Abstract

Visual comfort is a long-facing problem in stereoscopic 3D (S3D) display. In this paper, targeting to produce S3D content based on color-plus-depth signals, a general framework for depth mapping to optimize visual comfort for S3D display is proposed. The main motivation of this work is to remap the depth range of color-plus-depth signals to a new depth range that is suitable to comfortable S3D display. Towards this end, we first remap the depth range globally based on the adjusted zero disparity plane, and then present a two-stage global and local depth optimization solution to solve the visual comfort problem. The remapped depth map is used to generate the S3D output. We demonstrate the power of our approach on perceptually uncomfortable and comfortable stereoscopic images.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimizing multiview video plus depth retargeting technique for stereoscopic 3D displays

Feng Shao, Wenchong Lin, Randi Fu, Mei Yu, and Gangyi Jiang
Opt. Express 25(11) 12478-12492 (2017)

Stereoscopic 3D display with color interlacing improves perceived depth

Joohwan Kim, Paul V. Johnson, and Martin S. Banks
Opt. Express 22(26) 31924-31934 (2014)

Dynamic lens and monovision 3D displays to improve viewer comfort

Paul V. Johnson, Jared AQ. Parnell, Joohwan Kim, Christopher D. Saunter, Gordon D. Love, and Martin S. Banks
Opt. Express 24(11) 11808-11827 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Yeom, H. J. Kim, S. B. Kim, H. Zhang, B. Li, Y. M. Ji, S. H. Kim, and J. H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
    [Crossref] [PubMed]
  2. D. Zhao, B. Su, G. Chen, and H. Liao, “360 degree viewable floating autostereoscopic display using integral photography and multiple semitransparent mirrors,” Opt. Express 23(8), 9812–9823 (2015).
    [Crossref] [PubMed]
  3. C. Lee, G. Seo, J. Lee, T. H. Han, and J. G. Park, “Auto-stereoscopic 3D displays with reduced crosstalk,” Opt. Express 19(24), 24762–24774 (2011).
    [Crossref] [PubMed]
  4. N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis[J]. Broadcasting,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
    [Crossref]
  5. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
    [Crossref] [PubMed]
  6. Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1–2), 65–72 (2009).
    [Crossref]
  7. K. H. Yoon, H. Ju, I. Park, and S. K. Kim, “Determination of the optimum viewing distance for a multi-view auto-stereoscopic 3D display,” Opt. Express 22(19), 22616–22631 (2014).
    [Crossref] [PubMed]
  8. M. Urvoy, M. Barkowsky, and P. Le Callet, “How visual fatigue and discomfort impact 3D-TV quality of experience: A comprehensive review of technological, psychophysical, and psychological factors,” Ann. Telecommun. 68(11–12), 641–655 (2013).
    [Crossref]
  9. M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross, “Nonlinear disparity mapping for stereoscopic 3D,” ACM Trans. Graph. 29(4), 75 (2010).
    [Crossref]
  10. P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel, “E. Eisemann E, H. P. Seidel, and W. Matusik, “A perceptual model for disparity,” ACM Trans. Graph. 30(4), 96 (2011).
    [Crossref]
  11. P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, H. P. Seidel, and W. Matusik, “A luminance-contrast-aware disparity model and applications,” ACM Trans. Graph. 31(6), 184 (2012).
    [Crossref]
  12. A. Chapiro, S. Heinzle, T. O. Aydın, S. Poulakos, M. Zwicker, A. Smolic, and M. Gross, “Optimizing stereo-to-multiview conversion for autostereoscopic displays,” Proc. of Computer Graphics Forum33(2), 63–72 (2014).
  13. J. Lei, S. Li, B. Wang, K. Fang, and C. Hou, “Stereoscopic visual attention guided disparity control for multiview images,” J. Disp. Technol. 10(5), 373–379 (2014).
    [Crossref]
