Abstract

We theoretically and experimentally investigate the electrically tunable Fano-type resonance of asymmetric metal wire pair loaded with varactor diodes. It is illustrated that Fano-type transmission spectrum with high quality factor Q appears as a result of interference between the dipole and quadrupole modes. The ohmic loss of series resistance in varactor diode makes major contribution to absorption. At the Fano-type resonance frequency, both the two metal wires exhibit the strongest electric resonance simultaneously, and the Fano-type resonance manifests a large group delay. As the bias voltage ranges from 0 V to 8 V, the Fano-type resonance frequency exhibits a prominent blueshift of 0.16 GHz and the transmission experiences a modulation with a modulation depth of 97%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermally tunable electric mie resonance of dielectric cut-wire type metamaterial

Fuli Zhang, Lei Chen, Ying Wang, Qian Zhao, Xuan He, and Ke Chen
Opt. Express 22(21) 24908-24913 (2014)

Frequency-tunable metamaterial absorber using a varactor-loaded fishnet-like resonator

Hyung Ki Kim, Dongju Lee, and Sungjoon Lim
Appl. Opt. 55(15) 4113-4118 (2016)

Theoretical investigation of active modulation and enhancement of Fano resonance in THz metamaterials

Subhajit Karmakar, Ravendra K. Varshney, and Dibakar Roy Chowdhury
OSA Continuum 2(3) 531-539 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
  2. F. Zhang, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Magnetic and electric coupling effects of dielectric metamaterial,” New J. Phys. 14(3), 033031 (2012).
    [Crossref]
  3. Z. Y. Wei, Y. Cao, Z. J. Gong, X. P. Su, Y. C. Fan, C. Wu, J. W. Zhang, and H. Q. Li, “Subwavelength imaging with a fishnet flat lens,” Phys. Rev. B 88(19), 195123 (2013).
    [Crossref]
  4. G. Lipworth, J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, “Magnetic metamaterial superlens for increased range wireless power transfer,” Sci. Rep. 4, 3642 (2014).
    [Crossref] [PubMed]
  5. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [Crossref] [PubMed]
  6. L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
    [Crossref]
  7. J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, and R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
    [Crossref]
  8. Y. B. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Surface Fourier-transform lens using a metasurface,” J. Phys. D Appl. Phys. 48(3), 035107 (2015).
    [Crossref]
  9. J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6, 18819 (2016).
    [Crossref] [PubMed]
  10. X. Ding, Y. Wu, K. Zhang, H. Yu, and Q. Wu, “Theoretical study on a broadband, high cross-polarization conversion efficiency metalens based on phase discontinuity,” J. Phys. D Appl. Phys. 47(27), 275302 (2014).
    [Crossref]
  11. K. Song, Y. Liu, C. Luo, and X. Zhao, “Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design,” J. Phys. D Appl. Phys. 47, 505104 (2014).
    [Crossref]
  12. R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
    [Crossref] [PubMed]
  13. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  14. Y. Sun, Y. Tong, C. Xue, Y. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
    [Crossref]
  15. X. Li, Z. Wei, Y. Liu, N. Zhong, X. Tan, S. Shi, H. Liu, and R. Liang, “Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator,” Phys. Lett. A 380(1-2), 232–237 (2016).
    [Crossref]
  16. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref] [PubMed]
  17. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  18. V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18(9), 9015–9019 (2010).
    [Crossref] [PubMed]
  19. Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
    [Crossref] [PubMed]
  20. X. Xiao, J. Wu, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98(1), 011911 (2011).
    [Crossref]
  21. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
    [Crossref] [PubMed]
  22. X.-R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
    [Crossref] [PubMed]
  23. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
    [Crossref] [PubMed]
  24. N. E. J. Omaghali, V. Tkachenko, A. Andreone, and G. Abbate, “Optical sensing using dark mode excitation in an asymmetric dimer metamaterial,” Sensors (Basel) 14(1), 272–282 (2013).
    [Crossref] [PubMed]
  25. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref] [PubMed]
  26. F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21(17), 19675–19680 (2013).
    [Crossref] [PubMed]
  27. D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
    [Crossref]
  28. F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
    [Crossref]
  29. F. Zhang, L. Chen, Y. Wang, Q. Zhao, X. He, and K. Chen, “Thermally tunable electric mie resonance of dielectric cut-wire type metamaterial,” Opt. Express 22(21), 24908–24913 (2014).
    [Crossref] [PubMed]
  30. F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
    [Crossref]
  31. H. S. Chen, B. I. Wu, L. X. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
    [Crossref]
  32. M. C. K. Wiltshire, “Tuning Swiss roll metamaterials,” J. Phys. D Appl. Phys. 42(20), 205001 (2009).
    [Crossref]
  33. Q. Fu, F. Zhang, and Y. Fan, “Reconfigurable-focus flat lens based on gradient index metamaterials,” J. Opt. 17(8), 085103 (2015).
    [Crossref]

