Abstract

A detailed performance comparison of new interesting Yb-doped crystals in the same oscillator setup, with single-mode fiber-coupled diode laser pump is reported. We intended to assess the shortest pulses achievable with available SESAM technology, running a fair comparison with laser crystals Yb:KLuW, Yb:SSO, Yb:CALGO, Yb:CALYO and Yb:CaF2, very likely including the most promising choices for the next generation of commercial bulk ultrafast solid-state systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance of Yb:Sc2SiO5 crystal in diode-pumped femtosecond oscillator and regenerative amplifier

Federico Pirzio, Etienne Caracciolo, Matthias Kemnitzer, Annalisa Guandalini, Florian Kienle, Juerg Aus der Au, and Antonio Agnesi
Opt. Express 23(10) 13115-13120 (2015)

Sub-50-fs widely tunable Yb:CaYAlO4 laser pumped by 400-mW single-mode fiber-coupled laser diode

Federico Pirzio, Samuele D. Di Dio Cafiso, Matthias Kemnitzer, Annalisa Guandalini, Florian Kienle, Stefano Veronesi, Mauro Tonelli, Juerg Aus der Au, and Antonio Agnesi
Opt. Express 23(8) 9790-9795 (2015)

65-fs Yb:CaF2 laser mode-locked by semiconductor saturable absorber mirror

Federico Pirzio, Samuele D. Di Dio Cafiso, Matthias Kemnitzer, Florian Kienle, Annalisa Guandalini, Juerg Aus der Au, and Antonio Agnesi
J. Opt. Soc. Am. B 32(11) 2321-2325 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photon. 7, 684–712 (2015).
    [Crossref]
  2. K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci Appl. 3, e149 (2014).
    [Crossref]
  3. W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, “The development and application of femtosecond laser systems,” Opt. Express 20, 6989–7001 (2012).
    [Crossref] [PubMed]
  4. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2,” Opt. Lett. 22, 1317–1319 (1997).
    [Crossref]
  5. F. Brunner, G. J. Spühler, J. Aus der Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A. A. Lagatsky, A. Abdolvand, N. V. Kuleshov, and U. Keller, “Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1-W average power, Opt. Lett. 25, 1119–1121 (2000).
    [Crossref]
  6. V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel Ytterbium and Thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1, 179–212 (2007).
    [Crossref]
  7. L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5, Appl. Phys. B 91, 443–445 (2008).
    [Crossref]
  8. F. Druon, S. Ricaud, D. Papadopoulos, A. Pellegrina, P. Camy, J. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance,” Opt. Mater. Express 1, 489–502 (2011).
    [Crossref]
  9. E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Pirzio, A. Agnesi, and J. Aus der Au, “High pulse energy multi-watt Yb:CaAlGdO4 and Yb:CaF2 regenerative amplifiers,” Opt. Express 22, 19912–19918 (2014).
    [Crossref] [PubMed]
  10. F. Pirzio, S. Cafiso, M. Kemnitzer, A. Guandalini, F. Kienle, S. Veronesi, M. Tonelli, J. Aus der Au, and A. Agnesi, “Sub-50-fs widely tunable Yb:CaYAlO4 laser pumped by 400-mW single-mode fiber-coupled laser diode,” Opt. Express 23, 9790–9795 (2015).
    [Crossref] [PubMed]
  11. F. Pirzio, E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Kienle, J. Aus der Au, and A. Agnesi, “Performance of Yb:Sc2SiO5 crystal in diode-pumped femtosecond oscillator and regenerative amplifier,” Opt. Express 23, 13115–13120 (2015).
    [Crossref] [PubMed]
  12. E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Pirzio, J. Aus der Au, and A. Agnesi, “28-W, 217 fs solid-state Yb:CaGdAlO4 regenerative amplifiers, Opt. Lett. 38, 4131–4133 (2013).
    [Crossref] [PubMed]
  13. A. Greborio, A. Guandalini, and J. Aus Der Au, “Sub-100 fs pulses with 12.5 W from Yb:CALGO based oscillator,” Proc. SPIE, 8235 (2012).
    [Crossref]
  14. F. Pirzio, S. Di DioCafiso, M. Kemnitzer, F. Kienle, A. Guandalini, J. Aus der Au, and A. Agnesi, “65-fs Yb:CaF2 laser mode-locked by semiconductor saturable absorber mirror,” J. Opt. Soc. Am. B 32, 2321–2325 (2015).
    [Crossref]
  15. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser”, IEEE J. Quantum Electron. 24, 1077–1099 (1988).
    [Crossref]
  16. D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation”, Appl. Opt. 35, 912–915 (1996).
    [Crossref] [PubMed]
  17. A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, A. Guandalini, and J. Aus der Au, “Diode-pumped passively mode-locked tunable Yb:CALGO solid-state laser, J. Opt. Soc. Am. B 30, 1513–1516 (2013).
    [Crossref]
  18. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking”, J. Opt. Soc. Am. B 16, 45–56 (1999).
    [Crossref]
  19. P. Sévillano, P. Georges, F. Druon, D. Descamps, and E. Cormier, “32-fs Kerr-lens mode-locked Yb:CaGdAlO4 oscillator optically pumped by a bright fiber laser,” Opt. Lett. 39, 6001–6004 (2014).
    [Crossref]