  14. F. Shao, Z. Li, Q. Jiang, G. Jiang, M. Yu, and Z. Peng, “Visual discomfort relaxation for stereoscopic 3D images by adjusting zero-disparity plane for projection,” Displays 39, 125–132 (2015).
    [Crossref]
  15. H. Sohn, Y. J. Jung, S. Lee, and F. Speranza, “Visual comfort amelioration technique for stereoscopic images: Disparity remapping to mitigate global and local discomfort causes,” IEEE Trans. Circ. Syst. Video Tech. 24(5), 745–758 (2014).
    [Crossref]
  16. Y. J. Jung, H. Sohn, S. Lee, and Y. M. Ro, “Visual comfort improvement in stereoscopic 3D displays using perceptually plausible assessment metric of visual comfort,” IEEE Trans. Consum. Electron. 60(1), 1–9 (2014).
    [Crossref]
  17. C. Oh, B. Ham, S. Choi, and K. Sohn, “Visual fatigue relaxation for stereoscopic video via nonlinear disparity remapping,” IEEE Trans. Broadcast 6(2), 142–153 (2015).
  18. C. Jung, L. Cao, H. Liu, and J. Kim, “Visual comfort enhancement in stereoscopic 3D images using saliency-adaptive nonlinear disparity mapping,” Displays 40, 17–23 (2015).
    [Crossref]
  19. T. Yan, R. W. H. Lau, Y. Xu, and L. Huang, “Depth mapping for stereoscopic videos,” Int. J. Comput. Vis. 102(1–3), 293–307 (2013).
    [Crossref]
  20. D. Kim, S. Choi, and K. Sohn, “Depth adjustment for stereoscopic images and subjective preference evaluation,” J. Electron. Imaging 20(3), 033011 (2011).
    [Crossref]
  21. G. Damberg and W. Heidrich, “Efficient freeform lens optimization for computational caustic displays,” Opt. Express 23(8), 10224–10232 (2015).
    [Crossref] [PubMed]
  22. S. W. Jung and S. J. Ko, “Depth enhancement considering just noticeable difference in depth,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 95(3), 673–675 (2012).
    [Crossref]
  23. S. W. Jung and S. J. Ko, “Depth sensation enhancement using the just noticeable depth difference,” IEEE Trans. Image Process. 21(8), 3624–3637 (2012).
    [Crossref] [PubMed]
  24. S. W. Jung, “A modified model of the just noticeable depth difference and its application to depth sensation enhancement,” IEEE Trans. Image Process. 22(10), 3892–3903 (2013).
    [Crossref] [PubMed]
  25. J. Lei, C. Zhang, Y. Fang, Z. Gu, N. Ling, and C. Hou, “Depth sensation enhancement for multiple virtual view rendering,” IEEE Trans. Multimed. 17(4), 457–469 (2015).
    [Crossref]
  26. A. Percival, “The CVZ: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
    [Crossref]
  27. S. P. Du, B. Masia, S. M. Hu, and D. Gutierrez, “A metric of visual comfort for stereoscopic motion,” ACM Trans. Graph. 32(6), 222 (2013).
    [Crossref]
  28. Q. Jiang, F. Shao, W. Lin, G. Jiang, and M. Yu, “On predicting visual comfort of stereoscopic images: A learning to rank based approach,” IEEE Signal Process. Lett. 23(2), 302–306 (2016).
    [Crossref]
  29. D. V. S. X. De Silva, E. Ekmekcioglu, W. A. C. Fernando, and S. T. Worrall, “Display dependent preprocessing of depth maps based on just noticeable depth difference modeling,” IEEE J. Sel. Top. Signal Process. 5(2), 335–351 (2011).
    [Crossref]
  30. Q. Jiang, F. Shao, G. Jiang, M. Yu, Z. Peng, and C. Yu, “A depth perception and visual comfort guided computational model for stereoscopic 3D visual saliency,” Signal Process. Image Commun. 38, 57–69 (2015).
    [Crossref]
  31. ITU-R BT-500.11, “Methodology for the subjective assessment of the quality of television pictures,” ITU-R BT-500.11, 2002.
  32. ITU-R BT.1438, “Subjective assessment for stereoscopic television pictures,” ITU-R BT.1438 (2000).
  33. ITU-T P.910, “Subjective video quality assessment methods for multimedia applications,” Recommendation ITU-T P.910, ITU Telecom. Sector of ITU (1999).
  34. ITU-T P.911, Subjective video quality assessment methods for multimedia applications, Recommendation ITU-T P.911, ITU Telecom. Sector of ITU (1999).