2016 (3)

L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
[Crossref]

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6, 18819 (2016).
[Crossref] [PubMed]

X. Li, Z. Wei, Y. Liu, N. Zhong, X. Tan, S. Shi, H. Liu, and R. Liang, “Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator,” Phys. Lett. A 380(1-2), 232–237 (2016).
[Crossref]

2015 (4)

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Y. B. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Surface Fourier-transform lens using a metasurface,” J. Phys. D Appl. Phys. 48(3), 035107 (2015).
[Crossref]

Q. Fu, F. Zhang, and Y. Fan, “Reconfigurable-focus flat lens based on gradient index metamaterials,” J. Opt. 17(8), 085103 (2015).
[Crossref]

2014 (7)

F. Zhang, L. Chen, Y. Wang, Q. Zhao, X. He, and K. Chen, “Thermally tunable electric mie resonance of dielectric cut-wire type metamaterial,” Opt. Express 22(21), 24908–24913 (2014).
[Crossref] [PubMed]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

G. Lipworth, J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, “Magnetic metamaterial superlens for increased range wireless power transfer,” Sci. Rep. 4, 3642 (2014).
[Crossref] [PubMed]

X. Ding, Y. Wu, K. Zhang, H. Yu, and Q. Wu, “Theoretical study on a broadband, high cross-polarization conversion efficiency metalens based on phase discontinuity,” J. Phys. D Appl. Phys. 47(27), 275302 (2014).
[Crossref]

K. Song, Y. Liu, C. Luo, and X. Zhao, “Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design,” J. Phys. D Appl. Phys. 47, 505104 (2014).
[Crossref]

2013 (5)

Y. Sun, Y. Tong, C. Xue, Y. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Z. Y. Wei, Y. Cao, Z. J. Gong, X. P. Su, Y. C. Fan, C. Wu, J. W. Zhang, and H. Q. Li, “Subwavelength imaging with a fishnet flat lens,” Phys. Rev. B 88(19), 195123 (2013).
[Crossref]

J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, and R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[Crossref]

N. E. J. Omaghali, V. Tkachenko, A. Andreone, and G. Abbate, “Optical sensing using dark mode excitation in an asymmetric dimer metamaterial,” Sensors (Basel) 14(1), 272–282 (2013).
[Crossref] [PubMed]

F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21(17), 19675–19680 (2013).
[Crossref] [PubMed]

2012 (2)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

F. Zhang, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Magnetic and electric coupling effects of dielectric metamaterial,” New J. Phys. 14(3), 033031 (2012).
[Crossref]

2011 (5)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

X. Xiao, J. Wu, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98(1), 011911 (2011).
[Crossref]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

X.-R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (1)

M. C. K. Wiltshire, “Tuning Swiss roll metamaterials,” J. Phys. D Appl. Phys. 42(20), 205001 (2009).
[Crossref]

2008 (1)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

2006 (1)

H. S. Chen, B. I. Wu, L. X. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[Crossref]

Abbate, G.

