Abstract

We demonstrate for the first time a waveguide-based frequency shifter on the silicon photonic platform using single-sideband modulation. The device is based on silicon-organic hybrid (SOH) electro-optic modulators, which combine conventional silicon-on-insulator waveguides with highly efficient electro-optic cladding materials. Using small-signal modulation, we demonstrate frequency shifts of up to 10 GHz. We further show large-signal modulation with optimized waveforms, enabling a conversion efficiency of −5.8 dB while suppressing spurious side-modes by more than 23 dB. In contrast to conventional acousto-optic frequency shifters, our devices lend themselves to large-scale integration on silicon substrates, while enabling frequency shifts that are several orders of magnitude larger than those demonstrated with all-silicon serrodyne devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats

M. Lauermann, R. Palmer, S. Koeber, P. C. Schindler, D. Korn, T. Wahlbrink, J. Bolten, M. Waldow, D. L. Elder, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos
Opt. Express 22(24) 29927-29936 (2014)

Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission

C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos
Opt. Express 22(3) 3629-3637 (2014)

Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding

Joerg Pfeifle, Luca Alloatti, Wolfgang Freude, Juerg Leuthold, and Christian Koos
Opt. Express 20(14) 15359-15376 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. P. Kothiyal and C. Delisle, “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates,” Opt. Lett. 9(8), 319–321 (1984).
    [Crossref] [PubMed]
  2. M. Bauer, F. Ritter, and G. Siegmund, “High-precision laser vibrometers based on digital Doppler signal processing,” Proc. SPIE 4827, 50–61 (2002).
    [Crossref]
  3. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [Crossref] [PubMed]
  4. R. Watts, S. G. Murdoch, and L. Barry, “Spectral linewidth reduction of single-mode and mode-locked lasers using a feed-forward heterodyne detection scheme,” in Proceedings of CLEO 2014 (OSA, 2014), paper STh3O.8.
    [Crossref]
  5. J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express 20(11), 12222–12232 (2012).
    [Crossref] [PubMed]
  6. M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: The next fabless semiconductor industry,” IEEE Solid State Circ. Mag. 5(1), 48–58 (2013).
    [Crossref]
  7. R. G. Hunsperger, Integrated Optics: Theory and Technology, 6th ed. (Springer, 2009).
  8. Y. Park and K. Cho, “Heterodyne interferometer scheme using a double pass in an acousto-optic modulator,” Opt. Lett. 36(3), 331–333 (2011).
    [Crossref] [PubMed]
  9. L. M. Johnson and C. H. Cox, “Serrodyne optical frequency translation with high sideband suppression,” J. Lightwave Technol. 6(1), 109–112 (1988).
    [Crossref]
  10. M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
    [Crossref]
  11. Y. Li, S. Meersman, and R. Baets, “Optical frequency shifter on SOI using thermo-optic serrodyne modulation,” in Group IV Photonics (GFP) (IEEE, 2010), pp. 75–77.
  12. Y. Li, S. Verstuyft, G. Yurtsever, S. Keyvaninia, G. Roelkens, D. Van Thourhout, and R. Baets, “Heterodyne laser Doppler vibrometers integrated on silicon-on-insulator based on serrodyne thermo-optic frequency shifters,” Appl. Opt. 52(10), 2145–2152 (2013).
    [Crossref] [PubMed]
  13. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  14. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
    [Crossref]
  15. S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photonics Technol. Lett. 13(4), 364–366 (2001).
    [Crossref]
  16. C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. Schindler, D. Elder, T. Wahlbrink, and J. Bolten, “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
    [Crossref]
  17. S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
    [Crossref]
  18. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13(14), 5216–5226 (2005).
    [Crossref] [PubMed]
  19. J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding,” Opt. Express 20(14), 15359–15376 (2012).
    [Crossref] [PubMed]
  20. Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
    [Crossref]
  21. D. Korn, M. Lauermann, S. Koeber, P. Appel, L. Alloatti, R. Palmer, P. Dumon, W. Freude, J. Leuthold, and C. Koos, “Lasing in silicon-organic hybrid waveguides,” Nat. Commun. 7, 10864 (2016).
    [Crossref] [PubMed]
  22. F. Qiu, H. Sato, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators,” Appl. Phys. Lett. 107(12), 123302 (2015).
    [Crossref]
  23. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  24. S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 103(17), 171101 (2013).
    [Crossref]
  25. X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
    [Crossref] [PubMed]
  26. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
    [Crossref] [PubMed]
  27. M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.
  28. R. Palmer, S. Koeber, D. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
    [Crossref]
  29. J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18(16), 16902–16928 (2010).
    [Crossref] [PubMed]
  30. L. Alloatti, M. Lauermann, C. Sürgers, C. Koos, W. Freude, and J. Leuthold, “Optical absorption in silicon layers in the presence of charge inversion/accumulation or ion implantation,” Appl. Phys. Lett. 103(5), 051104 (2013).
    [Crossref]
  31. X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. Jen, R. Neilson, C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 99, 1 (2015).
  32. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
    [Crossref] [PubMed]
  33. W. Hartmann, M. Lauermann, S. Wolf, H. Zwickel, Y. Kutuvantavida, J. Luo, A. K.-Y. Jen, W. Freude, and C. Koos, “100 Gbit/s OOK using a silicon-organic hybrid (SOH) modulator,” in European Conference on Optical Communication (ECOC), 2015 (IEEE, 2015), pp. PDP.1.4.
    [Crossref]
  34. D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater. 26(2), 872–874 (2014).
    [Crossref]
  35. R. Palmer, L. Alloatti, D. Korn, W. Heni, P. C. Schindler, J. Bolten, M. Karl, M. Waldow, T. Wahlbrink, W. Freude, C. Koos, and J. Leuthold, “Low-loss silicon strip-to-slot mode converters,” IEEE Photonics J. 5(1), 2200409 (2013).
    [Crossref]
  36. D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J.-M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40(18), 4190–4193 (2015).
    [Crossref] [PubMed]
  37. N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33(4), 755–760 (2015).
    [Crossref]
  38. R. Ding, T. Baehr-Jones, W.-J. Kim, B. Boyko, R. Bojko, A. Spott, A. Pomerene, C. Hill, W. Reinhardt, and M. Hochberg, “Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator,” Appl. Phys. Lett. 98(23), 233303 (2011).
    [Crossref]
  39. M. Lauermann, S. Wolf, P. C. Schindler, R. Palmer, S. Koeber, D. Korn, L. Alloatti, T. Wahlbrink, J. Bolten, M. Waldow, M. Koenigsmann, M. Kohler, D. Malsam, D. L. Elder, P. V. Johnston, N. Phillips-Sylvain, P. A. Sullivan, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator,” J. Lightwave Technol. 33(6), 1210–1216 (2015).
    [Crossref]
  40. L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
    [Crossref]
  41. Z. Shi, W. Liang, J. Luo, S. Huang, B. M. Polishak, X. Li, T. R. Younkin, B. A. Block, and A. K.-Y. Jen, “Tuning the kinetics and energetics of Diels−Alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers,” Chem. Mater. 22(19), 5601–5608 (2010).
    [Crossref]
  42. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
    [Crossref] [PubMed]
  43. J. Luo, S. Huang, Z. Shi, B. M. Polishak, X.-H. Zhou, and A. K. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
    [Crossref]
  44. J. P. Salvestrini, L. Guilbert, M. Fontana, M. Abarkan, and S. Gille, “Analysis and control of the DC drift in LiNbO3-based Mach-Zehnder modulators,” J. Lightwave Technol. 29(10), 1522–1534 (2011).
    [Crossref]
  45. I. S. Gradshteyn and I. M. Ryzhik, Tables of Series, Products, and Integrals, 2nd ed. (Harri Deutsch, 1981).