2016 (1)

Q. Jiang, F. Shao, W. Lin, G. Jiang, and M. Yu, “On predicting visual comfort of stereoscopic images: A learning to rank based approach,” IEEE Signal Process. Lett. 23(2), 302–306 (2016).
[Crossref]

2015 (8)

Q. Jiang, F. Shao, G. Jiang, M. Yu, Z. Peng, and C. Yu, “A depth perception and visual comfort guided computational model for stereoscopic 3D visual saliency,” Signal Process. Image Commun. 38, 57–69 (2015).
[Crossref]

D. Zhao, B. Su, G. Chen, and H. Liao, “360 degree viewable floating autostereoscopic display using integral photography and multiple semitransparent mirrors,” Opt. Express 23(8), 9812–9823 (2015).
[Crossref] [PubMed]

G. Damberg and W. Heidrich, “Efficient freeform lens optimization for computational caustic displays,” Opt. Express 23(8), 10224–10232 (2015).
[Crossref] [PubMed]

H. J. Yeom, H. J. Kim, S. B. Kim, H. Zhang, B. Li, Y. M. Ji, S. H. Kim, and J. H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
[Crossref] [PubMed]

C. Oh, B. Ham, S. Choi, and K. Sohn, “Visual fatigue relaxation for stereoscopic video via nonlinear disparity remapping,” IEEE Trans. Broadcast 6(2), 142–153 (2015).

C. Jung, L. Cao, H. Liu, and J. Kim, “Visual comfort enhancement in stereoscopic 3D images using saliency-adaptive nonlinear disparity mapping,” Displays 40, 17–23 (2015).
[Crossref]

F. Shao, Z. Li, Q. Jiang, G. Jiang, M. Yu, and Z. Peng, “Visual discomfort relaxation for stereoscopic 3D images by adjusting zero-disparity plane for projection,” Displays 39, 125–132 (2015).
[Crossref]

J. Lei, C. Zhang, Y. Fang, Z. Gu, N. Ling, and C. Hou, “Depth sensation enhancement for multiple virtual view rendering,” IEEE Trans. Multimed. 17(4), 457–469 (2015).
[Crossref]

2014 (4)

J. Lei, S. Li, B. Wang, K. Fang, and C. Hou, “Stereoscopic visual attention guided disparity control for multiview images,” J. Disp. Technol. 10(5), 373–379 (2014).
[Crossref]

H. Sohn, Y. J. Jung, S. Lee, and F. Speranza, “Visual comfort amelioration technique for stereoscopic images: Disparity remapping to mitigate global and local discomfort causes,” IEEE Trans. Circ. Syst. Video Tech. 24(5), 745–758 (2014).
[Crossref]

Y. J. Jung, H. Sohn, S. Lee, and Y. M. Ro, “Visual comfort improvement in stereoscopic 3D displays using perceptually plausible assessment metric of visual comfort,” IEEE Trans. Consum. Electron. 60(1), 1–9 (2014).
[Crossref]

K. H. Yoon, H. Ju, I. Park, and S. K. Kim, “Determination of the optimum viewing distance for a multi-view auto-stereoscopic 3D display,” Opt. Express 22(19), 22616–22631 (2014).
[Crossref] [PubMed]

2013 (4)

S. P. Du, B. Masia, S. M. Hu, and D. Gutierrez, “A metric of visual comfort for stereoscopic motion,” ACM Trans. Graph. 32(6), 222 (2013).
[Crossref]

