Abstract

We propose and experimentally demonstrate a planar array of optical bandpass filters composed of low loss dielectric metasurface layers sandwiched between two distributed Bragg reflectors (DBRs). The two DBRs form a Fabry-Pérot resonator whose center wavelength is controlled by the design of the transmissive metasurface layer which functions as a phase shifting element. We demonstrate an array of bandpass filters with spatially varying center wavelengths covering a wide range of operation wavelengths of 250nm around λ = 1550nm (Δλ/λ = 16%). The center wavelengths of each filter are independently controlled only by changing the in-plane geometry of the sandwiched metasurfaces, and the experimentally measured quality factors are larger than 700. The demonstrated filter array can be directly integrated on top of photodetector arrays to realize on-chip high-resolution spectrometers with free-space coupling.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High resolution on-chip optical filter array based on double subwavelength grating reflectors

Yu Horie, Amir Arbabi, Seunghoon Han, and Andrei Faraon
Opt. Express 23(23) 29848-29854 (2015)

High rejection bandpass optical filters based on sub-wavelength metal patch arrays

J. Le Perchec, R. Espiau de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti
Opt. Express 19(17) 15720-15731 (2011)

Chip-scale spectrometry based on tapered hollow Bragg waveguides

R.G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J.N. McMullin
Opt. Express 17(19) 16632-16645 (2009)

References

  • View by:
  • |
  • |
  • |

  1. G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5, 1303–1309 (2005).
    [Crossref] [PubMed]
  2. B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, Shah E. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
    [Crossref]
  3. C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: Applications to biology and chemistry,” Rev. Sci. Instrum. 75, 1–17 (2004).
    [Crossref]
  4. R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15, S145 (2005).
    [Crossref]
  5. Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
    [Crossref] [PubMed]
  6. B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18, 102–107 (2010).
    [Crossref] [PubMed]
  7. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with submicrometer aperture waveguides,” Opt. Express 15, 2299–2306 (2007).
    [Crossref] [PubMed]
  8. S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32, 632–634 (2007).
    [Crossref] [PubMed]
  9. J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “High-selectivity single-chip spectrometer in silicon for operation in visible part of the spectrum,” IEEE Trans. Electron Dev. 47, 553–559 (2000).
    [Crossref]
  10. A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20, 489–507 (2012).
    [Crossref] [PubMed]
  11. N. A. O’Brien, C. A. Hulse, D. M. Friedrich, F. J. Van Milligen, M. K. von Gunten, F. Pfeifer, and H. W. Siesler, “Miniature near-infrared (NIR) spectrometer engine for handheld applications,” Proc. SPIE 8374, 83704 (2012).
  12. J. Xiao, F. Song, K. Han, and S.-W. Seo, “Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography,” J. Micromech. Microeng. 22, 025006 (2012).
    [Crossref]
  13. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139–150 (2014).
    [Crossref]
  14. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
    [Crossref] [PubMed]
  15. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
    [Crossref] [PubMed]
  16. S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photonics Technol. Lett. 26, 1375–1378 (2014).
    [Crossref]
  17. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
    [Crossref] [PubMed]
  18. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
    [Crossref]
  19. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
    [Crossref] [PubMed]
  20. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2–6 (2015).
    [Crossref] [PubMed]
  21. K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20, 21917–21923 (2012).
    [Crossref] [PubMed]
  22. S. Kaushik and B. R. Stallard, “Two-dimensional array of optical interference filters produced by lithographic alterations of the index of refraction,” Proc. SPIE 2532, 276–281 (1995).
    [Crossref]
  23. A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the phase front of optical fiber beams using high contrast metastructures,” in “CLEO: 2014,” (Optical Society of America, 2014), p. STu3M.4.
  24. V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
    [Crossref]
  25. Y. Horie, A. Arbabi, S. Han, and A. Faraon, “High resolution on-chip optical filter array based on double sub-wavelength grating reflectors,” Opt. Express 23, 29848–29854 (2015).
    [Crossref] [PubMed]

2016 (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref] [PubMed]

2015 (4)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref] [PubMed]

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2–6 (2015).
[Crossref] [PubMed]

Y. Horie, A. Arbabi, S. Han, and A. Faraon, “High resolution on-chip optical filter array based on double sub-wavelength grating reflectors,” Opt. Express 23, 29848–29854 (2015).
[Crossref] [PubMed]

2014 (3)

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photonics Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139–150 (2014).
[Crossref]

2013 (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

2012 (5)

N. A. O’Brien, C. A. Hulse, D. M. Friedrich, F. J. Van Milligen, M. K. von Gunten, F. Pfeifer, and H. W. Siesler, “Miniature near-infrared (NIR) spectrometer engine for handheld applications,” Proc. SPIE 8374, 83704 (2012).