2016 (2)

2015 (7)

F. Qiu, H. Sato, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators,” Appl. Phys. Lett. 107(12), 123302 (2015).
[Crossref]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. Jen, R. Neilson, C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 99, 1 (2015).

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina-Fernández, J.-M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Opt. Lett. 40(18), 4190–4193 (2015).
[Crossref] [PubMed]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33(4), 755–760 (2015).
[Crossref]

M. Lauermann, S. Wolf, P. C. Schindler, R. Palmer, S. Koeber, D. Korn, L. Alloatti, T. Wahlbrink, J. Bolten, M. Waldow, M. Koenigsmann, M. Kohler, D. Malsam, D. L. Elder, P. V. Johnston, N. Phillips-Sylvain, P. A. Sullivan, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator,” J. Lightwave Technol. 33(6), 1210–1216 (2015).
[Crossref]

2014 (3)

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater. 26(2), 872–874 (2014).
[Crossref]

R. Palmer, S. Koeber, D. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

2013 (6)

S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 103(17), 171101 (2013).
[Crossref]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

L. Alloatti, M. Lauermann, C. Sürgers, C. Koos, W. Freude, and J. Leuthold, “Optical absorption in silicon layers in the presence of charge inversion/accumulation or ion implantation,” Appl. Phys. Lett. 103(5), 051104 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, W. Heni, P. C. Schindler, J. Bolten, M. Karl, M. Waldow, T. Wahlbrink, W. Freude, C. Koos, and J. Leuthold, “Low-loss silicon strip-to-slot mode converters,” IEEE Photonics J. 5(1), 2200409 (2013).
[Crossref]

Y. Li, S. Verstuyft, G. Yurtsever, S. Keyvaninia, G. Roelkens, D. Van Thourhout, and R. Baets, “Heterodyne laser Doppler vibrometers integrated on silicon-on-insulator based on serrodyne thermo-optic frequency shifters,” Appl. Opt. 52(10), 2145–2152 (2013).
[Crossref] [PubMed]

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: The next fabless semiconductor industry,” IEEE Solid State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

2012 (2)

2011 (6)

2010 (4)

J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18(16), 16902–16928 (2010).
[Crossref] [PubMed]

Z. Shi, W. Liang, J. Luo, S. Huang, B. M. Polishak, X. Li, T. R. Younkin, B. A. Block, and A. K.-Y. Jen, “Tuning the kinetics and energetics of Diels−Alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers,” Chem. Mater. 22(19), 5601–5608 (2010).
[Crossref]

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

2009 (1)

2005 (1)

2004 (1)

2002 (1)

M. Bauer, F. Ritter, and G. Siegmund, “High-precision laser vibrometers based on digital Doppler signal processing,” Proc. SPIE 4827, 50–61 (2002).
[Crossref]

2001 (1)

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photonics Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

1992 (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

1988 (1)

L. M. Johnson and C. H. Cox, “Serrodyne optical frequency translation with high sideband suppression,” J. Lightwave Technol. 6(1), 109–112 (1988).
[Crossref]

1984 (1)

1981 (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Abarkan, M.

Absil, P.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

Ako, T.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

Alloatti, L.

D. Korn, M. Lauermann, S. Koeber, P. Appel, L. Alloatti, R. Palmer, P. Dumon, W. Freude, J. Leuthold, and C. Koos, “Lasing in silicon-organic hybrid waveguides,” Nat. Commun. 7, 10864 (2016).
[Crossref] [PubMed]

C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. Schindler, D. Elder, T. Wahlbrink, and J. Bolten, “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
[Crossref]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

M. Lauermann, S. Wolf, P. C. Schindler, R. Palmer, S. Koeber, D. Korn, L. Alloatti, T. Wahlbrink, J. Bolten, M. Waldow, M. Koenigsmann, M. Kohler, D. Malsam, D. L. Elder, P. V. Johnston, N. Phillips-Sylvain, P. A. Sullivan, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator,” J. Lightwave Technol. 33(6), 1210–1216 (2015).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

L. Alloatti, M. Lauermann, C. Sürgers, C. Koos, W. Freude, and J. Leuthold, “Optical absorption in silicon layers in the presence of charge inversion/accumulation or ion implantation,” Appl. Phys. Lett. 103(5), 051104 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, W. Heni, P. C. Schindler, J. Bolten, M. Karl, M. Waldow, T. Wahlbrink, W. Freude, C. Koos, and J. Leuthold, “Low-loss silicon strip-to-slot mode converters,” IEEE Photonics J. 5(1), 2200409 (2013).
[Crossref]

J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding,” Opt. Express 20(14), 15359–15376 (2012).
[Crossref] [PubMed]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Almeida, V. R.

Alonso-Ramos, C.

Aoki, I.

F. Qiu, H. Sato, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators,” Appl. Phys. Lett. 107(12), 123302 (2015).
[Crossref]

Appel, P.

D. Korn, M. Lauermann, S. Koeber, P. Appel, L. Alloatti, R. Palmer, P. Dumon, W. Freude, J. Leuthold, and C. Koos, “Lasing in silicon-organic hybrid waveguides,” Nat. Commun. 7, 10864 (2016).
[Crossref] [PubMed]

Baehr-Jones, T.

Baets, R.

Bale, D. H.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Barklund, A.

Barrios, C. A.

Bauer, M.

M. Bauer, F. Ritter, and G. Siegmund, “High-precision laser vibrometers based on digital Doppler signal processing,” Proc. SPIE 4827, 50–61 (2002).
[Crossref]

Beeckman, J.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

Benedikovic, D.

Benight, S. J.

D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater. 26(2), 872–874 (2014).
[Crossref]

Billah, M. R.

Block, B. A.

Z. Shi, W. Liang, J. Luo, S. Huang, B. M. Polishak, X. Li, T. R. Younkin, B. A. Block, and A. K.-Y. Jen, “Tuning the kinetics and energetics of Diels−Alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers,” Chem. Mater. 22(19), 5601–5608 (2010).
[Crossref]

Bogaerts, W.