N. E. J. Omaghali, V. Tkachenko, A. Andreone, and G. Abbate, “Optical sensing using dark mode excitation in an asymmetric dimer metamaterial,” Sensors (Basel) 14(1), 272–282 (2013).
[Crossref] [PubMed]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Al-Naib, I. A. I.

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Andreone, A.

N. E. J. Omaghali, V. Tkachenko, A. Andreone, and G. Abbate, “Optical sensing using dark mode excitation in an asymmetric dimer metamaterial,” Sensors (Basel) 14(1), 272–282 (2013).
[Crossref] [PubMed]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Belov, P. A.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

Buckingham, R.

Burokur, S. N.

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6, 18819 (2016).
[Crossref] [PubMed]

Cai, B. G.

Y. B. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Surface Fourier-transform lens using a metasurface,” J. Phys. D Appl. Phys. 48(3), 035107 (2015).
[Crossref]

Cao, Y.

Z. Y. Wei, Y. Cao, Z. J. Gong, X. P. Su, Y. C. Fan, C. Wu, J. W. Zhang, and H. Q. Li, “Subwavelength imaging with a fishnet flat lens,” Phys. Rev. B 88(19), 195123 (2013).
[Crossref]

Chen, H.

L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
[Crossref]

Y. Sun, Y. Tong, C. Xue, Y. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Chen, H. S.

H. S. Chen, B. I. Wu, L. X. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[Crossref]

Chen, H.-T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Chen, K.

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

F. Zhang, L. Chen, Y. Wang, Q. Zhao, X. He, and K. Chen, “Thermally tunable electric mie resonance of dielectric cut-wire type metamaterial,” Opt. Express 22(21), 24908–24913 (2014).
[Crossref] [PubMed]

Chen, L.

F. Zhang, L. Chen, Y. Wang, Q. Zhao, X. He, and K. Chen, “Thermally tunable electric mie resonance of dielectric cut-wire type metamaterial,” Opt. Express 22(21), 24908–24913 (2014).
[Crossref] [PubMed]

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

Chen, Y.

Cheng, Q.

Y. B. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Surface Fourier-transform lens using a metasurface,” J. Phys. D Appl. Phys. 48(3), 035107 (2015).
[Crossref]

Cheong, H. S.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Cui, T. J.

Y. B. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Surface Fourier-transform lens using a metasurface,” J. Phys. D Appl. Phys. 48(3), 035107 (2015).
[Crossref]

Cummer, S. A.

L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
[Crossref]

de Groot, P.

de Lustrac, A.

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6, 18819 (2016).
[Crossref] [PubMed]

Ding, X.

X. Ding, Y. Wu, K. Zhang, H. Yu, and Q. Wu, “Theoretical study on a broadband, high cross-polarization conversion efficiency metalens based on phase discontinuity,” J. Phys. D Appl. Phys. 47(27), 275302 (2014).
[Crossref]

Ding, Y.

Y. Sun, Y. Tong, C. Xue, Y. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Dong, Z.-G.

Ensworth, J.

G. Lipworth, J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, “Magnetic metamaterial superlens for increased range wireless power transfer,” Sci. Rep. 4, 3642 (2014).
[Crossref] [PubMed]

Fan, R.-H.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Fan, Y.

Q. Fu, F. Zhang, and Y. Fan, “Reconfigurable-focus flat lens based on gradient index metamaterials,” J. Opt. 17(8), 085103 (2015).
[Crossref]

Fan, Y. C.

Z. Y. Wei, Y. Cao, Z. J. Gong, X. P. Su, Y. C. Fan, C. Wu, J. W. Zhang, and H. Q. Li, “Subwavelength imaging with a fishnet flat lens,” Phys. Rev. B 88(19), 195123 (2013).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18(9), 9015–9019 (2010).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, and R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[Crossref]

Filonov, D. S.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

Fu, Q.

