, and S. J. Watt, “Stereoscopy and the human visual system,” SMPTE Motion Imaging J. 121(4), 24–43 (2012).
[Crossref] [PubMed]

Richmond, M. J.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Ro, M. Y.

Y. J. Jung, H. Sohn, S. I. Lee, F. Speranza, and M. Y. Ro, “Visual importance-and discomfort region-selective low-pass filtering for reducing visual discomfort in stereoscopic displays,” IEEE Trans. Circ. Syst. Video Tech. 23(8), 1408–1421 (2013).
[Crossref]

Schenke, K.

W. Blohm, I. P. Beldie, K. Schenke, K. Fazel, and S. Pastoor, “Stereoscopic image representation with synthetic depth of field,” J. Soc. Inf. Disp. 5(3), 307–313 (1997).
[Crossref]

Schor, C.

C. Schor and P. Erickson, “Patterns of binocular suppression and accommodation in monovision,” Am. J. Optom. Physiol. Opt. 65(11), 853–861 (1988).
[Crossref] [PubMed]

Schor, C. M.

C. M. Schor, “A dynamic model of cross-coupling between accommodation and convergence: simulations of step and frequency responses,” Optom. Vis. Sci. 69(4), 258–269 (1992).
[Crossref] [PubMed]

Semmlow, J.

Shibata, T.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Shirachi, D.

V. V. Krishnan, D. Shirachi, and L. Stark, “Dynamic measures of vergence accommodation,” Am. J. Optom. Physiol. Opt. 54(7), 470–473 (1977).
[Crossref] [PubMed]

Smolic, A.

M. Lang, O. Wang, T. Aydin, A. Smolic, and M. H. Gross, “Practical temporal consistency for image-based graphics applications,” ACM Trans. Graph. 31(4), 34 (2012).
[Crossref]

Sohn, H.

Y. J. Jung, H. Sohn, S. I. Lee, F. Speranza, and M. Y. Ro, “Visual importance-and discomfort region-selective low-pass filtering for reducing visual discomfort in stereoscopic displays,” IEEE Trans. Circ. Syst. Video Tech. 23(8), 1408–1421 (2013).
[Crossref]

Solari, F.

G. Maiello, M. Chessa, F. Solari, and P. J. Bex, “Simulated disparity and peripheral blur interact during binocular fusion,” J. Vis. 14(8), 13 (2014).
[Crossref] [PubMed]

Speranza, F.

Y. J. Jung, H. Sohn, S. I. Lee, F. Speranza, and M. Y. Ro, “Visual importance-and discomfort region-selective low-pass filtering for reducing visual discomfort in stereoscopic displays,” IEEE Trans. Circ. Syst. Video Tech. 23(8), 1408–1421 (2013).
[Crossref]

Sprague, W. W.

W. W. Sprague, E. A. Cooper, I. Tošić, and M. S. Banks, “Stereopsis is adaptive for the natural environment,” Sci. Adv. 1(4), e1400254 (2015).
[Crossref] [PubMed]

Stark, L.

V. V. Krishnan, D. Shirachi, and L. Stark, “Dynamic measures of vergence accommodation,” Am. J. Optom. Physiol. Opt. 54(7), 470–473 (1977).
[Crossref] [PubMed]

Sullivan, A.

A. Sullivan, “DepthCube solid-state 3D volumetric display,” Proc. SPIE 5291, 279–284 (2004).
[Crossref]

Takaki, Y.

Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
[Crossref] [PubMed]

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

Talmi, K.

K. Talmi and J. Liu, “Eye and gaze tracking for visually controlled interactive stereoscopic displays,” Signal Process. Image 14(10), 799–810 (1999).
[Crossref]

Tanaka, K.

Toet, A.

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2), 99–108 (2004).
[Crossref]

Tošic, I.

W. W. Sprague, E. A. Cooper, I. Tošić, and M. S. Banks, “Stereopsis is adaptive for the natural environment,” Sci. Adv. 1(4), e1400254 (2015).
[Crossref] [PubMed]

Tsapatsoulis, N.