C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. Schindler, D. Elder, T. Wahlbrink, and J. Bolten, “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
[Crossref]

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

R. Palmer, S. Koeber, D. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Bojko, R.

R. Ding, T. Baehr-Jones, W.-J. Kim, B. Boyko, R. Bojko, A. Spott, A. Pomerene, C. Hill, W. Reinhardt, and M. Hochberg, “Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator,” Appl. Phys. Lett. 98(23), 233303 (2011).
[Crossref]

Bolten, J.

Boyko, B.

R. Ding, T. Baehr-Jones, W.-J. Kim, B. Boyko, R. Bojko, A. Spott, A. Pomerene, C. Hill, W. Reinhardt, and M. Hochberg, “Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator,” Appl. Phys. Lett. 98(23), 233303 (2011).
[Crossref]

Chakravarty, S.

Cheben, P.

Chen, B.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Chen, R. T.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. Jen, R. Neilson, C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 99, 1 (2015).

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

Chen, S.

Cho, K.

Chung, C.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. Jen, R. Neilson, C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 99, 1 (2015).

Cocorullo, G.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

Cox, C. H.

L. M. Johnson and C. H. Cox, “Serrodyne optical frequency translation with high sideband suppression,” J. Lightwave Technol. 6(1), 109–112 (1988).
[Crossref]

Dado, M.

Dalton, L.

Dalton, L. R.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

M. Lauermann, S. Wolf, P. C. Schindler, R. Palmer, S. Koeber, D. Korn, L. Alloatti, T. Wahlbrink, J. Bolten, M. Waldow, M. Koenigsmann, M. Kohler, D. Malsam, D. L. Elder, P. V. Johnston, N. Phillips-Sylvain, P. A. Sullivan, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator,” J. Lightwave Technol. 33(6), 1210–1216 (2015).
[Crossref]

D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater. 26(2), 872–874 (2014).
[Crossref]

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Delisle, C.

Diebold, S.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Ding, R.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: The next fabless semiconductor industry,” IEEE Solid State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
[Crossref] [PubMed]

R. Ding, T. Baehr-Jones, W.-J. Kim, B. Boyko, R. Bojko, A. Spott, A. Pomerene, C. Hill, W. Reinhardt, and M. Hochberg, “Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator,” Appl. Phys. Lett. 98(23), 233303 (2011).
[Crossref]

Dinu, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

Dottermusch, S.

Dumon, P.

Elder, D.

Elder, D. L.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

M. Lauermann, S. Wolf, P. C. Schindler, R. Palmer, S. Koeber, D. Korn, L. Alloatti, T. Wahlbrink, J. Bolten, M. Waldow, M. Koenigsmann, M. Kohler, D. Malsam, D. L. Elder, P. V. Johnston, N. Phillips-Sylvain, P. A. Sullivan, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator,” J. Lightwave Technol. 33(6), 1210–1216 (2015).
[Crossref]

D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater. 26(2), 872–874 (2014).
[Crossref]

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Fedeli, J.

Fedeli, J.-M.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
[Crossref] [PubMed]

Fédéli, J.-M.

Fontana, M.

Fournier, M.

Freude, W.

D. Korn, M. Lauermann, S. Koeber, P. Appel, L. Alloatti, R. Palmer, P. Dumon, W. Freude, J. Leuthold, and C. Koos, “Lasing in silicon-organic hybrid waveguides,” Nat. Commun. 7, 10864 (2016).
[Crossref] [PubMed]

C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. Schindler, D. Elder, T. Wahlbrink, and J. Bolten, “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
[Crossref]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33(4), 755–760 (2015).
[Crossref]

M. Lauermann, S. Wolf, P. C. Schindler, R. Palmer, S. Koeber, D. Korn, L. Alloatti, T. Wahlbrink, J. Bolten, M. Waldow, M. Koenigsmann, M. Kohler, D. Malsam, D. L. Elder, P. V. Johnston, N. Phillips-Sylvain, P. A. Sullivan, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator,” J. Lightwave Technol. 33(6), 1210–1216 (2015).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

R. Palmer, S. Koeber, D. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

L. Alloatti, M. Lauermann, C. Sürgers, C. Koos, W. Freude, and J. Leuthold, “Optical absorption in silicon layers in the presence of charge inversion/accumulation or ion implantation,” Appl. Phys. Lett. 103(5), 051104 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, W. Heni, P. C. Schindler, J. Bolten, M. Karl, M. Waldow, T. Wahlbrink, W. Freude, C. Koos, and J. Leuthold, “Low-loss silicon strip-to-slot mode converters,” IEEE Photonics J. 5(1), 2200409 (2013).
[Crossref]

J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding,” Opt. Express 20(14), 15359–15376 (2012).
[Crossref] [PubMed]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

W. Hartmann, M. Lauermann, S. Wolf, H. Zwickel, Y. Kutuvantavida, J. Luo, A. K.-Y. Jen, W. Freude, and C. Koos, “100 Gbit/s OOK using a silicon-organic hybrid (SOH) modulator,” in European Conference on Optical Communication (ECOC), 2015 (IEEE, 2015), pp. PDP.1.4.
[Crossref]

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Georgas, M.

George, J. P.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

Giesecke, A.

Gille, S.

Goedecke, M. L.

Gould, M.

Guilbert, L.

Halir, R.

Harris, N. C.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: The next fabless semiconductor industry,” IEEE Solid State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

Hartmann, W.

Heni, W.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

R. Palmer, S. Koeber, D. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, W. Heni, P. C. Schindler, J. Bolten, M. Karl, M. Waldow, T. Wahlbrink, W. Freude, C. Koos, and J. Leuthold, “Low-loss silicon strip-to-slot mode converters,” IEEE Photonics J. 5(1), 2200409 (2013).
[Crossref]

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Hill, C.

R. Ding, T. Baehr-Jones, W.-J. Kim, B. Boyko, R. Bojko, A. Spott, A. Pomerene, C. Hill, W. Reinhardt, and M. Hochberg, “Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator,” Appl. Phys. Lett. 98(23), 233303 (2011).
[Crossref]

Hillerkuss, D.

Hochberg, M.

Hofmann, A.

Hoose, T.

Hosseini, A.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. Jen, R. Neilson, C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 99, 1 (2015).

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

Huang, S.

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
[Crossref] [PubMed]

J. Luo, S. Huang, Z. Shi, B. M. Polishak, X.-H. Zhou, and A. K. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
[Crossref]

Z. Shi, W. Liang, J. Luo, S. Huang, B. M. Polishak, X. Li, T. R. Younkin, B. A. Block, and A. K.-Y. Jen, “Tuning the kinetics and energetics of Diels−Alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers,” Chem. Mater. 22(19), 5601–5608 (2010).
[Crossref]

Inoue, S.

S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 103(17), 171101 (2013).
[Crossref]

Izutsu, M.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photonics Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Janz, S.

Jen, A.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. Jen, R. Neilson, C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 99, 1 (2015).

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13(14), 5216–5226 (2005).
[Crossref] [PubMed]

Jen, A. K.