Q. Fu, F. Zhang, and Y. Fan, “Reconfigurable-focus flat lens based on gradient index metamaterials,” J. Opt. 17(8), 085103 (2015).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gong, Z. J.

Z. Y. Wei, Y. Cao, Z. J. Gong, X. P. Su, Y. C. Fan, C. Wu, J. W. Zhang, and H. Q. Li, “Subwavelength imaging with a fishnet flat lens,” Phys. Rev. B 88(19), 195123 (2013).
[Crossref]

Grzegorczyk, T. M.

H. S. Chen, B. I. Wu, L. X. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

He, X.

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

F. Zhang, L. Chen, Y. Wang, Q. Zhao, X. He, and K. Chen, “Thermally tunable electric mie resonance of dielectric cut-wire type metamaterial,” Opt. Express 22(21), 24908–24913 (2014).
[Crossref] [PubMed]

Hopkins, B.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

Huang, D.

G. Lipworth, J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, “Magnetic metamaterial superlens for increased range wireless power transfer,” Sci. Rep. 4, 3642 (2014).
[Crossref] [PubMed]

Huang, X.

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

Huang, X.-R.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Jang, W. H.

Jiang, H.

Y. Sun, Y. Tong, C. Xue, Y. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Jiang, S.-C.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Jin, X.-R.

Kang, L.

F. Zhang, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Magnetic and electric coupling effects of dielectric metamaterial,” New J. Phys. 14(3), 033031 (2012).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Kim, K. W.

Kivshar, Y. S.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

Koch, M.

Kong, J. A.

H. S. Chen, B. I. Wu, L. X. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[Crossref]

Krasnok, A. E.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

Lan, C.

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

Lee, J. S.

G. Lipworth, J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, “Magnetic metamaterial superlens for increased range wireless power transfer,” Sci. Rep. 4, 3642 (2014).
[Crossref] [PubMed]

Lee, S.

Lee, Y.

Li, C.

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

Li, H. Q.

Z. Y. Wei, Y. Cao, Z. J. Gong, X. P. Su, Y. C. Fan, C. Wu, J. W. Zhang, and H. Q. Li, “Subwavelength imaging with a fishnet flat lens,” Phys. Rev. B 88(19), 195123 (2013).
[Crossref]

Li, Q.

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

Li, S.

X. Xiao, J. Wu, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98(1), 011911 (2011).
[Crossref]

Li, T.

Li, X.

X. Li, Z. Wei, Y. Liu, N. Zhong, X. Tan, S. Shi, H. Liu, and R. Liang, “Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator,” Phys. Lett. A 380(1-2), 232–237 (2016).
[Crossref]

Li, Y.

Y. Sun, Y. Tong, C. Xue, Y. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Li, Y. B.

Y. B. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Surface Fourier-transform lens using a metasurface,” J. Phys. D Appl. Phys. 48(3), 035107 (2015).
[Crossref]

Liang, R.

X. Li, Z. Wei, Y. Liu, N. Zhong, X. Tan, S. Shi, H. Liu, and R. Liang, “Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator,” Phys. Lett. A 380(1-2), 232–237 (2016).
[Crossref]

Lippens, D.

F. Zhang, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Magnetic and electric coupling effects of dielectric metamaterial,” New J. Phys. 14(3), 033031 (2012).
[Crossref]

Lipworth, G.

G. Lipworth, J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, “Magnetic metamaterial superlens for increased range wireless power transfer,” Sci. Rep. 4, 3642 (2014).
[Crossref] [PubMed]

Liu, H.

X. Li, Z. Wei, Y. Liu, N. Zhong, X. Tan, S. Shi, H. Liu, and R. Liang, “Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator,” Phys. Lett. A 380(1-2), 232–237 (2016).
[Crossref]

Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[Crossref] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Liu, Y.