J. Xiao, F. Song, K. Han, and S.-W. Seo, “Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography,” J. Micromech. Microeng. 22, 025006 (2012).
[Crossref]

A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20, 489–507 (2012).
[Crossref] [PubMed]

K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20, 21917–21923 (2012).
[Crossref] [PubMed]

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, Shah E. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

2007 (2)

2005 (2)

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15, S145 (2005).
[Crossref]

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5, 1303–1309 (2005).
[Crossref] [PubMed]

2004 (1)

C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: Applications to biology and chemistry,” Rev. Sci. Instrum. 75, 1–17 (2004).
[Crossref]

2000 (1)

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “High-selectivity single-chip spectrometer in silicon for operation in visible part of the spectrum,” IEEE Trans. Electron Dev. 47, 553–559 (2000).
[Crossref]

1995 (1)

S. Kaushik and B. R. Stallard, “Two-dimensional array of optical interference filters produced by lithographic alterations of the index of refraction,” Proc. SPIE 2532, 276–281 (1995).
[Crossref]

Adibi, A.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
[Crossref] [PubMed]

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, Shah E. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref] [PubMed]

Y. Horie, A. Arbabi, S. Han, and A. Faraon, “High resolution on-chip optical filter array based on double sub-wavelength grating reflectors,” Opt. Express 23, 29848–29854 (2015).
[Crossref] [PubMed]

A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the phase front of optical fiber beams using high contrast metastructures,” in “CLEO: 2014,” (Optical Society of America, 2014), p. STu3M.4.

Bacon, C. P.

C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: Applications to biology and chemistry,” Rev. Sci. Instrum. 75, 1–17 (2004).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref] [PubMed]

A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the phase front of optical fiber beams using high contrast metastructures,” in “CLEO: 2014,” (Optical Society of America, 2014), p. STu3M.4.

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
[Crossref]

A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the phase front of optical fiber beams using high contrast metastructures,” in “CLEO: 2014,” (Optical Society of America, 2014), p. STu3M.4.

Bartek, M.

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “High-selectivity single-chip spectrometer in silicon for operation in visible part of the spectrum,” IEEE Trans. Electron Dev. 47, 553–559 (2000).
[Crossref]

Beausoleil, R. G.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photonics Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

Brongersma, M. L.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139–150 (2014).
[Crossref]

Chamanzar, M.

Cheben, P.

Chen, L.

Chen, Q.

Chen, X.

Collins, S.

Correia, J. H.

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5, 1303–1309 (2005).
[Crossref] [PubMed]

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “High-selectivity single-chip spectrometer in silicon for operation in visible part of the spectrum,” IEEE Trans. Electron Dev. 47, 553–559 (2000).
[Crossref]

Cumming, D. R. S.

de Graaf, G.

DeFrece, R.

C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: Applications to biology and chemistry,” Rev. Sci. Instrum. 75, 1–17 (2004).
[Crossref]

Delâge, A.

Densmore, A.

Drysdale, T. D.

Eftekhar, A. A.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
[Crossref] [PubMed]

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, Shah E. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

Emadi, A.

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

Fan, S.

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
[Crossref]

Y. Horie, A. Arbabi, S. Han, and A. Faraon, “High resolution on-chip optical filter array based on double sub-wavelength grating reflectors,” Opt. Express 23, 29848–29854 (2015).
[Crossref] [PubMed]

A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the phase front of optical fiber beams using high contrast metastructures,” in “CLEO: 2014,” (Optical Society of America, 2014), p. STu3M.4.

Fattal, D.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photonics Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the phase front of optical fiber beams using high contrast metastructures,” in “CLEO: 2014,” (Optical Society of America, 2014), p. STu3M.4.