J. Luo, S. Huang, Z. Shi, B. M. Polishak, X.-H. Zhou, and A. K. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
[Crossref]

Jen, A. K.-Y.

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
[Crossref] [PubMed]

Z. Shi, W. Liang, J. Luo, S. Huang, B. M. Polishak, X. Li, T. R. Younkin, B. A. Block, and A. K.-Y. Jen, “Tuning the kinetics and energetics of Diels−Alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers,” Chem. Mater. 22(19), 5601–5608 (2010).
[Crossref]

W. Hartmann, M. Lauermann, S. Wolf, H. Zwickel, Y. Kutuvantavida, J. Luo, A. K.-Y. Jen, W. Freude, and C. Koos, “100 Gbit/s OOK using a silicon-organic hybrid (SOH) modulator,” in European Conference on Optical Communication (ECOC), 2015 (IEEE, 2015), pp. PDP.1.4.
[Crossref]

Johnson, L. M.

L. M. Johnson and C. H. Cox, “Serrodyne optical frequency translation with high sideband suppression,” J. Lightwave Technol. 6(1), 109–112 (1988).
[Crossref]

Johnston, P. V.

Karl, M.

R. Palmer, L. Alloatti, D. Korn, W. Heni, P. C. Schindler, J. Bolten, M. Karl, M. Waldow, T. Wahlbrink, W. Freude, C. Koos, and J. Leuthold, “Low-loss silicon strip-to-slot mode converters,” IEEE Photonics J. 5(1), 2200409 (2013).
[Crossref]

Kawanishi, T.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photonics Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

Keyvaninia, S.

Kim, W.-J.

R. Ding, T. Baehr-Jones, W.-J. Kim, B. Boyko, R. Bojko, A. Spott, A. Pomerene, C. Hill, W. Reinhardt, and M. Hochberg, “Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator,” Appl. Phys. Lett. 98(23), 233303 (2011).
[Crossref]

Knopf, A.

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Koeber, S.

C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. Schindler, D. Elder, T. Wahlbrink, and J. Bolten, “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
[Crossref]

D. Korn, M. Lauermann, S. Koeber, P. Appel, L. Alloatti, R. Palmer, P. Dumon, W. Freude, J. Leuthold, and C. Koos, “Lasing in silicon-organic hybrid waveguides,” Nat. Commun. 7, 10864 (2016).
[Crossref] [PubMed]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

M. Lauermann, S. Wolf, P. C. Schindler, R. Palmer, S. Koeber, D. Korn, L. Alloatti, T. Wahlbrink, J. Bolten, M. Waldow, M. Koenigsmann, M. Kohler, D. Malsam, D. L. Elder, P. V. Johnston, N. Phillips-Sylvain, P. A. Sullivan, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator,” J. Lightwave Technol. 33(6), 1210–1216 (2015).
[Crossref]

R. Palmer, S. Koeber, D. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Koehnle, K.

Koenig, S.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

Koenigsmann, M.

Kohl, M.

Kohler, M.

Koos, C.

C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. Schindler, D. Elder, T. Wahlbrink, and J. Bolten, “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
[Crossref]

D. Korn, M. Lauermann, S. Koeber, P. Appel, L. Alloatti, R. Palmer, P. Dumon, W. Freude, J. Leuthold, and C. Koos, “Lasing in silicon-organic hybrid waveguides,” Nat. Commun. 7, 10864 (2016).
[Crossref] [PubMed]

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33(4), 755–760 (2015).
[Crossref]

M. Lauermann, S. Wolf, P. C. Schindler, R. Palmer, S. Koeber, D. Korn, L. Alloatti, T. Wahlbrink, J. Bolten, M. Waldow, M. Koenigsmann, M. Kohler, D. Malsam, D. L. Elder, P. V. Johnston, N. Phillips-Sylvain, P. A. Sullivan, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator,” J. Lightwave Technol. 33(6), 1210–1216 (2015).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

R. Palmer, S. Koeber, D. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

L. Alloatti, M. Lauermann, C. Sürgers, C. Koos, W. Freude, and J. Leuthold, “Optical absorption in silicon layers in the presence of charge inversion/accumulation or ion implantation,” Appl. Phys. Lett. 103(5), 051104 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, W. Heni, P. C. Schindler, J. Bolten, M. Karl, M. Waldow, T. Wahlbrink, W. Freude, C. Koos, and J. Leuthold, “Low-loss silicon strip-to-slot mode converters,” IEEE Photonics J. 5(1), 2200409 (2013).
[Crossref]

J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding,” Opt. Express 20(14), 15359–15376 (2012).
[Crossref] [PubMed]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

W. Hartmann, M. Lauermann, S. Wolf, H. Zwickel, Y. Kutuvantavida, J. Luo, A. K.-Y. Jen, W. Freude, and C. Koos, “100 Gbit/s OOK using a silicon-organic hybrid (SOH) modulator,” in European Conference on Optical Communication (ECOC), 2015 (IEEE, 2015), pp. PDP.1.4.
[Crossref]

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Korn, D.

D. Korn, M. Lauermann, S. Koeber, P. Appel, L. Alloatti, R. Palmer, P. Dumon, W. Freude, J. Leuthold, and C. Koos, “Lasing in silicon-organic hybrid waveguides,” Nat. Commun. 7, 10864 (2016).
[Crossref] [PubMed]

C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. Schindler, D. Elder, T. Wahlbrink, and J. Bolten, “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
[Crossref]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

M. Lauermann, S. Wolf, P. C. Schindler, R. Palmer, S. Koeber, D. Korn, L. Alloatti, T. Wahlbrink, J. Bolten, M. Waldow, M. Koenigsmann, M. Kohler, D. Malsam, D. L. Elder, P. V. Johnston, N. Phillips-Sylvain, P. A. Sullivan, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator,” J. Lightwave Technol. 33(6), 1210–1216 (2015).
[Crossref]

R. Palmer, S. Koeber, D. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, W. Heni, P. C. Schindler, J. Bolten, M. Karl, M. Waldow, T. Wahlbrink, W. Freude, C. Koos, and J. Leuthold, “Low-loss silicon strip-to-slot mode converters,” IEEE Photonics J. 5(1), 2200409 (2013).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Kothiyal, M. P.

Kubodera, K.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photonics Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

Kutuvantavida, Y.

Lapointe, J.

Lauermann, M.