K. Rapantzikos, N. Tsapatsoulis, Y. Avrithis, and S. Kollias, “Spatiotemporal saliency for video classification,” Signal Process. Image 24(7), 557–571 (2009).
[Crossref]

Vasconcelos, N.

V. Mahadevan and N. Vasconcelos, “Spatiotemporal saliency in dynamic scenes,” IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 171–177 (2010).
[Crossref] [PubMed]

Vishwanath, D.

M. Mauderer, S. Conte, M. A. Nacenta, and D. Vishwanath, “Depth perception with gaze-contingent depth of field,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2013), pp. 217–226.

Walton, J.

E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957).
[Crossref] [PubMed]

E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957).
[Crossref] [PubMed]

Wang, O.

M. Lang, O. Wang, T. Aydin, A. Smolic, and M. H. Gross, “Practical temporal consistency for image-based graphics applications,” ACM Trans. Graph. 31(4), 34 (2012).
[Crossref]

Wang, R.

A. T. Duchowski, B. Pelfrey, D. H. House, and R. Wang, “Measuring gaze depth with an eye tracker during stereoscopic display,” in Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (ACM, 2011) pp. 15–22.
[Crossref]

Ward, G. J.

R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multi-plane displays,” ACM Trans. Graph. 34(4), 59 (2015).
[Crossref]

Watt, S. J.

M. S. Banks, J. C. Read, R. S. Allison, and S. J. Watt, “Stereoscopy and the human visual system,” SMPTE Motion Imaging J. 121(4), 24–43 (2012).
[Crossref] [PubMed]

K. J. MacKenzie, D. M. Hoffman, and S. J. Watt, “Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control,” J. Vis. 10(8), 22 (2010).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Wetzel, P.

Wetzstein, G.

A. Maimone, G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

R. Konrad, E. A. Cooper, and G. Wetzstein, “Novel optical configurations for virtual reality: evaluating user preference and performance with focus-tunable and monovision near-eye displays,” in Proc. of the ACM Conference on Human Factors in Computing Systems (2016).
[Crossref]

Wichmann, F. A.

I. Fründ, N. V. Haenel, and F. A. Wichmann, “Inference for psychometric functions in the presence of nonstationary behavior,” J. Vis. 11(6), 16 (2011).
[Crossref] [PubMed]

F. A. Wichmann and N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63(8), 1314–1329 (2001).
[Crossref] [PubMed]

F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63(8), 1293–1313 (2001).
[Crossref] [PubMed]

Yano, S.

S. Yano, M. Emoto, and T. Mitsuhashi, “Two factors in visual fatigue caused by stereoscopic HDTV images,” Displays 25(4), 141–150 (2004).
[Crossref]

ACM Trans. Appl. Percept. (1)

L. Leroy, P. Fuchs, and G. Moreau, “Real-time adaptive blur for reducing eye strain in stereoscopic displays,” ACM Trans. Appl. Percept. 9(2), 9 (2012).
[Crossref]

ACM Trans. Graph. (11)

M. Lang, O. Wang, T. Aydin, A. Smolic, and M. H. Gross, “Practical temporal consistency for image-based graphics applications,” ACM Trans. Graph. 31(4), 34 (2012).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

K. Perlin, S. Paxia, and J. S. Kollin, “An autostereoscopic display,” ACM Trans. Graph. 208, 319–326 (2000).

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

V. Pamplona, A. Mohan, M. Oliveira, and R. Raskar, “NETRA: interactive display for estimating refractive errors and focal range,” ACM Trans. Graph. 29(4), 77 (2010).
[Crossref]

A. Maimone, G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multi-plane displays,” ACM Trans. Graph. 34(4), 59 (2015).
[Crossref]

W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23(3), 814–824 (2004).
[Crossref]

Am. J. Ophthalmol. (1)

T. G. Martens and K. N. Ogle, “Observations on accommodative convergence; especially its nonlinear relationships,” Am. J. Ophthalmol. 47(12), 455 (1959).