S. W. Jung, “A modified model of the just noticeable depth difference and its application to depth sensation enhancement,” IEEE Trans. Image Process. 22(10), 3892–3903 (2013).
[Crossref] [PubMed]

T. Yan, R. W. H. Lau, Y. Xu, and L. Huang, “Depth mapping for stereoscopic videos,” Int. J. Comput. Vis. 102(1–3), 293–307 (2013).
[Crossref]

M. Urvoy, M. Barkowsky, and P. Le Callet, “How visual fatigue and discomfort impact 3D-TV quality of experience: A comprehensive review of technological, psychophysical, and psychological factors,” Ann. Telecommun. 68(11–12), 641–655 (2013).
[Crossref]

2012 (3)

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, H. P. Seidel, and W. Matusik, “A luminance-contrast-aware disparity model and applications,” ACM Trans. Graph. 31(6), 184 (2012).
[Crossref]

S. W. Jung and S. J. Ko, “Depth enhancement considering just noticeable difference in depth,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 95(3), 673–675 (2012).
[Crossref]

S. W. Jung and S. J. Ko, “Depth sensation enhancement using the just noticeable depth difference,” IEEE Trans. Image Process. 21(8), 3624–3637 (2012).
[Crossref] [PubMed]

2011 (6)

A. Percival, “The CVZ: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref]

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel, “E. Eisemann E, H. P. Seidel, and W. Matusik, “A perceptual model for disparity,” ACM Trans. Graph. 30(4), 96 (2011).
[Crossref]

D. Kim, S. Choi, and K. Sohn, “Depth adjustment for stereoscopic images and subjective preference evaluation,” J. Electron. Imaging 20(3), 033011 (2011).
[Crossref]

C. Lee, G. Seo, J. Lee, T. H. Han, and J. G. Park, “Auto-stereoscopic 3D displays with reduced crosstalk,” Opt. Express 19(24), 24762–24774 (2011).
[Crossref] [PubMed]

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis[J]. Broadcasting,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

D. V. S. X. De Silva, E. Ekmekcioglu, W. A. C. Fernando, and S. T. Worrall, “Display dependent preprocessing of depth maps based on just noticeable depth difference modeling,” IEEE J. Sel. Top. Signal Process. 5(2), 335–351 (2011).
[Crossref]

2010 (1)

M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross, “Nonlinear disparity mapping for stereoscopic 3D,” ACM Trans. Graph. 29(4), 75 (2010).
[Crossref]

2009 (1)

Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1–2), 65–72 (2009).
[Crossref]

2008 (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Akeley, K.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Aydin, T. O.

A. Chapiro, S. Heinzle, T. O. Aydın, S. Poulakos, M. Zwicker, A. Smolic, and M. Gross, “Optimizing stereo-to-multiview conversion for autostereoscopic displays,” Proc. of Computer Graphics Forum33(2), 63–72 (2014).

Banks, M. S.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Barkowsky, M.

M. Urvoy, M. Barkowsky, and P. Le Callet, “How visual fatigue and discomfort impact 3D-TV quality of experience: A comprehensive review of technological, psychophysical, and psychological factors,” Ann. Telecommun. 68(11–12), 641–655 (2013).
[Crossref]

Cao, L.

C. Jung, L. Cao, H. Liu, and J. Kim, “Visual comfort enhancement in stereoscopic 3D images using saliency-adaptive nonlinear disparity mapping,” Displays 40, 17–23 (2015).
[Crossref]

Chapiro, A.

A. Chapiro, S. Heinzle, T. O. Aydın, S. Poulakos, M. Zwicker, A. Smolic, and M. Gross, “Optimizing stereo-to-multiview conversion for autostereoscopic displays,” Proc. of Computer Graphics Forum33(2), 63–72 (2014).

Chen, G.

Choi, S.

C. Oh, B. Ham, S. Choi, and K. Sohn, “Visual fatigue relaxation for stereoscopic video via nonlinear disparity remapping,” IEEE Trans. Broadcast 6(2), 142–153 (2015).