D. Korn, M. Lauermann, S. Koeber, P. Appel, L. Alloatti, R. Palmer, P. Dumon, W. Freude, J. Leuthold, and C. Koos, “Lasing in silicon-organic hybrid waveguides,” Nat. Commun. 7, 10864 (2016).
[Crossref] [PubMed]

C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. Schindler, D. Elder, T. Wahlbrink, and J. Bolten, “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
[Crossref]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

M. Lauermann, S. Wolf, P. C. Schindler, R. Palmer, S. Koeber, D. Korn, L. Alloatti, T. Wahlbrink, J. Bolten, M. Waldow, M. Koenigsmann, M. Kohler, D. Malsam, D. L. Elder, P. V. Johnston, N. Phillips-Sylvain, P. A. Sullivan, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator,” J. Lightwave Technol. 33(6), 1210–1216 (2015).
[Crossref]

R. Palmer, S. Koeber, D. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

L. Alloatti, M. Lauermann, C. Sürgers, C. Koos, W. Freude, and J. Leuthold, “Optical absorption in silicon layers in the presence of charge inversion/accumulation or ion implantation,” Appl. Phys. Lett. 103(5), 051104 (2013).
[Crossref]

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

W. Hartmann, M. Lauermann, S. Wolf, H. Zwickel, Y. Kutuvantavida, J. Luo, A. K.-Y. Jen, W. Freude, and C. Koos, “100 Gbit/s OOK using a silicon-organic hybrid (SOH) modulator,” in European Conference on Optical Communication (ECOC), 2015 (IEEE, 2015), pp. PDP.1.4.
[Crossref]

Lawson, R.

Lee, C.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. Jen, R. Neilson, C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 99, 1 (2015).

Lepage, G.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

Leu, J.

Leuthold, J.

C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. Schindler, D. Elder, T. Wahlbrink, and J. Bolten, “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
[Crossref]

D. Korn, M. Lauermann, S. Koeber, P. Appel, L. Alloatti, R. Palmer, P. Dumon, W. Freude, J. Leuthold, and C. Koos, “Lasing in silicon-organic hybrid waveguides,” Nat. Commun. 7, 10864 (2016).
[Crossref] [PubMed]

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

M. Lauermann, S. Wolf, P. C. Schindler, R. Palmer, S. Koeber, D. Korn, L. Alloatti, T. Wahlbrink, J. Bolten, M. Waldow, M. Koenigsmann, M. Kohler, D. Malsam, D. L. Elder, P. V. Johnston, N. Phillips-Sylvain, P. A. Sullivan, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator,” J. Lightwave Technol. 33(6), 1210–1216 (2015).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

R. Palmer, S. Koeber, D. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

L. Alloatti, M. Lauermann, C. Sürgers, C. Koos, W. Freude, and J. Leuthold, “Optical absorption in silicon layers in the presence of charge inversion/accumulation or ion implantation,” Appl. Phys. Lett. 103(5), 051104 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, W. Heni, P. C. Schindler, J. Bolten, M. Karl, M. Waldow, T. Wahlbrink, W. Freude, C. Koos, and J. Leuthold, “Low-loss silicon strip-to-slot mode converters,” IEEE Photonics J. 5(1), 2200409 (2013).
[Crossref]

J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding,” Opt. Express 20(14), 15359–15376 (2012).
[Crossref] [PubMed]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Li, H.

Li, J.

Li, X.

Z. Shi, W. Liang, J. Luo, S. Huang, B. M. Polishak, X. Li, T. R. Younkin, B. A. Block, and A. K.-Y. Jen, “Tuning the kinetics and energetics of Diels−Alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers,” Chem. Mater. 22(19), 5601–5608 (2010).
[Crossref]

Li, Y.

Liang, W.

Z. Shi, W. Liang, J. Luo, S. Huang, B. M. Polishak, X. Li, T. R. Younkin, B. A. Block, and A. K.-Y. Jen, “Tuning the kinetics and energetics of Diels−Alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers,” Chem. Mater. 22(19), 5601–5608 (2010).
[Crossref]

Liao, Y.

Lindenmann, N.

Lipson, M.

Luo, J.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. Jen, R. Neilson, C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 99, 1 (2015).

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
[Crossref] [PubMed]

J. Luo, S. Huang, Z. Shi, B. M. Polishak, X.-H. Zhou, and A. K. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
[Crossref]

Z. Shi, W. Liang, J. Luo, S. Huang, B. M. Polishak, X. Li, T. R. Younkin, B. A. Block, and A. K.-Y. Jen, “Tuning the kinetics and energetics of Diels−Alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers,” Chem. Mater. 22(19), 5601–5608 (2010).
[Crossref]

W. Hartmann, M. Lauermann, S. Wolf, H. Zwickel, Y. Kutuvantavida, J. Luo, A. K.-Y. Jen, W. Freude, and C. Koos, “100 Gbit/s OOK using a silicon-organic hybrid (SOH) modulator,” in European Conference on Optical Communication (ECOC), 2015 (IEEE, 2015), pp. PDP.1.4.
[Crossref]

Ma, Y.

Maeda, D.

F. Qiu, H. Sato, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators,” Appl. Phys. Lett. 107(12), 123302 (2015).
[Crossref]

Malsam, D.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Melikyan, A.

Mitsugi, N.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photonics Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

Molina-Fernández, I.

Moss, B.

Muehlbrandt, S.

Neilson, R.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. Jen, R. Neilson, C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 99, 1 (2015).

Neyts, K.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

Novack, A.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: The next fabless semiconductor industry,” IEEE Solid State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

Odoi, K.

F. Qiu, H. Sato, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators,” Appl. Phys. Lett. 107(12), 123302 (2015).
[Crossref]

Oikawa, S.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photonics Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

Onanuga, T. P.

Orcutt, J. S.

Ortega-Moñux, A.

Otomo, A.

F. Qiu, H. Sato, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators,” Appl. Phys. Lett. 107(12), 123302 (2015).
[Crossref]

S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 103(17), 171101 (2013).
[Crossref]

Ozawa, M.

F. Qiu, H. Sato, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators,” Appl. Phys. Lett. 107(12), 123302 (2015).
[Crossref]

Pahl, K. P.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Palmer, R.

D. Korn, M. Lauermann, S. Koeber, P. Appel, L. Alloatti, R. Palmer, P. Dumon, W. Freude, J. Leuthold, and C. Koos, “Lasing in silicon-organic hybrid waveguides,” Nat. Commun. 7, 10864 (2016).
[Crossref] [PubMed]

C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. Schindler, D. Elder, T. Wahlbrink, and J. Bolten, “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
[Crossref]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

M. Lauermann, S. Wolf, P. C. Schindler, R. Palmer, S. Koeber, D. Korn, L. Alloatti, T. Wahlbrink, J. Bolten, M. Waldow, M. Koenigsmann, M. Kohler, D. Malsam, D. L. Elder, P. V. Johnston, N. Phillips-Sylvain, P. A. Sullivan, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator,” J. Lightwave Technol. 33(6), 1210–1216 (2015).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

R. Palmer, S. Koeber, D. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, W. Heni, P. C. Schindler, J. Bolten, M. Karl, M. Waldow, T. Wahlbrink, W. Freude, C. Koos, and J. Leuthold, “Low-loss silicon strip-to-slot mode converters,” IEEE Photonics J. 5(1), 2200409 (2013).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Pantouvaki, M.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

Park, Y.

Pfeifle, J.

Phillips-Sylvain, N.

Polishak, B. M.