Am. J. Optom. Physiol. Opt. (2)

V. V. Krishnan, D. Shirachi, and L. Stark, “Dynamic measures of vergence accommodation,” Am. J. Optom. Physiol. Opt. 54(7), 470–473 (1977).
[Crossref] [PubMed]

C. Schor and P. Erickson, “Patterns of binocular suppression and accommodation in monovision,” Am. J. Optom. Physiol. Opt. 65(11), 853–861 (1988).
[Crossref] [PubMed]

Binocul. Vis. Strabismus Q. (1)

M. Gutkowski and B. Cassin, “Stereopsis and monovision in the contact lens management of presbyopia,” Binocul. Vis. Strabismus Q. 6, 31–36 (1991).

Comptes-Rendus, Academie des Sciences. (1)

G. Lippmann, “La Photographie Integrale,” Comptes-Rendus, Academie des Sciences. 146, 446–451 (1908).

Displays (2)

S. Yano, M. Emoto, and T. Mitsuhashi, “Two factors in visual fatigue caused by stereoscopic HDTV images,” Displays 25(4), 141–150 (2004).
[Crossref]

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2), 99–108 (2004).
[Crossref]

IEEE Trans. Circ. Syst. Video Tech. (1)

Y. J. Jung, H. Sohn, S. I. Lee, F. Speranza, and M. Y. Ro, “Visual importance-and discomfort region-selective low-pass filtering for reducing visual discomfort in stereoscopic displays,” IEEE Trans. Circ. Syst. Video Tech. 23(8), 1408–1421 (2013).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

V. Mahadevan and N. Vasconcelos, “Spatiotemporal saliency in dynamic scenes,” IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 171–177 (2010).
[Crossref] [PubMed]

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998).
[Crossref]

IEEE Trans. Vis. Comput. Graph. (1)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

J. Disp. Technol. (2)

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

M. Emoto, T. Niida, and F. Okano, “Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television,” J. Disp. Technol. 1(2), 328–340 (2005).
[Crossref]

J. Eye Mov. Res. (1)

W. Jaschinski, S. Jainta, and J. Hoormann, “Comparison of shutter glasses and mirror stereoscope for measuring dynamic and static vergence,” J. Eye Mov. Res. 1(5), 1–7 (2008).

J. Imag. Sci. Tech. (1)

M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imag. Sci. Tech. 53(3), 30201 (2009).
[Crossref]

J. Neurophysiol. (1)

B. G. Cumming and S. J. Judge, “Disparity-induced and blur-induced convergence eye movement and accommodation in the monkey,” J. Neurophysiol. 55(5), 896–914 (1986).
[PubMed]

J. Opt. Soc. Am. (1)

J. Physiol. (2)

E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957).
[Crossref] [PubMed]

E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957).
[Crossref] [PubMed]

J. Soc. Inf. Disp. (1)

W. Blohm, I. P. Beldie, K. Schenke, K. Fazel, and S. Pastoor, “Stereoscopic image representation with synthetic depth of field,” J. Soc. Inf. Disp. 5(3), 307–313 (1997).
[Crossref]

J. Vis. (5)

G. Maiello, M. Chessa, F. Solari, and P. J. Bex, “Simulated disparity and peripheral blur interact during binocular fusion,” J. Vis. 14(8), 13 (2014).
[Crossref] [PubMed]

I. Fründ, N. V. Haenel, and F. A. Wichmann, “Inference for psychometric functions in the presence of nonstationary behavior,” J. Vis. 11(6), 16 (2011).
[Crossref] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

K. J. MacKenzie, D. M. Hoffman, and S. J. Watt, “Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control,” J. Vis. 10(8), 22 (2010).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

B. J. W. Evans, “Monovision: a review,” Ophthalmic Physiol. Opt. 27(5), 417–439 (2007).
[Crossref] [PubMed]

Opt. Express (3)

Optician (1)

A. R. Franklin, “Presbyopia and contact lenses. Part 1: optical challenges of contact lenses in presbyopia,” Optician 229, 22–27 (2005).