X. Li, Z. Wei, Y. Liu, N. Zhong, X. Tan, S. Shi, H. Liu, and R. Liang, “Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator,” Phys. Lett. A 380(1-2), 232–237 (2016).
[Crossref]

K. Song, Y. Liu, C. Luo, and X. Zhao, “Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design,” J. Phys. D Appl. Phys. 47, 505104 (2014).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Luo, C.

K. Song, Y. Liu, C. Luo, and X. Zhao, “Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design,” J. Phys. D Appl. Phys. 47, 505104 (2014).
[Crossref]

Luo, Y.

J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, and R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[Crossref]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Miroshnichenko, A. E.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

Miyamaru, F.

X. Xiao, J. Wu, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98(1), 011911 (2011).
[Crossref]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Nenasheva, E. A.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Nomura, T.

G. Lipworth, J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, “Magnetic metamaterial superlens for increased range wireless power transfer,” Sci. Rep. 4, 3642 (2014).
[Crossref] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Omaghali, N. E. J.

N. E. J. Omaghali, V. Tkachenko, A. Andreone, and G. Abbate, “Optical sensing using dark mode excitation in an asymmetric dimer metamaterial,” Sensors (Basel) 14(1), 272–282 (2013).
[Crossref] [PubMed]

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Park, J.

Pendry, J. B.

J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, and R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[Crossref]

Peng, R.-W.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Piau, G.-P.

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6, 18819 (2016).
[Crossref] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Qiu, K.

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

Ran, L. X.

H. S. Chen, B. I. Wu, L. X. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[Crossref]

Ren, X.-P.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Reynolds, M. S.

G. Lipworth, J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, “Magnetic metamaterial superlens for increased range wireless power transfer,” Sci. Rep. 4, 3642 (2014).
[Crossref] [PubMed]

Rhee, J. Y.

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Schmalenberg, P.

G. Lipworth, J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, “Magnetic metamaterial superlens for increased range wireless power transfer,” Sci. Rep. 4, 3642 (2014).
[Crossref] [PubMed]

Seetharam, K.

G. Lipworth, J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, “Magnetic metamaterial superlens for increased range wireless power transfer,” Sci. Rep. 4, 3642 (2014).
[Crossref] [PubMed]

Sheng, P.

X. Xiao, J. Wu, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98(1), 011911 (2011).
[Crossref]

Shi, J. H.

Shi, S.

X. Li, Z. Wei, Y. Liu, N. Zhong, X. Tan, S. Shi, H. Liu, and R. Liang, “Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator,” Phys. Lett. A 380(1-2), 232–237 (2016).
[Crossref]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

Slobozhanyuk, A. P.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

Smith, D. R.

G. Lipworth, J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, “Magnetic metamaterial superlens for increased range wireless power transfer,” Sci. Rep. 4, 3642 (2014).
[Crossref] [PubMed]

Song, K.

K. Song, Y. Liu, C. Luo, and X. Zhao, “Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design,” J. Phys. D Appl. Phys. 47, 505104 (2014).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Su, X. P.

Z. Y. Wei, Y. Cao, Z. J. Gong, X. P. Su, Y. C. Fan, C. Wu, J. W. Zhang, and H. Q. Li, “Subwavelength imaging with a fishnet flat lens,” Phys. Rev. B 88(19), 195123 (2013).
[Crossref]

Sun, Y.

Y. Sun, Y. Tong, C. Xue, Y. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Takeda, M. W.

X. Xiao, J. Wu, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98(1), 011911 (2011).
[Crossref]

Tan, X.

X. Li, Z. Wei, Y. Liu, N. Zhong, X. Tan, S. Shi, H. Liu, and R. Liang, “Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator,” Phys. Lett. A 380(1-2), 232–237 (2016).
[Crossref]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Tkachenko, V.