Fiorentino, M.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photonics Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

Friedrich, D. M.

N. A. O’Brien, C. A. Hulse, D. M. Friedrich, F. J. Van Milligen, M. K. von Gunten, F. Pfeifer, and H. W. Siesler, “Miniature near-infrared (NIR) spectrometer engine for handheld applications,” Proc. SPIE 8374, 83704 (2012).

Grant, J.

Han, K.

J. Xiao, F. Song, K. Han, and S.-W. Seo, “Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography,” J. Micromech. Microeng. 22, 025006 (2012).
[Crossref]

Han, S.

Hasman, E.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

Horie, Y.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref] [PubMed]

Y. Horie, A. Arbabi, S. Han, and A. Faraon, “High resolution on-chip optical filter array based on double sub-wavelength grating reflectors,” Opt. Express 23, 29848–29854 (2015).
[Crossref] [PubMed]

A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the phase front of optical fiber beams using high contrast metastructures,” in “CLEO: 2014,” (Optical Society of America, 2014), p. STu3M.4.

Hosseini, Shah E.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, Shah E. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

Hulse, C. A.

N. A. O’Brien, C. A. Hulse, D. M. Friedrich, F. J. Van Milligen, M. K. von Gunten, F. Pfeifer, and H. W. Siesler, “Miniature near-infrared (NIR) spectrometer engine for handheld applications,” Proc. SPIE 8374, 83704 (2012).

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref] [PubMed]

Janz, S.

Kaushik, S.

S. Kaushik and B. R. Stallard, “Two-dimensional array of optical interference filters produced by lithographic alterations of the index of refraction,” Proc. SPIE 2532, 276–281 (1995).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2–6 (2015).
[Crossref] [PubMed]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

Kyotoku, B. B. C.

Lamontagne, B.

Lapointe, J.

Li, M.

Li, Q.

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

Lipson, M.

Liu, V.

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Lu, W.

Mattley, Y.

C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: Applications to biology and chemistry,” Rev. Sci. Instrum. 75, 1–17 (2004).
[Crossref]

Minas, G.

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5, 1303–1309 (2005).
[Crossref] [PubMed]

Momeni, B.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
[Crossref] [PubMed]

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, Shah E. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

O’Brien, N. A.

N. A. O’Brien, C. A. Hulse, D. M. Friedrich, F. J. Van Milligen, M. K. von Gunten, F. Pfeifer, and H. W. Siesler, “Miniature near-infrared (NIR) spectrometer engine for handheld applications,” Proc. SPIE 8374, 83704 (2012).

Peng, Z.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photonics Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

Pfeifer, F.

N. A. O’Brien, C. A. Hulse, D. M. Friedrich, F. J. Van Milligen, M. K. von Gunten, F. Pfeifer, and H. W. Siesler, “Miniature near-infrared (NIR) spectrometer engine for handheld applications,” Proc. SPIE 8374, 83704 (2012).

Post, E.

Schmid, J. H.

Seo, S.-W.

J. Xiao, F. Song, K. Han, and S.-W. Seo, “Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography,” J. Micromech. Microeng. 22, 025006 (2012).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

Siesler, H. W.

N. A. O’Brien, C. A. Hulse, D. M. Friedrich, F. J. Van Milligen, M. K. von Gunten, F. Pfeifer, and H. W. Siesler, “Miniature near-infrared (NIR) spectrometer engine for handheld applications,” Proc. SPIE 8374, 83704 (2012).

Soltani, M.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
[Crossref] [PubMed]

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, Shah E. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

Song, F.

J. Xiao, F. Song, K. Han, and S.-W. Seo, “Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography,” J. Micromech. Microeng. 22, 025006 (2012).
[Crossref]

Sorin, W. V.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photonics Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

Stallard, B. R.

S. Kaushik and B. R. Stallard, “Two-dimensional array of optical interference filters produced by lithographic alterations of the index of refraction,” Proc. SPIE 2532, 276–281 (1995).
[Crossref]

Tran, T.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photonics Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

Van Milligen, F. J.