Optom. Vis. Sci. (1)

C. M. Schor, “A dynamic model of cross-coupling between accommodation and convergence: simulations of step and frequency responses,” Optom. Vis. Sci. 69(4), 258–269 (1992).
[Crossref] [PubMed]

Percept. Psychophys. (2)

F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63(8), 1293–1313 (2001).
[Crossref] [PubMed]

F. A. Wichmann and N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63(8), 1314–1329 (2001).
[Crossref] [PubMed]

Proc. IEEE (1)

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

Proc. SPIE (3)

X. Hu and H. Hua, “An optical see-through multi-focal-plane stereoscopic display prototype enabling nearly-correct focus cues,” Proc. SPIE 8648, 86481A (2013).
[Crossref]

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

A. Sullivan, “DepthCube solid-state 3D volumetric display,” Proc. SPIE 5291, 279–284 (2004).
[Crossref]

Sci. Adv. (1)

W. W. Sprague, E. A. Cooper, I. Tošić, and M. S. Banks, “Stereopsis is adaptive for the natural environment,” Sci. Adv. 1(4), e1400254 (2015).
[Crossref] [PubMed]

Signal Process. Image (2)

K. Talmi and J. Liu, “Eye and gaze tracking for visually controlled interactive stereoscopic displays,” Signal Process. Image 14(10), 799–810 (1999).
[Crossref]

K. Rapantzikos, N. Tsapatsoulis, Y. Avrithis, and S. Kollias, “Spatiotemporal saliency for video classification,” Signal Process. Image 24(7), 557–571 (2009).
[Crossref]

SMPTE Motion Imaging J. (1)

M. S. Banks, J. C. Read, R. S. Allison, and S. J. Watt, “Stereoscopy and the human visual system,” SMPTE Motion Imaging J. 121(4), 24–43 (2012).
[Crossref] [PubMed]

Vision Res. (2)

J. Kim, D. Kane, and M. S. Banks, “The rate of change of vergence-accommodation conflict affects visual discomfort,” Vision Res. 105, 159–165 (2014).
[Crossref] [PubMed]

S. Jainta, J. Hoormann, and W. Jaschinski, “Objective and subjective measures of vergence step responses,” Vision Res. 47(26), 3238–3246 (2007).
[Crossref] [PubMed]

Other (11)

F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung, “Saliency filters: Contrast based filtering for salient region detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012), pp. 733–740.
[Crossref]

X. Cui, Q. Liu, and D. Metaxas, “Temporal spectral residual: fast motion saliency detection,” in Proceedings of the 17th ACM International Conference on Multimedia (ACM, 2009), pp. 617–620.
[Crossref]

A. Belardinelli, F. Pirri, and A. Carbone, “Motion saliency maps from spatiotemporal filtering” in Attention in Cognitive Systems (Springer Berlin Heidelberg, 2009), pp. 112–123.

A. T. Duchowski, B. Pelfrey, D. H. House, and R. Wang, “Measuring gaze depth with an eye tracker during stereoscopic display,” in Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (ACM, 2011) pp. 15–22.
[Crossref]

Y. Niu, Y. Geng, X. Li, and L. Liu, “Leveraging stereopsis for saliency analysis,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2012), pp. 454–461.

R. Konrad, E. A. Cooper, and G. Wetzstein, “Novel optical configurations for virtual reality: evaluating user preference and performance with focus-tunable and monovision near-eye displays,” in Proc. of the ACM Conference on Human Factors in Computing Systems (2016).
[Crossref]

T. Blum, M. Wieczorek, A. Aichert, R. Tibrewal, and N. Navab, “The effect of out-of-focus blur on visual discomfort when using stereo displays” in 2010 9th IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (IEEE, 2010), pp. 13–17.

M. Mauderer, S. Conte, M. A. Nacenta, and D. Vishwanath, “Depth perception with gaze-contingent depth of field,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2013), pp. 217–226.

J. P. Wann and M. Mon-Williams, “Measurement of visual aftereffects following virtual environment exposure.” in Handbook of Virtual Environments: Design, Implementation, and Applications (2002), pp. 731–749.