N. E. J. Omaghali, V. Tkachenko, A. Andreone, and G. Abbate, “Optical sensing using dark mode excitation in an asymmetric dimer metamaterial,” Sensors (Basel) 14(1), 272–282 (2013).
[Crossref] [PubMed]

Tong, Y.

Y. Sun, Y. Tong, C. Xue, Y. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Tsiatmas, A.

Tyc, T.

L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
[Crossref]

Urzhumov, Y.

G. Lipworth, J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, “Magnetic metamaterial superlens for increased range wireless power transfer,” Sci. Rep. 4, 3642 (2014).
[Crossref] [PubMed]

Wang, M.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Wang, S.

Wang, S.-M.

Wang, Y.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

F. Zhang, L. Chen, Y. Wang, Q. Zhao, X. He, and K. Chen, “Thermally tunable electric mie resonance of dielectric cut-wire type metamaterial,” Opt. Express 22(21), 24908–24913 (2014).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Wei, Z.

X. Li, Z. Wei, Y. Liu, N. Zhong, X. Tan, S. Shi, H. Liu, and R. Liang, “Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator,” Phys. Lett. A 380(1-2), 232–237 (2016).
[Crossref]

Wei, Z. Y.

Z. Y. Wei, Y. Cao, Z. J. Gong, X. P. Su, Y. C. Fan, C. Wu, J. W. Zhang, and H. Q. Li, “Subwavelength imaging with a fishnet flat lens,” Phys. Rev. B 88(19), 195123 (2013).
[Crossref]

Wen, W.

X. Xiao, J. Wu, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98(1), 011911 (2011).
[Crossref]

Wiltshire, M. C. K.

M. C. K. Wiltshire, “Tuning Swiss roll metamaterials,” J. Phys. D Appl. Phys. 42(20), 205001 (2009).
[Crossref]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wu, B. I.

H. S. Chen, B. I. Wu, L. X. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[Crossref]

Wu, C.

Z. Y. Wei, Y. Cao, Z. J. Gong, X. P. Su, Y. C. Fan, C. Wu, J. W. Zhang, and H. Q. Li, “Subwavelength imaging with a fishnet flat lens,” Phys. Rev. B 88(19), 195123 (2013).
[Crossref]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Wu, J.

X. Xiao, J. Wu, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98(1), 011911 (2011).
[Crossref]

Wu, Q.

X. Ding, Y. Wu, K. Zhang, H. Yu, and Q. Wu, “Theoretical study on a broadband, high cross-polarization conversion efficiency metalens based on phase discontinuity,” J. Phys. D Appl. Phys. 47(27), 275302 (2014).
[Crossref]

Wu, Y.

X. Ding, Y. Wu, K. Zhang, H. Yu, and Q. Wu, “Theoretical study on a broadband, high cross-polarization conversion efficiency metalens based on phase discontinuity,” J. Phys. D Appl. Phys. 47(27), 275302 (2014).
[Crossref]

Xiao, X.

X. Xiao, J. Wu, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98(1), 011911 (2011).
[Crossref]

Xie, Y.

L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
[Crossref]

Xiong, X.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Xu, D.-H.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Xu, L.

L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
[Crossref]

Xu, M.-X.

Xue, C.

Y. Sun, Y. Tong, C. Xue, Y. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Yi, J.

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6, 18819 (2016).
[Crossref] [PubMed]

Yu, H.

X. Ding, Y. Wu, K. Zhang, H. Yu, and Q. Wu, “Theoretical study on a broadband, high cross-polarization conversion efficiency metalens based on phase discontinuity,” J. Phys. D Appl. Phys. 47(27), 275302 (2014).
[Crossref]

Zhang, F.