D. Kim, S. Choi, and K. Sohn, “Depth adjustment for stereoscopic images and subjective preference evaluation,” J. Electron. Imaging 20(3), 033011 (2011).
[Crossref]

Damberg, G.

De Silva, D. V. S. X.

D. V. S. X. De Silva, E. Ekmekcioglu, W. A. C. Fernando, and S. T. Worrall, “Display dependent preprocessing of depth maps based on just noticeable depth difference modeling,” IEEE J. Sel. Top. Signal Process. 5(2), 335–351 (2011).
[Crossref]

Didyk, P.

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, H. P. Seidel, and W. Matusik, “A luminance-contrast-aware disparity model and applications,” ACM Trans. Graph. 31(6), 184 (2012).
[Crossref]

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel, “E. Eisemann E, H. P. Seidel, and W. Matusik, “A perceptual model for disparity,” ACM Trans. Graph. 30(4), 96 (2011).
[Crossref]

Dodgson, N. A.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis[J]. Broadcasting,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

Du, S. P.

S. P. Du, B. Masia, S. M. Hu, and D. Gutierrez, “A metric of visual comfort for stereoscopic motion,” ACM Trans. Graph. 32(6), 222 (2013).
[Crossref]

Eisemann, E.

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, H. P. Seidel, and W. Matusik, “A luminance-contrast-aware disparity model and applications,” ACM Trans. Graph. 31(6), 184 (2012).
[Crossref]

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel, “E. Eisemann E, H. P. Seidel, and W. Matusik, “A perceptual model for disparity,” ACM Trans. Graph. 30(4), 96 (2011).
[Crossref]

Ekmekcioglu, E.

D. V. S. X. De Silva, E. Ekmekcioglu, W. A. C. Fernando, and S. T. Worrall, “Display dependent preprocessing of depth maps based on just noticeable depth difference modeling,” IEEE J. Sel. Top. Signal Process. 5(2), 335–351 (2011).
[Crossref]

Fang, K.

J. Lei, S. Li, B. Wang, K. Fang, and C. Hou, “Stereoscopic visual attention guided disparity control for multiview images,” J. Disp. Technol. 10(5), 373–379 (2014).
[Crossref]

Fang, Y.

J. Lei, C. Zhang, Y. Fang, Z. Gu, N. Ling, and C. Hou, “Depth sensation enhancement for multiple virtual view rendering,” IEEE Trans. Multimed. 17(4), 457–469 (2015).
[Crossref]

Favalora, G. E.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis[J]. Broadcasting,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

Fernando, W. A. C.

D. V. S. X. De Silva, E. Ekmekcioglu, W. A. C. Fernando, and S. T. Worrall, “Display dependent preprocessing of depth maps based on just noticeable depth difference modeling,” IEEE J. Sel. Top. Signal Process. 5(2), 335–351 (2011).
[Crossref]

Fujii, T.

Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1–2), 65–72 (2009).
[Crossref]

Fukushima, N.

Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1–2), 65–72 (2009).
[Crossref]

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Gross, M.

M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross, “Nonlinear disparity mapping for stereoscopic 3D,” ACM Trans. Graph. 29(4), 75 (2010).
[Crossref]

A. Chapiro, S. Heinzle, T. O. Aydın, S. Poulakos, M. Zwicker, A. Smolic, and M. Gross, “Optimizing stereo-to-multiview conversion for autostereoscopic displays,” Proc. of Computer Graphics Forum33(2), 63–72 (2014).

Gu, Z.

J. Lei, C. Zhang, Y. Fang, Z. Gu, N. Ling, and C. Hou, “Depth sensation enhancement for multiple virtual view rendering,” IEEE Trans. Multimed. 17(4), 457–469 (2015).
[Crossref]

Gutierrez, D.

S. P. Du, B. Masia, S. M. Hu, and D. Gutierrez, “A metric of visual comfort for stereoscopic motion,” ACM Trans. Graph. 32(6), 222 (2013).
[Crossref]

Ham, B.