J. Luo, S. Huang, Z. Shi, B. M. Polishak, X.-H. Zhou, and A. K. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
[Crossref]

Z. Shi, W. Liang, J. Luo, S. Huang, B. M. Polishak, X. Li, T. R. Younkin, B. A. Block, and A. K.-Y. Jen, “Tuning the kinetics and energetics of Diels−Alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers,” Chem. Mater. 22(19), 5601–5608 (2010).
[Crossref]

Pomerene, A.

R. Ding, T. Baehr-Jones, W.-J. Kim, B. Boyko, R. Bojko, A. Spott, A. Pomerene, C. Hill, W. Reinhardt, and M. Hochberg, “Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator,” Appl. Phys. Lett. 98(23), 233303 (2011).
[Crossref]

Popovic, M.

Qiu, F.

F. Qiu, H. Sato, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators,” Appl. Phys. Lett. 107(12), 123302 (2015).
[Crossref]

Ram, R. J.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Reinhardt, W.

R. Ding, T. Baehr-Jones, W.-J. Kim, B. Boyko, R. Bojko, A. Spott, A. Pomerene, C. Hill, W. Reinhardt, and M. Hochberg, “Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator,” Appl. Phys. Lett. 98(23), 233303 (2011).
[Crossref]

Rembe, C.

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Rendina, I.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

Ritter, F.

M. Bauer, F. Ritter, and G. Siegmund, “High-precision laser vibrometers based on digital Doppler signal processing,” Proc. SPIE 4827, 50–61 (2002).
[Crossref]

Robinson, B. H.

D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater. 26(2), 872–874 (2014).
[Crossref]

Roelkens, G.

Ruocco, A.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

Saitou, T.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photonics Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

Salvestrini, J. P.

Sato, H.

F. Qiu, H. Sato, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators,” Appl. Phys. Lett. 107(12), 123302 (2015).
[Crossref]

Scherer, A.

Schindler, P.

C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. Schindler, D. Elder, T. Wahlbrink, and J. Bolten, “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
[Crossref]

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Schindler, P. C.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

M. Lauermann, S. Wolf, P. C. Schindler, R. Palmer, S. Koeber, D. Korn, L. Alloatti, T. Wahlbrink, J. Bolten, M. Waldow, M. Koenigsmann, M. Kohler, D. Malsam, D. L. Elder, P. V. Johnston, N. Phillips-Sylvain, P. A. Sullivan, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator,” J. Lightwave Technol. 33(6), 1210–1216 (2015).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, W. Heni, P. C. Schindler, J. Bolten, M. Karl, M. Waldow, T. Wahlbrink, W. Freude, C. Koos, and J. Leuthold, “Low-loss silicon strip-to-slot mode converters,” IEEE Photonics J. 5(1), 2200409 (2013).
[Crossref]

Schmid, J. H.

Shainline, J.

Shi, Z.

J. Luo, S. Huang, Z. Shi, B. M. Polishak, X.-H. Zhou, and A. K. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
[Crossref]

Z. Shi, W. Liang, J. Luo, S. Huang, B. M. Polishak, X. Li, T. R. Younkin, B. A. Block, and A. K.-Y. Jen, “Tuning the kinetics and energetics of Diels−Alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers,” Chem. Mater. 22(19), 5601–5608 (2010).
[Crossref]

Shieh, W.

Shikama, S.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Shimotsu, S.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photonics Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

Siegmund, G.

M. Bauer, F. Ritter, and G. Siegmund, “High-precision laser vibrometers based on digital Doppler signal processing,” Proc. SPIE 4827, 50–61 (2002).
[Crossref]

Song, J.

D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater. 26(2), 872–874 (2014).
[Crossref]

Spott, A.

R. Ding, T. Baehr-Jones, W.-J. Kim, B. Boyko, R. Bojko, A. Spott, A. Pomerene, C. Hill, W. Reinhardt, and M. Hochberg, “Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator,” Appl. Phys. Lett. 98(23), 233303 (2011).
[Crossref]

Spring, A. M.

F. Qiu, H. Sato, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators,” Appl. Phys. Lett. 107(12), 123302 (2015).
[Crossref]

Stojanovic, V.

Subbaraman, H.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. Jen, R. Neilson, C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 99, 1 (2015).

Sueta, T.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Sullivan, P.

Sullivan, P. A.

Sun, C.

Sun, J.

Sürgers, C.

L. Alloatti, M. Lauermann, C. Sürgers, C. Koos, W. Freude, and J. Leuthold, “Optical absorption in silicon layers in the presence of charge inversion/accumulation or ion implantation,” Appl. Phys. Lett. 103(5), 051104 (2013).
[Crossref]

Tang, Y.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Ummethala, S.

Uroševic, S.

Van Thourhout, D.

Verheyen, P.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

Verstuyft, S.

Vivien, L.

Wahlbrink, T.

Waldow, M.

Wang, G.

Wang, S.

Wangüemert-Pérez, J. G.

Weaver, M.

Weimann, C.

C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. Schindler, D. Elder, T. Wahlbrink, and J. Bolten, “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
[Crossref]

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Wieland, J.

Witzens, J.

Woessner, M.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

R. Palmer, S. Koeber, D. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

Wolf, S.

Xing, Y.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

Xu, D.-X.

Xu, Q.

Xuan, Z.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: The next fabless semiconductor industry,” IEEE Solid State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

Yang, Q.

Yokoyama, S.

F. Qiu, H. Sato, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators,” Appl. Phys. Lett. 107(12), 123302 (2015).
[Crossref]

Younkin, T. R.

Z. Shi, W. Liang, J. Luo, S. Huang, B. M. Polishak, X. Li, T. R. Younkin, B. A. Block, and A. K.-Y. Jen, “Tuning the kinetics and energetics of Diels−Alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers,” Chem. Mater. 22(19), 5601–5608 (2010).
[Crossref]

Yu, H.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

Yurtsever, G.

Zgraggen, E.

Zhang, X.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. Jen, R. Neilson, C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 99, 1 (2015).

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

Zhang, Y.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: The next fabless semiconductor industry,” IEEE Solid State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

Zhou, X.-H.

J. Luo, S. Huang, Z. Shi, B. M. Polishak, X.-H. Zhou, and A. K. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
[Crossref]

Zwick, T.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Zwickel, H.