Q. Fu, F. Zhang, and Y. Fan, “Reconfigurable-focus flat lens based on gradient index metamaterials,” J. Opt. 17(8), 085103 (2015).
[Crossref]

F. Zhang, L. Chen, Y. Wang, Q. Zhao, X. He, and K. Chen, “Thermally tunable electric mie resonance of dielectric cut-wire type metamaterial,” Opt. Express 22(21), 24908–24913 (2014).
[Crossref] [PubMed]

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21(17), 19675–19680 (2013).
[Crossref] [PubMed]

F. Zhang, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Magnetic and electric coupling effects of dielectric metamaterial,” New J. Phys. 14(3), 033031 (2012).
[Crossref]

Zhang, J. W.

Z. Y. Wei, Y. Cao, Z. J. Gong, X. P. Su, Y. C. Fan, C. Wu, J. W. Zhang, and H. Q. Li, “Subwavelength imaging with a fishnet flat lens,” Phys. Rev. B 88(19), 195123 (2013).
[Crossref]

Zhang, K.

X. Ding, Y. Wu, K. Zhang, H. Yu, and Q. Wu, “Theoretical study on a broadband, high cross-polarization conversion efficiency metalens based on phase discontinuity,” J. Phys. D Appl. Phys. 47(27), 275302 (2014).
[Crossref]

Zhang, M.

X. Xiao, J. Wu, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98(1), 011911 (2011).
[Crossref]

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

Zhang, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhao, Q.

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

F. Zhang, L. Chen, Y. Wang, Q. Zhao, X. He, and K. Chen, “Thermally tunable electric mie resonance of dielectric cut-wire type metamaterial,” Opt. Express 22(21), 24908–24913 (2014).
[Crossref] [PubMed]

F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21(17), 19675–19680 (2013).
[Crossref] [PubMed]

F. Zhang, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Magnetic and electric coupling effects of dielectric metamaterial,” New J. Phys. 14(3), 033031 (2012).
[Crossref]

Zhao, R.

J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, and R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[Crossref]

Zhao, X.

K. Song, Y. Liu, C. Luo, and X. Zhao, “Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design,” J. Phys. D Appl. Phys. 47, 505104 (2014).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18(9), 9015–9019 (2010).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Zheng, H.

Zhong, N.

X. Li, Z. Wei, Y. Liu, N. Zhong, X. Tan, S. Shi, H. Liu, and R. Liang, “Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator,” Phys. Lett. A 380(1-2), 232–237 (2016).
[Crossref]

Zhou, J.

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21(17), 19675–19680 (2013).
[Crossref] [PubMed]

F. Zhang, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Magnetic and electric coupling effects of dielectric metamaterial,” New J. Phys. 14(3), 033031 (2012).
[Crossref]

Zhou, Y.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Zhu, S.-N.

Adv. Mater. (1)

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

Y. Sun, Y. Tong, C. Xue, Y. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

X. Xiao, J. Wu, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98(1), 011911 (2011).
[Crossref]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

H. S. Chen, B. I. Wu, L. X. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[Crossref]

J. Opt. (1)

Q. Fu, F. Zhang, and Y. Fan, “Reconfigurable-focus flat lens based on gradient index metamaterials,” J. Opt. 17(8), 085103 (2015).
[Crossref]

J. Phys. D Appl. Phys. (4)

M. C. K. Wiltshire, “Tuning Swiss roll metamaterials,” J. Phys. D Appl. Phys. 42(20), 205001 (2009).
[Crossref]

X. Ding, Y. Wu, K. Zhang, H. Yu, and Q. Wu, “Theoretical study on a broadband, high cross-polarization conversion efficiency metalens based on phase discontinuity,” J. Phys. D Appl. Phys. 47(27), 275302 (2014).
[Crossref]

K. Song, Y. Liu, C. Luo, and X. Zhao, “Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design,” J. Phys. D Appl. Phys. 47, 505104 (2014).
[Crossref]

Y. B. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Surface Fourier-transform lens using a metasurface,” J. Phys. D Appl. Phys. 48(3), 035107 (2015).
[Crossref]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Nat. Phys. (1)

