Abstract

We determine the output impedance of uni-travelling carrier (UTC) photodiodes at frequencies up to 400 GHz by performing, for the first time, 3D full-wave modelling of detailed UTC photodiode structures. In addition, we demonstrate the importance of the UTC impedance evaluation, by using it in the prediction of the absolute power radiated by an antenna integrated UTC, over a broad frequency range and confirming the predictions by experimental measurements up to 185 GHz. This is done by means of 3D full-wave modelling and is only possible since the source (UTC) to antenna impedance match is properly taken into account. We also show that, when the UTC-to-antenna coupling efficiency is modelled using the classical junction-capacitance/series-resistance concept, calculated and measured levels of absolute radiated power are in substantial disagreement, and the maximum radiated power is overestimated by a factor of almost 7 dB. The ability to calculate the absolute emitted power correctly enables the radiated power to be maximised through optimisation of the UTC-to-antenna impedance match.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Accurate equivalent circuit model for millimetre-wave UTC photodiodes

Michele Natrella, Chin-Pang Liu, Chris Graham, Frederic van Dijk, Huiyun Liu, Cyril C. Renaud, and Alwyn J. Seeds
Opt. Express 24(5) 4698-4713 (2016)

High performance waveguide uni-travelling carrier photodiode grown by solid source molecular beam epitaxy

Xiaoli Lin, Michele Natrella, James Seddon, Chris Graham, Cyril C. Renaud, Mingchu Tang, Jiang Wu, Huiyun Liu, and Alwyn J. Seeds
Opt. Express 27(25) 37065-37086 (2019)

Traveling-wave Uni-Traveling Carrier Photodiodes for continuous wave THz generation

Efthymios Rouvalis, Cyril C. Renaud, David G. Moodie, Michael J. Robertson, and Alwyn J. Seeds
Opt. Express 18(11) 11105-11110 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Beling, Z. Li, Y. Fu, H. Pan, and J. C. Campbell, “High-power and high-linearity photodiodes,” IEEE Photonic Soc. 24th Annu. Meet. PHO 2011 1, 19–20 (2011).
    [Crossref]
  2. H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
    [Crossref]
  3. C. C. Renaud, D. Moodie, M. Robertson, and A. J. Seeds, “High output power at 110 GHz with a waveguide Uni-travelling carrier photodiode,” Conf. Proc. - Lasers Electro-Optics Soc. Annu. Meet. 782–783 (2007).
    [Crossref]
  4. H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” Optoelectron. IEE Proc. 150, 138–142 (2003).
    [Crossref]
  5. H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
    [Crossref]
  6. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
    [Crossref]
  7. H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
    [Crossref]
  8. M. Natrella, E. Rouvalis, C.-P. Liu, H. Liu, C. C. Renaud, and A. J. Seeds, “InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy,” Opt. Express 20(17), 19279–19288 (2012).
    [Crossref] [PubMed]
  9. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
    [Crossref]
  10. H. Eisele, “State of the art and future of electronic sources at terahertz frequencies,” Electron. Lett. 46(26), S8–S11 (2010).
    [Crossref]
  11. C. Mann, “Practical challenges for the commercialisation of terahertz electronics,” IEEE MTT-S Int. Microw. Symp. Dig. 2007, 1705–1708 (2007).
    [Crossref]
  12. A. J. Seeds, M. J. Fice, K. Balakier, M. Natrella, O. Mitrofanov, M. Lamponi, M. Chtioui, F. van Dijk, M. Pepper, G. Aeppli, A. G. Davies, P. Dean, E. Linfield, and C. C. Renaud, “Coherent terahertz photonics,” Opt. Express 21(19), 22988–23000 (2013).
    [Crossref] [PubMed]
  13. M. Natrella, C.-P. Liu, C. Graham, F. van Dijk, H. Liu, C. C. Renaud, and A. J. Seeds, “Accurate equivalent circuit model for millimetre-wave UTC photodiodes,” Opt. Express 24(5), 4698–4713 (2016).
    [Crossref]
  14. E. D. Palik, Handbook of Optical Constants of Solids, Illustrate (Academic, 1998), Vol. 3.
  15. T. Pearsall and J. Hirtz, “The carrier mobilities in Ga0.47In0.53As grown by organo-metalic CVD and liquid-phase epitaxy,” J. Cryst. Growth 54(1), 127–131 (1981).
    [Crossref]
  16. A. Katz, B. E. Weir, and W. C. Dautremont-Smith, “Au/Pt/Ti contacts to p-In0.53Ga0.47As and n-InP layers formed by a single metallization common step and rapid thermal processing,” J. Appl. Phys. 68(3), 1123–1128 (1990).
    [Crossref]
  17. G. Reeves and H. Harrison, “Obtaining the specific contact resistance from transmission line model measurements,” IEEE Electron. Dev. Lett. 3(5), 111–113 (1982).
    [Crossref]
  18. H. Berger, “Models for contacts to planar devices,” Solid-State Electron. 15(2), 145–158 (1972).
    [Crossref]
  19. A. Rumiantsev, P. Sakalas, N. Derrier, D. Celi, and M. Schroter, “Influence of probe tip calibration on measurement accuracy of small-signal parameters of advanced BiCMOS HBTs,” Bipolar/BiCMOS Circuits Technol. Meet. (BCTM), 2011 IEEE 203–206 (2011).
  20. Anritsu, “Understanding VNA Calibration,” http://anlage.umd.edu/Anritsu_understanding-vna-calibration.pdf .
  21. A. J. Lord, “Comparing the accuracy and repeatability of on-wafer calibration techniques to 110GHz,” Microw. Conf. 1999. 29th Eur. 3, 28–31 (1999).
    [Crossref]
  22. Cascade Microtech Application Note, “On-wafer vector network analyzer calibration and measurements,” http://www.cmicro.com/files/ONWAFER.pdf .
  23. Y. Yang, A. Shutler, and D. Grischkowsky, “Measurement of the transmission of the atmosphere from 0.2 to 2 THz,” Opt. Express 19(9), 8830–8838 (2011).
    [Crossref] [PubMed]
  24. R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propagation 55(11), 2944–2956 (2007).
    [Crossref]
  25. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996).