2015 (4)

2014 (3)

2013 (2)

2012 (1)

2011 (1)

2008 (1)

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5, Appl. Phys. B 91, 443–445 (2008).
[Crossref]

2007 (1)

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel Ytterbium and Thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1, 179–212 (2007).
[Crossref]

2000 (1)

1999 (1)

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking”, J. Opt. Soc. Am. B 16, 45–56 (1999).
[Crossref]

1997 (1)

1996 (1)

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser”, IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Abdolvand, A.

Agnesi, A.

Aguiló, M.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel Ytterbium and Thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1, 179–212 (2007).
[Crossref]

Aus der Au, J.

F. Pirzio, S. Di DioCafiso, M. Kemnitzer, F. Kienle, A. Guandalini, J. Aus der Au, and A. Agnesi, “65-fs Yb:CaF2 laser mode-locked by semiconductor saturable absorber mirror,” J. Opt. Soc. Am. B 32, 2321–2325 (2015).
[Crossref]

F. Pirzio, S. Cafiso, M. Kemnitzer, A. Guandalini, F. Kienle, S. Veronesi, M. Tonelli, J. Aus der Au, and A. Agnesi, “Sub-50-fs widely tunable Yb:CaYAlO4 laser pumped by 400-mW single-mode fiber-coupled laser diode,” Opt. Express 23, 9790–9795 (2015).
[Crossref] [PubMed]

F. Pirzio, E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Kienle, J. Aus der Au, and A. Agnesi, “Performance of Yb:Sc2SiO5 crystal in diode-pumped femtosecond oscillator and regenerative amplifier,” Opt. Express 23, 13115–13120 (2015).
[Crossref] [PubMed]

E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Pirzio, A. Agnesi, and J. Aus der Au, “High pulse energy multi-watt Yb:CaAlGdO4 and Yb:CaF2 regenerative amplifiers,” Opt. Express 22, 19912–19918 (2014).
[Crossref] [PubMed]

E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Pirzio, J. Aus der Au, and A. Agnesi, “28-W, 217 fs solid-state Yb:CaGdAlO4 regenerative amplifiers, Opt. Lett. 38, 4131–4133 (2013).
[Crossref] [PubMed]

A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, A. Guandalini, and J. Aus der Au, “Diode-pumped passively mode-locked tunable Yb:CALGO solid-state laser, J. Opt. Soc. Am. B 30, 1513–1516 (2013).
[Crossref]

F. Brunner, G. J. Spühler, J. Aus der Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A. A. Lagatsky, A. Abdolvand, N. V. Kuleshov, and U. Keller, “Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1-W average power, Opt. Lett. 25, 1119–1121 (2000).
[Crossref]

A. Greborio, A. Guandalini, and J. Aus Der Au, “Sub-100 fs pulses with 12.5 W from Yb:CALGO based oscillator,” Proc. SPIE, 8235 (2012).
[Crossref]

Brown, C. T. A.