J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, and R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[Crossref]

New J. Phys. (1)

F. Zhang, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Magnetic and electric coupling effects of dielectric metamaterial,” New J. Phys. 14(3), 033031 (2012).
[Crossref]

Opt. Express (6)

Phys. Lett. A (1)

X. Li, Z. Wei, Y. Liu, N. Zhong, X. Tan, S. Shi, H. Liu, and R. Liang, “Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator,” Phys. Lett. A 380(1-2), 232–237 (2016).
[Crossref]

Phys. Rev. B (2)

Z. Y. Wei, Y. Cao, Z. J. Gong, X. P. Su, Y. C. Fan, C. Wu, J. W. Zhang, and H. Q. Li, “Subwavelength imaging with a fishnet flat lens,” Phys. Rev. B 88(19), 195123 (2013).
[Crossref]

L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
[Crossref]

Phys. Rev. Lett. (2)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Sci. Rep. (2)

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6, 18819 (2016).
[Crossref] [PubMed]

G. Lipworth, J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, “Magnetic metamaterial superlens for increased range wireless power transfer,” Sci. Rep. 4, 3642 (2014).
[Crossref] [PubMed]

Science (1)

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

N. E. J. Omaghali, V. Tkachenko, A. Andreone, and G. Abbate, “Optical sensing using dark mode excitation in an asymmetric dimer metamaterial,” Sensors (Basel) 14(1), 272–282 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic view (a) and photograph (b) of the asymmetric metal wire pair. The metal layer is copper with a conductivity of 5.8e7 S/m, and the depth is 0.018 mm. The substrate is Teflon with a relative permittivity of 2.45 and a loss tangent of 4e-4, and the dimension is 72.14*34.04*1 mm3. Two bias lines have a diameter of 0.1 mm. The dimensions of asymmetric wire pair are as follows: l1 = 33 mm, l2 = 31 mm, h = 5 mm, w = 3 mm, g = 1.3 mm and s = 5 mm.
Fig. 2
Fig. 2 (a) Transmission for the asymmetric wire pair, symmetric wire pair (SWP), and single wires. (b) Induced surface current, which is indicated by arrows, on the asymmetric wire pair and x component of local magnetic field Hx at the transmission peak frequency of the asymmetric wire pair. Whole absorption (c) and partial absorption (d) in the asymmetric wire pair. Magnitude (e) and phase (f) of the normalized scattering wave of electric dipole or the normalized electric dipole in the asymmetric wire pair. All these results are acquired by simulation under the case that the capacitance of varactor diode is 2.63 pF, which is corresponding to the bias voltage of 0 V.
Fig. 3
Fig. 3 Transmission phase (a) and group delay (b) of the asymmetric wire pair and single wires. The inset in (a) illustrates how Es and E0 compose Et for asymmetric wire pair. These results remain acquired by simulation under the case that the capacitance of varactor diode is 2.63 pF.
Fig. 4
Fig. 4 Tunable electric resonance of single wires by altering the bias voltage on varactor diode and accordingly altering the capacitance. Transmission spectra of left wire (a, b) and right wire (c, d) acquired with both experiment (a, c) and simulation (b, d) under the bias voltage ranging from 0 V to 8 V and accordingly the capacitance ranging from 2.63 pF to 0.76 pF.
Fig. 5
Fig. 5 Tunable Fano-type resonance of asymmetric wire pair by altering the bias voltage on varactor diodes and accordingly altering the capacitance. Transmission spectra of asymmetric wire pair acquired with both experiment (a) and simulation (b) under the bias voltage ranging from 0 V to 8 V and accordingly the capacitance ranging from 2.63 pF to 0.76 pF.
Fig. 6
Fig. 6 Relation between the transmission and the bias voltage on varactor diode for asymmetric wire pair at 3.11 GHz (a) and left wire at 3.21 GHz (b) measured by experiment.

Metrics