W. Hartmann, M. Lauermann, S. Wolf, H. Zwickel, Y. Kutuvantavida, J. Luo, A. K.-Y. Jen, W. Freude, and C. Koos, “100 Gbit/s OOK using a silicon-organic hybrid (SOH) modulator,” in European Conference on Optical Communication (ECOC), 2015 (IEEE, 2015), pp. PDP.1.4.
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

F. Qiu, H. Sato, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators,” Appl. Phys. Lett. 107(12), 123302 (2015).
[Crossref]

S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 103(17), 171101 (2013).
[Crossref]

L. Alloatti, M. Lauermann, C. Sürgers, C. Koos, W. Freude, and J. Leuthold, “Optical absorption in silicon layers in the presence of charge inversion/accumulation or ion implantation,” Appl. Phys. Lett. 103(5), 051104 (2013).
[Crossref]

R. Ding, T. Baehr-Jones, W.-J. Kim, B. Boyko, R. Bojko, A. Spott, A. Pomerene, C. Hill, W. Reinhardt, and M. Hochberg, “Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator,” Appl. Phys. Lett. 98(23), 233303 (2011).
[Crossref]

Chem. Mater. (3)

Z. Shi, W. Liang, J. Luo, S. Huang, B. M. Polishak, X. Li, T. R. Younkin, B. A. Block, and A. K.-Y. Jen, “Tuning the kinetics and energetics of Diels−Alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers,” Chem. Mater. 22(19), 5601–5608 (2010).
[Crossref]

J. Luo, S. Huang, Z. Shi, B. M. Polishak, X.-H. Zhou, and A. K. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
[Crossref]

D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater. 26(2), 872–874 (2014).
[Crossref]

Chem. Rev. (1)

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Electron. Lett. (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

IEEE Photonics J. (1)

R. Palmer, L. Alloatti, D. Korn, W. Heni, P. C. Schindler, J. Bolten, M. Karl, M. Waldow, T. Wahlbrink, W. Freude, C. Koos, and J. Leuthold, “Low-loss silicon strip-to-slot mode converters,” IEEE Photonics J. 5(1), 2200409 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photonics Technol. Lett. 27(12), 1269–1272 (2015).
[Crossref]

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photonics Technol. Lett. 13(4), 364–366 (2001).
[Crossref]

IEEE Solid State Circ. Mag. (1)

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: The next fabless semiconductor industry,” IEEE Solid State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

J. Lightwave Technol. (7)

C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. Schindler, D. Elder, T. Wahlbrink, and J. Bolten, “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
[Crossref]

R. Palmer, S. Koeber, D. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. Jen, R. Neilson, C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 99, 1 (2015).

J. P. Salvestrini, L. Guilbert, M. Fontana, M. Abarkan, and S. Gille, “Analysis and control of the DC drift in LiNbO3-based Mach-Zehnder modulators,” J. Lightwave Technol. 29(10), 1522–1534 (2011).
[Crossref]

M. Lauermann, S. Wolf, P. C. Schindler, R. Palmer, S. Koeber, D. Korn, L. Alloatti, T. Wahlbrink, J. Bolten, M. Waldow, M. Koenigsmann, M. Kohler, D. Malsam, D. L. Elder, P. V. Johnston, N. Phillips-Sylvain, P. A. Sullivan, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos, “40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator,” J. Lightwave Technol. 33(6), 1210–1216 (2015).
[Crossref]

L. M. Johnson and C. H. Cox, “Serrodyne optical frequency translation with high sideband suppression,” J. Lightwave Technol. 6(1), 109–112 (1988).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33(4), 755–760 (2015).
[Crossref]

Light Sci. Appl. (2)

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4(2), e255 (2015).
[Crossref]

Nat. Commun. (1)

D. Korn, M. Lauermann, S. Koeber, P. Appel, L. Alloatti, R. Palmer, P. Dumon, W. Freude, J. Leuthold, and C. Koos, “Lasing in silicon-organic hybrid waveguides,” Nat. Commun. 7, 10864 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Opt. Express (7)

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13(14), 5216–5226 (2005).
[Crossref] [PubMed]

J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding,” Opt. Express 20(14), 15359–15376 (2012).
[Crossref] [PubMed]

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express 20(11), 12222–12232 (2012).
[Crossref] [PubMed]

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
[Crossref] [PubMed]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
[Crossref] [PubMed]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18(16), 16902–16928 (2010).
[Crossref] [PubMed]

Opt. Lett. (5)

Proc. SPIE (1)

M. Bauer, F. Ritter, and G. Siegmund, “High-precision laser vibrometers based on digital Doppler signal processing,” Proc. SPIE 4827, 50–61 (2002).
[Crossref]

Other (6)

R. Watts, S. G. Murdoch, and L. Barry, “Spectral linewidth reduction of single-mode and mode-locked lasers using a feed-forward heterodyne detection scheme,” in Proceedings of CLEO 2014 (OSA, 2014), paper STh3O.8.
[Crossref]

R. G. Hunsperger, Integrated Optics: Theory and Technology, 6th ed. (Springer, 2009).

Y. Li, S. Meersman, and R. Baets, “Optical frequency shifter on SOI using thermo-optic serrodyne modulation,” in Group IV Photonics (GFP) (IEEE, 2010), pp. 75–77.

M. Lauermann, C. Weimann, A. Knopf, D. L. Elder, W. Heni, R. Palmer, D. Korn, P. Schindler, S. Koeber, L. Alloatti, H. Yu, W. Bogaerts, L. R. Dalton, C. Rembe, J. Leuthold, W. Freude, and C. Koos, “Integrated Silicon-Organic Hybrid (SOH) Frequency Shifter,” in Optical Fiber Communication Conference (OSA, 2014), pp. Tu2A.1.

W. Hartmann, M. Lauermann, S. Wolf, H. Zwickel, Y. Kutuvantavida, J. Luo, A. K.-Y. Jen, W. Freude, and C. Koos, “100 Gbit/s OOK using a silicon-organic hybrid (SOH) modulator,” in European Conference on Optical Communication (ECOC), 2015 (IEEE, 2015), pp. PDP.1.4.
[Crossref]

I. S. Gradshteyn and I. M. Ryzhik, Tables of Series, Products, and Integrals, 2nd ed. (Harri Deutsch, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

IQ modulator structure for single-sideband operation. (a) Schematic of the modulator structure. Four phase modulators (PM 1 … 4) are paired to two Mach-Zehnder modulators (MZM). The MZM are biased in zero transmission and operated in push-pull mode with sinusoidal electrical drive signals that feature a relative phase shift of π/2. The outputs of the MZM are combined with a relative optical phase difference of φQ = π/2. (b) Sketch of the field amplitude spectrum at various points of the modulator structure. The spectral lines feature phases of 0 or π, which are indicated by positive or negative peak values. At the output of the frequency shifter, most of the energy has been transferred into the line that is shifted by the modulation frequency Ω. When the MZM is not driven in the small-signal regime, additional harmonics can be seen in the output spectrum. Ω represents the RF modulation frequency while ω0 denotes the frequency of the optical carrier.

Fig. 2
Fig. 2

Field amplitude transfer characteristics of an ideal MZM in push-pull operation along with the corresponding output spectra, the drive voltage and the electrical field at the output for different drive conditions. (a) Small-signal operation: The MZM is driven with a sinusoidal signal in the linear regime, resulting in two weak lines at ω0 ± Ω in the output spectrum. The amplitude of the output field is relatively small, leading to a low conversion efficiency. The carrier frequency (dotted line) is only depicted for reference – it should not contain any power after the MZM, which is biased in the null point for zero transmission. (b) Large-signal operation with a sinusoidal drive signal. The field at the output resembles a distorted sine with large amplitude. Therefore the desired spectral lines have large intensity, but are accompanied by spurious side modes. (c) Large-signal operation with a triangular drive signal. For an ideal MZM, the output signal features a perfectly sinusoidal amplitude modulation, and the spectrum consists of only two lines at ω0 ± Ω. – this time with large intensity.