2016 (1)

2013 (1)

2012 (3)

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

M. Natrella, E. Rouvalis, C.-P. Liu, H. Liu, C. C. Renaud, and A. J. Seeds, “InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy,” Opt. Express 20(17), 19279–19288 (2012).
[Crossref] [PubMed]

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

2011 (1)

2010 (1)

H. Eisele, “State of the art and future of electronic sources at terahertz frequencies,” Electron. Lett. 46(26), S8–S11 (2010).
[Crossref]

2007 (2)

C. Mann, “Practical challenges for the commercialisation of terahertz electronics,” IEEE MTT-S Int. Microw. Symp. Dig. 2007, 1705–1708 (2007).
[Crossref]

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propagation 55(11), 2944–2956 (2007).
[Crossref]

2006 (1)

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

2005 (1)

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
[Crossref]

2000 (1)

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[Crossref]

1990 (1)

A. Katz, B. E. Weir, and W. C. Dautremont-Smith, “Au/Pt/Ti contacts to p-In0.53Ga0.47As and n-InP layers formed by a single metallization common step and rapid thermal processing,” J. Appl. Phys. 68(3), 1123–1128 (1990).
[Crossref]

1982 (1)

G. Reeves and H. Harrison, “Obtaining the specific contact resistance from transmission line model measurements,” IEEE Electron. Dev. Lett. 3(5), 111–113 (1982).
[Crossref]

1981 (1)

T. Pearsall and J. Hirtz, “The carrier mobilities in Ga0.47In0.53As grown by organo-metalic CVD and liquid-phase epitaxy,” J. Cryst. Growth 54(1), 127–131 (1981).
[Crossref]

1972 (1)

H. Berger, “Models for contacts to planar devices,” Solid-State Electron. 15(2), 145–158 (1972).
[Crossref]

Aeppli, G.

Ajito, K.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

Appleby, R.

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propagation 55(11), 2944–2956 (2007).
[Crossref]

Balakier, K.

Berger, H.

H. Berger, “Models for contacts to planar devices,” Solid-State Electron. 15(2), 145–158 (1972).
[Crossref]

Cannard, P.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Chtioui, M.

Dautremont-Smith, W. C.

A. Katz, B. E. Weir, and W. C. Dautremont-Smith, “Au/Pt/Ti contacts to p-In0.53Ga0.47As and n-InP layers formed by a single metallization common step and rapid thermal processing,” J. Appl. Phys. 68(3), 1123–1128 (1990).
[Crossref]

Davies, A. G.

Dean, P.

Eisele, H.

H. Eisele, “State of the art and future of electronic sources at terahertz frequencies,” Electron. Lett. 46(26), S8–S11 (2010).
[Crossref]

Fice, M. J.

Firth, R.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Furuta, T.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
[Crossref]

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[Crossref]

Graham, C.

Grischkowsky, D.

Harrison, H.

G. Reeves and H. Harrison, “Obtaining the specific contact resistance from transmission line model measurements,” IEEE Electron. Dev. Lett. 3(5), 111–113 (1982).
[Crossref]

Hirtz, J.

T. Pearsall and J. Hirtz, “The carrier mobilities in Ga0.47In0.53As grown by organo-metalic CVD and liquid-phase epitaxy,” J. Cryst. Growth 54(1), 127–131 (1981).
[Crossref]

Ishibashi, T.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
[Crossref]

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[Crossref]

Ito, H.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
[Crossref]

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[Crossref]

Katz, A.