N. A. O’Brien, C. A. Hulse, D. M. Friedrich, F. J. Van Milligen, M. K. von Gunten, F. Pfeifer, and H. W. Siesler, “Miniature near-infrared (NIR) spectrometer engine for handheld applications,” Proc. SPIE 8374, 83704 (2012).

Vo, S.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photonics Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

von Gunten, M. K.

N. A. O’Brien, C. A. Hulse, D. M. Friedrich, F. J. Van Milligen, M. K. von Gunten, F. Pfeifer, and H. W. Siesler, “Miniature near-infrared (NIR) spectrometer engine for handheld applications,” Proc. SPIE 8374, 83704 (2012).

Waldron, P.

Walls, K.

Wang, H.

Wang, S.-W.

Wolffenbuttel, R.

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15, S145 (2005).
[Crossref]

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5, 1303–1309 (2005).
[Crossref] [PubMed]

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “High-selectivity single-chip spectrometer in silicon for operation in visible part of the spectrum,” IEEE Trans. Electron Dev. 47, 553–559 (2000).
[Crossref]

Wu, H.

Xia, C.

Xia, Z.

Xiao, J.

J. Xiao, F. Song, K. Han, and S.-W. Seo, “Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography,” J. Micromech. Microeng. 22, 025006 (2012).
[Crossref]

Xu, D.-X.

Yegnanarayanan, S.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
[Crossref] [PubMed]

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, Shah E. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139–150 (2014).
[Crossref]

Zhang, T.

Zheng, W.

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photonics Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

IEEE Trans. Electron Dev. (1)

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “High-selectivity single-chip spectrometer in silicon for operation in visible part of the spectrum,” IEEE Trans. Electron Dev. 47, 553–559 (2000).
[Crossref]

J. Micromech. Microeng. (2)

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15, S145 (2005).
[Crossref]

J. Xiao, F. Song, K. Han, and S.-W. Seo, “Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography,” J. Micromech. Microeng. 22, 025006 (2012).
[Crossref]

J. Nanophotonics (1)

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, Shah E. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

Lab Chip (1)

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5, 1303–1309 (2005).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
[Crossref]

Nat. Nanotechnol. (3)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref] [PubMed]

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2–6 (2015).
[Crossref] [PubMed]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref] [PubMed]

Nature Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139–150 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Proc. SPIE (2)

N. A. O’Brien, C. A. Hulse, D. M. Friedrich, F. J. Van Milligen, M. K. von Gunten, F. Pfeifer, and H. W. Siesler, “Miniature near-infrared (NIR) spectrometer engine for handheld applications,” Proc. SPIE 8374, 83704 (2012).

S. Kaushik and B. R. Stallard, “Two-dimensional array of optical interference filters produced by lithographic alterations of the index of refraction,” Proc. SPIE 2532, 276–281 (1995).
[Crossref]

Rev. Sci. Instrum. (1)

C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: Applications to biology and chemistry,” Rev. Sci. Instrum. 75, 1–17 (2004).
[Crossref]

Science (2)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

Other (1)

A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the phase front of optical fiber beams using high contrast metastructures,” in “CLEO: 2014,” (Optical Society of America, 2014), p. STu3M.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the proposed bandpass filter array composed of vertical DBR-based micro-cavities, in which transmissive dielectric metasurface layers are inserted as phase shifting layers to tune their resonance wavelengths over a broad bandwidth.

Fig. 2
Fig. 2

(a) Transmission round-trip phase, and (b) transmission intensity induced by α-Si nano-posts as a function of post width for different wavelengths. The inset figure in (a) represents the refractive index profile of the dielectric metasurface considered. (c) The simulated reflection spectrum of DBRs. (d) Schematic illustration of the proposed filters. The filters are composed of two DBR mirrors and a phase shifting dielectric metasurface layer. The metasurface is made of a uniform array of square cross section nano-posts. (e) Simulated transmission spectra of a set of filters as shown in (d) with different nano-post widths.

Fig. 3
Fig. 3

(a) A cross-sectional scanning electron microscope image of a fabricated filter, and bird’s-eye views of two α-Si nano-post arrays with different widths. Scale bars are all 1 µm. (b) Measured transmission spectra for the set of fabricated bandpass filters. The average measured absolute transmission for the filters is 41±15% and their quality factors are around 700.

Metrics