Brunner, F.

Cafiso, S.

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser”, IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Camy, P.

Caracciolo, E.

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser”, IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci Appl. 3, e149 (2014).
[Crossref]

Cormier, E.

Courjaud, A.

Descamps, D.

Di DioCafiso, S.

Diaz, F.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel Ytterbium and Thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1, 179–212 (2007).
[Crossref]

Doualan, J.

Druon, F.

Gandhi, H. H.

Georges, P.

Greborio, A.

Griebner, U.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel Ytterbium and Thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1, 179–212 (2007).
[Crossref]

Guandalini, A.

F. Pirzio, S. Cafiso, M. Kemnitzer, A. Guandalini, F. Kienle, S. Veronesi, M. Tonelli, J. Aus der Au, and A. Agnesi, “Sub-50-fs widely tunable Yb:CaYAlO4 laser pumped by 400-mW single-mode fiber-coupled laser diode,” Opt. Express 23, 9790–9795 (2015).
[Crossref] [PubMed]

F. Pirzio, S. Di DioCafiso, M. Kemnitzer, F. Kienle, A. Guandalini, J. Aus der Au, and A. Agnesi, “65-fs Yb:CaF2 laser mode-locked by semiconductor saturable absorber mirror,” J. Opt. Soc. Am. B 32, 2321–2325 (2015).
[Crossref]

F. Pirzio, E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Kienle, J. Aus der Au, and A. Agnesi, “Performance of Yb:Sc2SiO5 crystal in diode-pumped femtosecond oscillator and regenerative amplifier,” Opt. Express 23, 13115–13120 (2015).
[Crossref] [PubMed]

E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Pirzio, A. Agnesi, and J. Aus der Au, “High pulse energy multi-watt Yb:CaAlGdO4 and Yb:CaF2 regenerative amplifiers,” Opt. Express 22, 19912–19918 (2014).
[Crossref] [PubMed]

A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, A. Guandalini, and J. Aus der Au, “Diode-pumped passively mode-locked tunable Yb:CALGO solid-state laser, J. Opt. Soc. Am. B 30, 1513–1516 (2013).
[Crossref]

E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Pirzio, J. Aus der Au, and A. Agnesi, “28-W, 217 fs solid-state Yb:CaGdAlO4 regenerative amplifiers, Opt. Lett. 38, 4131–4133 (2013).
[Crossref] [PubMed]

A. Greborio, A. Guandalini, and J. Aus Der Au, “Sub-100 fs pulses with 12.5 W from Yb:CALGO based oscillator,” Proc. SPIE, 8235 (2012).
[Crossref]

Harder, C.

Hönninger, C.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking”, J. Opt. Soc. Am. B 16, 45–56 (1999).
[Crossref]

Huber, G.

Keller, U.

Kemnitzer, M.

Kienle, F.

Kopf, D.

Krainer, L.

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser”, IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Kuleshov, N. V.

Lagatsky, A. A.

Liang, X.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5, Appl. Phys. B 91, 443–445 (2008).
[Crossref]

Lichtenstein, N.

Liu, J.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel Ytterbium and Thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1, 179–212 (2007).
[Crossref]

Mateos, X.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel Ytterbium and Thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1, 179–212 (2007).
[Crossref]

Mazur, E.

Mikhailov, V. P.

Moncorgé, R.

Morier-Genoud, F.

Moser, M.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking”, J. Opt. Soc. Am. B 16, 45–56 (1999).
[Crossref]

Mottay, E.

Papadopoulos, D.

Paschotta, R.

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser”, IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Pellegrina, A.

Petrov, V.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel Ytterbium and Thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1, 179–212 (2007).
[Crossref]

Phillips, K. C.

Pirzio, F.

Podlipensky, A. V.

Pujol, M. C.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel Ytterbium and Thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1, 179–212 (2007).
[Crossref]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser”, IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Reali, G.

Ricaud, S.