A. Katz, B. E. Weir, and W. C. Dautremont-Smith, “Au/Pt/Ti contacts to p-In0.53Ga0.47As and n-InP layers formed by a single metallization common step and rapid thermal processing,” J. Appl. Phys. 68(3), 1123–1128 (1990).
[Crossref]

Kodama, S.

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[Crossref]

Kukutsu, N.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

Lamponi, M.

Linfield, E.

Liu, C.-P.

Liu, H.

Mann, C.

C. Mann, “Practical challenges for the commercialisation of terahertz electronics,” IEEE MTT-S Int. Microw. Symp. Dig. 2007, 1705–1708 (2007).
[Crossref]

Mitrofanov, O.

Moodie, D. G.

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

Moore, R.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Muramoto, Y.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

Nagatsuma, T.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

Nakajima, F.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
[Crossref]

Natrella, M.

Pearsall, T.

T. Pearsall and J. Hirtz, “The carrier mobilities in Ga0.47In0.53As grown by organo-metalic CVD and liquid-phase epitaxy,” J. Cryst. Growth 54(1), 127–131 (1981).
[Crossref]

Pepper, M.

Reeves, G.

G. Reeves and H. Harrison, “Obtaining the specific contact resistance from transmission line model measurements,” IEEE Electron. Dev. Lett. 3(5), 111–113 (1982).
[Crossref]

Renaud, C.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Renaud, C. C.

Robertson, M.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Robertson, M. J.

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

Rogers, D.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Rouvalis, E.

M. Natrella, E. Rouvalis, C.-P. Liu, H. Liu, C. C. Renaud, and A. J. Seeds, “InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy,” Opt. Express 20(17), 19279–19288 (2012).
[Crossref] [PubMed]

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

Seeds, A.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Seeds, A. J.

Shutler, A.

Song, H. J.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

van Dijk, F.

Wakatsuki, A.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

Wallace, H. B.

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propagation 55(11), 2944–2956 (2007).
[Crossref]

Weir, B. E.

A. Katz, B. E. Weir, and W. C. Dautremont-Smith, “Au/Pt/Ti contacts to p-In0.53Ga0.47As and n-InP layers formed by a single metallization common step and rapid thermal processing,” J. Appl. Phys. 68(3), 1123–1128 (1990).
[Crossref]

Yang, Y.

Electron. Lett. (2)

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[Crossref]

H. Eisele, “State of the art and future of electronic sources at terahertz frequencies,” Electron. Lett. 46(26), S8–S11 (2010).
[Crossref]

IEEE Electron. Dev. Lett. (1)

G. Reeves and H. Harrison, “Obtaining the specific contact resistance from transmission line model measurements,” IEEE Electron. Dev. Lett. 3(5), 111–113 (1982).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

IEEE MTT-S Int. Microw. Symp. Dig. (1)

C. Mann, “Practical challenges for the commercialisation of terahertz electronics,” IEEE MTT-S Int. Microw. Symp. Dig. 2007, 1705–1708 (2007).
[Crossref]

IEEE Trans. Antennas Propagation (1)

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propagation 55(11), 2944–2956 (2007).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

J. Appl. Phys. (1)

A. Katz, B. E. Weir, and W. C. Dautremont-Smith, “Au/Pt/Ti contacts to p-In0.53Ga0.47As and n-InP layers formed by a single metallization common step and rapid thermal processing,” J. Appl. Phys. 68(3), 1123–1128 (1990).
[Crossref]

J. Cryst. Growth (1)

T. Pearsall and J. Hirtz, “The carrier mobilities in Ga0.47In0.53As grown by organo-metalic CVD and liquid-phase epitaxy,” J. Cryst. Growth 54(1), 127–131 (1981).
[Crossref]

Opt. Express (4)

Proc. SPIE (1)

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Semicond. Sci. Technol. (1)

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
[Crossref]

Solid-State Electron. (1)

H. Berger, “Models for contacts to planar devices,” Solid-State Electron. 15(2), 145–158 (1972).
[Crossref]

Other (9)

A. Rumiantsev, P. Sakalas, N. Derrier, D. Celi, and M. Schroter, “Influence of probe tip calibration on measurement accuracy of small-signal parameters of advanced BiCMOS HBTs,” Bipolar/BiCMOS Circuits Technol. Meet. (BCTM), 2011 IEEE 203–206 (2011).

Anritsu, “Understanding VNA Calibration,” http://anlage.umd.edu/Anritsu_understanding-vna-calibration.pdf .