C. Oh, B. Ham, S. Choi, and K. Sohn, “Visual fatigue relaxation for stereoscopic video via nonlinear disparity remapping,” IEEE Trans. Broadcast 6(2), 142–153 (2015).

Han, T. H.

Heidrich, W.

Heinzle, S.

A. Chapiro, S. Heinzle, T. O. Aydın, S. Poulakos, M. Zwicker, A. Smolic, and M. Gross, “Optimizing stereo-to-multiview conversion for autostereoscopic displays,” Proc. of Computer Graphics Forum33(2), 63–72 (2014).

Hoffman, D. M.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Holliman, N. S.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis[J]. Broadcasting,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

Hornung, A.

M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross, “Nonlinear disparity mapping for stereoscopic 3D,” ACM Trans. Graph. 29(4), 75 (2010).
[Crossref]

Hou, C.

J. Lei, C. Zhang, Y. Fang, Z. Gu, N. Ling, and C. Hou, “Depth sensation enhancement for multiple virtual view rendering,” IEEE Trans. Multimed. 17(4), 457–469 (2015).
[Crossref]

J. Lei, S. Li, B. Wang, K. Fang, and C. Hou, “Stereoscopic visual attention guided disparity control for multiview images,” J. Disp. Technol. 10(5), 373–379 (2014).
[Crossref]

Hu, S. M.

S. P. Du, B. Masia, S. M. Hu, and D. Gutierrez, “A metric of visual comfort for stereoscopic motion,” ACM Trans. Graph. 32(6), 222 (2013).
[Crossref]

Huang, L.

T. Yan, R. W. H. Lau, Y. Xu, and L. Huang, “Depth mapping for stereoscopic videos,” Int. J. Comput. Vis. 102(1–3), 293–307 (2013).
[Crossref]

Ji, Y. M.

Jiang, G.

Q. Jiang, F. Shao, W. Lin, G. Jiang, and M. Yu, “On predicting visual comfort of stereoscopic images: A learning to rank based approach,” IEEE Signal Process. Lett. 23(2), 302–306 (2016).
[Crossref]

Q. Jiang, F. Shao, G. Jiang, M. Yu, Z. Peng, and C. Yu, “A depth perception and visual comfort guided computational model for stereoscopic 3D visual saliency,” Signal Process. Image Commun. 38, 57–69 (2015).
[Crossref]

F. Shao, Z. Li, Q. Jiang, G. Jiang, M. Yu, and Z. Peng, “Visual discomfort relaxation for stereoscopic 3D images by adjusting zero-disparity plane for projection,” Displays 39, 125–132 (2015).
[Crossref]

Jiang, Q.

Q. Jiang, F. Shao, W. Lin, G. Jiang, and M. Yu, “On predicting visual comfort of stereoscopic images: A learning to rank based approach,” IEEE Signal Process. Lett. 23(2), 302–306 (2016).
[Crossref]

Q. Jiang, F. Shao, G. Jiang, M. Yu, Z. Peng, and C. Yu, “A depth perception and visual comfort guided computational model for stereoscopic 3D visual saliency,” Signal Process. Image Commun. 38, 57–69 (2015).
[Crossref]

F. Shao, Z. Li, Q. Jiang, G. Jiang, M. Yu, and Z. Peng, “Visual discomfort relaxation for stereoscopic 3D images by adjusting zero-disparity plane for projection,” Displays 39, 125–132 (2015).
[Crossref]

Ju, H.

Jung, C.

C. Jung, L. Cao, H. Liu, and J. Kim, “Visual comfort enhancement in stereoscopic 3D images using saliency-adaptive nonlinear disparity mapping,” Displays 40, 17–23 (2015).
[Crossref]

Jung, S. W.