Rivier, S.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel Ytterbium and Thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1, 179–212 (2007).
[Crossref]

Sévillano, P.

Sibbett, W.

Silvestre, O.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel Ytterbium and Thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1, 179–212 (2007).
[Crossref]

Solé, R. M.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel Ytterbium and Thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1, 179–212 (2007).
[Crossref]

Spühler, G. J.

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser”, IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Su, L.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5, Appl. Phys. B 91, 443–445 (2008).
[Crossref]

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci Appl. 3, e149 (2014).
[Crossref]

Sundaram, S. K.

Tonelli, M.

Ugolotti, E.

Veronesi, S.

Weingarten, K. J.

Weiss, S.

Wu, F.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5, Appl. Phys. B 91, 443–445 (2008).
[Crossref]

Xu, J.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5, Appl. Phys. B 91, 443–445 (2008).
[Crossref]

Zhao, G.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5, Appl. Phys. B 91, 443–445 (2008).
[Crossref]

Zheng, L.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5, Appl. Phys. B 91, 443–445 (2008).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. B (1)

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5, Appl. Phys. B 91, 443–445 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser”, IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser & Photon. Rev. (1)

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel Ytterbium and Thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1, 179–212 (2007).
[Crossref]

Light Sci Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci Appl. 3, e149 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. Express (1)

Other (1)

A. Greborio, A. Guandalini, and J. Aus Der Au, “Sub-100 fs pulses with 12.5 W from Yb:CALGO based oscillator,” Proc. SPIE, 8235 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Setup for the CW laser and (inset) ML experiments. FC-LD: Single-mode fiber-coupled laser diode; L1: Aspherical lens (f = 15.3 mm, NA 0.16); HWP: Half-wave plate AR coated at 976 nm; L2: Spherical lens (50 mm focal); M1: Concave mirror, R = 50 mm, high reflectivity (HR) at 1000–1100 nm, high transmissivity at 940–980 nm; M2: Concave mirror, 100 mm radius of curvature; HR: Flat mirror HR between 1000 and 1100 nm; OC: Output coupler, 30′ wedge; DP: Dispersive prisms; GTI: Gires-Tournois Interferometric mirrors, HR at 1000–1100 nm, -55 fs2 per bounce; SESAM: Semiconductor saturable absorber mirror. The second FC-LD was only used for the Yb:CaF2 experiments.
Fig. 2
Fig. 2 Effective gain spectrum of Yb:CALGO calculated in our experimental conditions. The measured ML spectrum corresponding to the shortest pulses obtained is also shown in dashed red.
Fig. 3
Fig. 3 Intracavity critical pulse energy calculated from our experimental conditions according to Eq. (5) (colored lines) and measured intracavity pulse energy as a function of ξ parameter at the start of the soliton ML regime (colored dots).
Fig. 4
Fig. 4 Autocorrelation trace and corresponding optical spectrum (inset) of the shortest pulses obtained with Yb:CALGO.
Fig. 5
Fig. 5 Central output wavelength tuning range in single DP setup for Yb:CALGO (a) and Yb:KLuW (b).

Tables (3)

Tables Icon

Table 1 List of the active media we tested with the corresponding length and dopant concentration and more relevant spectroscopic and thermo-optical properties.

Tables Icon

Table 2 Summary of the CW regime results.

Tables Icon

Table 3 Summary of the ML regime results.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η = η 0 λ p λ 1 ln ( R o c ) δ c ln ( R o c )
g t h ( λ ) = 2 L g [ N 2 σ e ( λ ) N 1 σ a ( λ ) ] = ln ( R o c ) + δ c
β ( λ ) = σ a ( λ ) σ e ( λ ) + σ a ( λ ) + ln ( R o c ) + δ c 2 L g N t o t ( σ e ( λ ) + σ a ( λ ) )
σ e f f ( λ ) = β m i n σ e ( λ ) ( 1 β m i n ) σ a ( λ )
E p = g ξ 2 E g 2 + ( g ξ 2 E g 2 ) 2 + E g E s Δ R

Metrics