O. Berezin, “Digital cinema in Russia: Is 3D still a driver for the development of the cinema market?” Paper presented at the 3D Media 2010 statistic from kinopoisk.ru (2010).

F. E. Ives, “Parallax stereogram and process of making same,” United States Patent 725,567 (1903).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Focus cues in different viewing conditions for natural scenes, a conventional S3D display, and our proposed displays. In each panel, the upper part is an overhead view of the situation and the lower part is a schematic of what a viewer would see. The upper row shows these when the viewer fixates the far (red) object and the lower rows shows them when the viewer fixates the near (blue) object. In natural viewing (left column), vergence and accommodation distances are the same. The orange shading indicates light rays from the object of interest (i.e. where the eyes are focused). In conventional stereoscopic 3D displays (second column), vergence distance varies with the disparity of the simulated object while accommodation distance is fixed at the display screen. In the top panel, the viewer fixates the red object on the screen, so the vergence and accommodation distances are the same. Both objects are in focus, but in a real scene the blue one would be blurred. The single dashed lines from the blue parts on the screen show the position of the virtual blue object in front of the screen. In the lower panel, if the accommodation and vergence distances are the same, both objects are out of focus. To bring them into focus (vergence ≠ accommodation) there is a vergence-accommodation conflict.. In the proposed dynamic-lens display (third column), accommodation distance can be adjusted depending on the content being displayed. This is implemented by changing the power of a lens in front of each eye. In this case, accommodation and vergence distances are matched for the salient object in the scene, but other objects will be incorrectly in focus as well (although they can be blurred via rendering – as in a conventional S3D display). In the proposed monovision display (right column), fixed lenses of different powers are placed in front of the two eyes. Here the power of the lens in front of the right eye is lower than the the power of the lens in front of the left eye. Thus, there are two accommodative distances that match the vergence distance, one for the left eye and one for the right.
Fig. 2
Fig. 2 Stereoscopic photograph demonstrating the principle behind the monovision technique. The left image was taken with the camera focused at the statue of the girl. The right image was taken with it focused at the sun dial. Cross-fuse the photograph: i.e., direct the left eye to the right image and the right eye to the left image. The binocularly fused image in the middle contains contributions from both eyes. Notice that the fused image appears generally sharp: sharper than either of the monocular images. This shows that the right eye dictates the binocular appearance in regions where the left-eye image is blurred and that the left eye dictates the appearance in regions where the right-eye image is blurred.
Fig. 3
Fig. 3 Schematic of dynamic-lens display system. The viewer looks at a conventional stereoscopic display with row-by-row polarization. The viewer sees the display through polarized glasses (that deliver one image to the left eye and the other to the right) and dynamic lenses that are adjusted in focal power through display electronics. The two lenses have equal power to one another.
Fig. 4
Fig. 4 Stimulus used in the visual discomfort experiments..Cross fuse to see the binocular stimulus. Subjects indicated which of the circles was popping out in depth (a 4-alternative forced-choice task). In this case, the top circle is the correct response. The diamond and X structure moved back and forth in depth, and the circles periodically appeared for 1sec followed by a 2sec break in which the viewer could respond.
Fig. 5
Fig. 5 Psychometric functions for subject 2 in the disparity-detection task with the dynamic-lens system. Proportion of correct responses is plotted as a function of the target circle's disparity. The red curve represents a best fit to the data from the fixed-lens condition. The blue curve represents a best fit to the data from the dynamic-lens condition. Error bars are 95% confidence intervals for the estimate of the disparity corresponding to 62.5% correct
Fig. 6
Fig. 6 Threshold disparity in the dynamic- and fixed-lens conditions. Thresholds are plotted for each subject as well as the threshold from the data pooled across subjects. Error bars represent 95% confident intervals.
Fig. 7