A. J. Lord, “Comparing the accuracy and repeatability of on-wafer calibration techniques to 110GHz,” Microw. Conf. 1999. 29th Eur. 3, 28–31 (1999).
[Crossref]

Cascade Microtech Application Note, “On-wafer vector network analyzer calibration and measurements,” http://www.cmicro.com/files/ONWAFER.pdf .

C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996).

A. Beling, Z. Li, Y. Fu, H. Pan, and J. C. Campbell, “High-power and high-linearity photodiodes,” IEEE Photonic Soc. 24th Annu. Meet. PHO 2011 1, 19–20 (2011).
[Crossref]

C. C. Renaud, D. Moodie, M. Robertson, and A. J. Seeds, “High output power at 110 GHz with a waveguide Uni-travelling carrier photodiode,” Conf. Proc. - Lasers Electro-Optics Soc. Annu. Meet. 782–783 (2007).
[Crossref]

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” Optoelectron. IEE Proc. 150, 138–142 (2003).
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids, Illustrate (Academic, 1998), Vol. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Photograph of two sample UTCs, with 3 x 15 µm2 and 4 x 15 µm2 area. The devices are integrated with coplanar waveguide contact pattern for the use of air coplanar probes.
Fig. 2
Fig. 2 Relation between the new equivalent circuit and the UTC structure.
Fig. 3
Fig. 3 Cross section of the UTC CST model, showing the current flowing through all the ridge layers and through the InP n-layer to reach the n-metallisation. The simulation shows that only a limited area of the interface between InP n-layer and n-metallisation is actually crossed by the current. Absorber, spacer and depletion layers in the ridge have been replaced by a layer of perfect electric conductor as they do not contribute to the device series resistance.
Fig. 4
Fig. 4 CST model including the whole of the cleaved chip and the CPW pads.
Fig. 5
Fig. 5 Model details of the area near the UTC, including the n-contact layer mesa and the optical waveguide.
Fig. 6
Fig. 6 Magnified cross section view showing details of the layers making up the UTC ridge.
Fig. 7
Fig. 7 S11 and impedance of the 3 x 15 µm2 area UTC at −2 V bias, calculated using CST, compared with the experimental data and with the results obtained using the equivalent circuit (including the overestimated parasitic inductance Lp = 16 pH). The amended value of 6.5 pH for Lp provides excellent agreement between circuit and CST up to 400 GHz.
Fig. 8
Fig. 8 Comparison between RC-limited response calculated with full-wave simulation (continuous black line) and experimental data (continuous blue line). The RC-limited response calculated with the equivalent circuit, using both the initial value of parasitic capacitance LP = 16 pH (dash-dot green line) and the amended value 6.5 pH (dashed red line) are also shown.
Fig. 9
Fig. 9 Comparison between measured frequency photo-response and overall frequency photo-response calculated combining the full-wave modelling RC-limited response with the transit-time limited responses calculated in [13], for the case of a 3 x 15 µm2 area UTC. The inset is a magnified view of the responses in the frequency range 0 GHz to 80 GHz.
Fig. 10
Fig. 10 a) Bow-tie antenna integrated UTC with a ground plane, provided by III-V Lab. The photodetector area is 3 x 15 µm2 and the antenna-chip approximate geometrical details are shown in the picture; b) CST model of the bow-tie antenna with a gold ground plane.
Fig. 11
Fig. 11 Bow-tie antenna 3D radiation pattern calculated in CST.
Fig. 12
Fig. 12 Comparison between measured radiated power and radiated power calculated when the UTC impedance is taken into account using the classical junction-capacitance/series-resistance concept. The power is also calculated within rectangular solid angles along the Z axis.
Fig. 13
Fig. 13 Comparison between real and imaginary parts of the bow-tie antenna impedance and those measured and calculated for the 3 x 15 µm2 area UTC at −2 V bias.
Fig. 14
Fig. 14 Comparison between measured radiated power and radiated power calculated when the UTC to antenna coupling efficiency is based on our achieved knowledge of the UTC impedance, plotted in Fig. 13.
Fig. 15
Fig. 15 Comparison between measured radiated power and radiated power calculated within the rectangular solid angle (31.2° x 24.4°) subtended by the 40 x 30 mm2 Thomas Keating window.

Tables (4)

Tables Icon

Table 1 Layer structure of the UTCs provided by III-V Lab.

Tables Icon

Table 2 Summary of the equivalent circuit optimised parameters.

Tables Icon

Table 3 Conductivities used in the full-wave modelling for the layers contributing to the UTC series resistance. The relative electrical permittivity values are also shown, although they play a very marginal role for these layers.

Tables Icon

Table 4 Material properties of the two spacers and the collection layer derived by the optimised circuit elements R2, C2, R3, C3, R4 and C4 of Circuit 3. The absorber properties are also shown, although this layer only provides a marginal resistive contribution.

Metrics