Fig. 3
Fig. 3

(a) Cross-sectional view of a SOH MZM. The slot waveguides are filled with the electro-optic organic material DLD164. Electrical contact to the ground-signal-ground (GSG) transmission line of the MZM is established by thin n-doped silicon slabs. The EO material in the slot is poled via a DC poling voltage Upoling applied to the floating ground electrodes of the MZM, and the electro-optic chromophores in both arms orient along the electrical field in the same direction as indicated by green arrows. For operation of the device, an RF signal is fed to the GSG electrodes. The associated electric field, indicated by blue arrows, is parallel to the poling direction in the right arm, and antiparallel in the left arm. This leads to phase shifts of equal magnitude but opposite sign and hence to push-pull operation of the MZM. A static gate voltage Ugate is applied between the substrate and the device layer to increase the conductivity of the silicon slab. (b) Dominant Ex component of the optical field and (c) Ex component of the electrical drive signal in the slot waveguide. Both fields are confined to the slot and overlap strongly within the EO material, thereby enabling efficient phase shifting.

Fig. 4
Fig. 4

Sketch of the measurement setup. A tunable laser is used as an optical source and coupled to the silicon photonic integrated circuit (PIC) via a grating coupler (GC). The PIC consists of two SOH MZM that are nested in an IQ configuration. An intentional imbalance of 40 µm is inserted between the two MZM to enable phase adjustment via wavelength tuning. For small-signal modulation with a purely sinusoidal electrical drive signal, we use a radio-frequency (RF) synthesizer featuring a bandwidth of 40 GHz as an electrical signal source. The RF-signal is split in two paths with a length difference of 20 cm such that the phase shift between the two drive signals can be adjusted by fine-tuning of the RF frequency. For large-signal operation with pre-distorted waveforms, an arbitrary-waveform generation (AWG) with two signal channels is used, where the waveform, output power, and phase can be individually adjusted for each channel. The bias voltages for the MZM are coupled to the chip via bias-Ts.

Fig. 5
Fig. 5

Small-signal operation of the SOH frequency shifter. For reference, we also plot the unmodulated carrier obtained without RF signal and with the bias set for maximum transmission (dotted blue). This carrier not present in the output spectrum. (a) Modulation at Ω = 2π × 0.475 GHz and 0.45 Vpp drive voltage. The carrier suppression (CS) amounts to 37 dB, the conversion efficiency is CE = −16.38 dB and the SMSR is 18.8 dB. (b) Frequency shifting for different RF frequencies up to 10 GHz without degradation of the SMSR. The drive voltage is increased for higher frequencies to compensate for the decay of the modulation efficiency with frequency.

Fig. 6
Fig. 6

The frequency shifter is driven with an AWG at an angular frequency of Ω = 2π × 100 MHz and a voltage of 1.3 Vpp at the MZM, which is optimized for maximum conversion. Each MZM of the frequency shifter is driven by a separate channel of the AWG and amplitude, phase and shape of the waveform can hence be controlled individually. (a) Output spectrum obtained by a pure sinusoidal drive signal, resulting in an optical spectrum with good CE but small SMSR of 16.4 dB. (b) Output spectrum obtained for using a drive signal with higher harmonics, which suppress the spurious lines in the optical output spectrum. By optimizing the amplitudes of the third and the fifth harmonic, the spurious component at ω0 + 3Ω could be reduced by over 15 dB. The overall SMSR now amounts to 23.5 dB, limited by strong spurious components at ω0 ± 2Ω, which are attributed to an imbalance of the phase shifters in the MZM. This can be overcome by optimized device design. Without these components, an SMSR of 31 dB could be achieved. (c) Waveform of the optimized drive signal for one MZM, generated by U= a 0 sin(Ωt)0.25 a 0 sin(3Ωt)+0.125 a 0 sin(5Ωt) .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E= E 0 e j ω 0 t ( ...+ J 0 ( a 3 ) J 1 ( a 1 ) e jΩt + J 0 ( a 3 ) J 3 ( a 1 ) e -j3Ωt J 0 ( a 1 ) J 1 ( a 3 ) e -j3Ωt + J 0 ( a 3 ) J 5 ( a 1 ) e j5Ωt + J 0 ( a 3 ) J 7 ( a 1 ) e -j7Ωt +... ),
Φ(t)= a 1 sin(Ωt) Φ'(t)=- b 1 cos(Ωt),
E= 1 4 E 0 e j ω 0 t ( e j a 1 sin(Ωt) e j a 1 sin(Ωt) +j e j b 1 cos(Ωt) j e j b 1 cos(Ωt) )
E= 1 4 E 0 e j ω 0 t ( n= J n ( a 1 ) e jnΩt n= (1) n J n ( a 1 ) e jnΩt +j n= ( j ) n J n ( b 1 ) e jnΩt j n= j n J n ( b 1 ) e jnΩt ).
E= E 0 m=4n+1 J m ( a 1 ) e j( ω 0 +mΩ )t for n
E= 1 4 E 0 e j ω 0 t ( e j a 1 sin(Ωt) e j a 1 sin(Ωt) j e j b 1 cos(Ωt) +j e j b 1 cos(Ωt) ).
E= E 0 m=4n+1 J m ( a 1 ) e j( ω 0 mΩ )t for n.
Φ(t) = a 1 sin(Ωt) a 3 sin(3Ωt), Φ'(t) = b 1 cos(Ωt) b 3 cos(3Ωt).
E= 1 4 E 0 e j ω 0 t ( e j a 1 sin(Ωt) e j a 3 sin(3Ωt) e j a 1 sin(Ωt) e j a 3 sin(3Ωt) +j e j b 1 cos(Ωt) e j b 3 cos(3Ωt) j e j b 1 cos(Ωt) e j b 3 cos(3Ωt) ).
E= 1 4 E 0 e j ω 0 t ( n= k= J n ( a 1 ) e jnΩt (1) k J k ( a 3 ) e jk3Ωt n= k= (1) n J n ( a 1 ) e jnΩt J k ( a 3 ) e jk3Ωt +j n= k= ( j ) n+k J n ( b 1 ) e jnΩt J k ( b 3 ) e jk3Ωt j n= k= j n+k J n ( b 1 ) e jnΩt J k ( b 3 ) e jk3Ωt )
E= E 0 e j ω 0 t ( ... +[ ...+ J 1 ( a 1 ) J 0 ( a 3 )+... ] e jΩt +[ ...+ J 3 ( a 1 ) J 0 ( a 3 ) J 0 ( a 1 ) J 1 ( a 3 )+... ] e -j3Ωt +[ ...+ J 5 ( a 1 ) J 0 ( a 3 )+... ] e j5Ωt +[ ...+ J 7 ( a 1 ) J 0 ( a 3 )+... ] e -j7Ωt +... ),

Metrics