Fig. 7 Discomfort results from the dynamic-lens study. The results from the symptom and comparison questionnaires are shown in the left and right panels, respectively. The symptom questionnaire used a 0-6 rating scale for each of six questions, larger numbers indicating more uncomfortable symptoms. The average ratings are for the fixed- and dynamic-lens conditions are represented by the red and blue bars, respectively. The comparison questionnaire also used a 0-6 scale where 0 meant a strong preference for the fixed-lens condition and 6 a strong preference for the dynamic-lens condition. A one-tailed Wilcoxon signed-rank test was used to assess the statistical reliability of the differences in the comparison questionnaire data. * indicates p<0.05.
Fig. 8
Fig. 8 Psychometric functions for one subject in the disparity-detection task in the monovision study. The data points indicate the proportion of correct responses as a function of the disparity of the target circle. The red curve represents the best-fitting function for the data in the no-lens condition. The blue curve represents the best function for the data in the monovision condition. Error bars are 95% confidence intervals for the estimate of the disparity corresponding to 62.5% correct.
Fig. 9
Fig. 9 Threshold disparities in the mononvision study. Red and blue symbols represent the average threshold data in the no-lens and monovision conditions, respectively. Thresholds are plotted for each subject as well as the average threshold obtained from pooling the data across subjects. Error bars represent 95% confidence intervals.
Fig. 10
Fig. 10 Discomfort results for the monovision study. The results from the symptom and comparison questionnaires are shown in the left and right panels, respectively. The symptom questionnaire used a 0-6 scale for each of six questions; larger numbers indicate more uncomfortable symptoms. The average ratings are for the no-lens and monovision conditions are represented by the red and blue bars, respectively. The comparison questionnaire also used a 0-6 scale where 0 meant a strong preference for the monovision condition and 6 meant a strong preference for the no-lens condition. A two-tailed Wilcoxon signed-rank test was used to assess the statistical reliability of the differences in the comparison questionnaire data. * indicates differences for which p < 0.05.
Fig. 11
Fig. 11 Stimulus used in the time-to-fuse experiments. The stimulus subtended 2.2° or 15.9° in each eye. Cross-fuse to see a sinusoidal depth corrugation. Subjects indicated the orientation of the corrugation (a 2-alternative, forced-choice task).
Fig. 12
Fig. 12 Time-to-fuse experimental procedure. At the beginning of every trial, subjects fixated for 2sec on a Maltese cross. A random-dot stereogram then appeared at a random position in depth. Although two side-by-side patterns are shown in the figure, they were actually superimposed on the stereo display screen and the correct images were delivered to the eyes by polarized glasses. Subjects were directed to fuse and indicate the orientation of the corrugations in the stimulus. In fixed-lens and no-lens trials, the focal distance was fixed at the screen. In dynamic-lens and monovision trials, the focal distance matched the distance of the stereogram. Dynamic- and fixed-lens trials were randomly interleaved throughout the experiment.
Fig. 13
Fig. 13 Psychometric data for subject 3 in the time-to-fuse experiment with the dynamic-lens setup and a disparity of 1.5D. Proportion correct is plotted as a function of stimulus duration. Red represents the fixed-lens condition and blue the dynamic-lens condition. Error bars represent 95% confidence intervals on the duration required to reach 75% correct responding.
Fig. 14
Fig. 14 Presentation times required to fuse in the dynamic-lens experiment. Each panel plots the stimulus duration required to achieve 75% correct responding as a function of the disparity of the stimulus relative to the screen. The six panels on the left show the data for individual subjects. The panel on the right shows the data once pooled across subjects. Error bars represent 95% confidence intervals.
Fig. 15
Fig. 15 Time-to-fuse data for subject 4 in the monovision experiment. Proportion correct responses are plotted as function of stimulus presentation time. Red represents the data in the no-lens condition and blue the data in the monovision condition. Error bars represent 95% confidence limits on the estimate of the presentation time at 75% correct.
Fig. 16
Fig. 16 Time-to-fuse thresholds for all subjects in the monovision experiment. The red and blue symbols represent the thresholds for the no-lens and monovision conditions, respectively. The thresholds from the data pooled across subjects are on the right. Error bars represent 95% confidence intervals.

Metrics