S. W. Jung, “A modified model of the just noticeable depth difference and its application to depth sensation enhancement,” IEEE Trans. Image Process. 22(10), 3892–3903 (2013).
[Crossref] [PubMed]

S. W. Jung and S. J. Ko, “Depth sensation enhancement using the just noticeable depth difference,” IEEE Trans. Image Process. 21(8), 3624–3637 (2012).
[Crossref] [PubMed]

S. W. Jung and S. J. Ko, “Depth enhancement considering just noticeable difference in depth,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 95(3), 673–675 (2012).
[Crossref]

Jung, Y. J.

H. Sohn, Y. J. Jung, S. Lee, and F. Speranza, “Visual comfort amelioration technique for stereoscopic images: Disparity remapping to mitigate global and local discomfort causes,” IEEE Trans. Circ. Syst. Video Tech. 24(5), 745–758 (2014).
[Crossref]

Y. J. Jung, H. Sohn, S. Lee, and Y. M. Ro, “Visual comfort improvement in stereoscopic 3D displays using perceptually plausible assessment metric of visual comfort,” IEEE Trans. Consum. Electron. 60(1), 1–9 (2014).
[Crossref]

Kim, D.

D. Kim, S. Choi, and K. Sohn, “Depth adjustment for stereoscopic images and subjective preference evaluation,” J. Electron. Imaging 20(3), 033011 (2011).
[Crossref]

Kim, H. J.

Kim, J.

C. Jung, L. Cao, H. Liu, and J. Kim, “Visual comfort enhancement in stereoscopic 3D images using saliency-adaptive nonlinear disparity mapping,” Displays 40, 17–23 (2015).
[Crossref]

Kim, S. B.

Kim, S. H.

Kim, S. K.

Ko, S. J.

S. W. Jung and S. J. Ko, “Depth enhancement considering just noticeable difference in depth,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 95(3), 673–675 (2012).
[Crossref]

S. W. Jung and S. J. Ko, “Depth sensation enhancement using the just noticeable depth difference,” IEEE Trans. Image Process. 21(8), 3624–3637 (2012).
[Crossref] [PubMed]

Lang, M.

M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross, “Nonlinear disparity mapping for stereoscopic 3D,” ACM Trans. Graph. 29(4), 75 (2010).
[Crossref]

Lau, R. W. H.

T. Yan, R. W. H. Lau, Y. Xu, and L. Huang, “Depth mapping for stereoscopic videos,” Int. J. Comput. Vis. 102(1–3), 293–307 (2013).
[Crossref]

Le Callet, P.

M. Urvoy, M. Barkowsky, and P. Le Callet, “How visual fatigue and discomfort impact 3D-TV quality of experience: A comprehensive review of technological, psychophysical, and psychological factors,” Ann. Telecommun. 68(11–12), 641–655 (2013).
[Crossref]

Lee, C.

Lee, J.

Lee, S.

Y. J. Jung, H. Sohn, S. Lee, and Y. M. Ro, “Visual comfort improvement in stereoscopic 3D displays using perceptually plausible assessment metric of visual comfort,” IEEE Trans. Consum. Electron. 60(1), 1–9 (2014).
[Crossref]

H. Sohn, Y. J. Jung, S. Lee, and F. Speranza, “Visual comfort amelioration technique for stereoscopic images: Disparity remapping to mitigate global and local discomfort causes,” IEEE Trans. Circ. Syst. Video Tech. 24(5), 745–758 (2014).
[Crossref]

Lei, J.

J. Lei, C. Zhang, Y. Fang, Z. Gu, N. Ling, and C. Hou, “Depth sensation enhancement for multiple virtual view rendering,” IEEE Trans. Multimed. 17(4), 457–469 (2015).
[Crossref]

J. Lei, S. Li, B. Wang, K. Fang, and C. Hou, “Stereoscopic visual attention guided disparity control for multiview images,” J. Disp. Technol. 10(5), 373–379 (2014).
[Crossref]

Li, B.

Li, S.

J. Lei, S. Li, B. Wang, K. Fang, and C. Hou, “Stereoscopic visual attention guided disparity control for multiview images,” J. Disp. Technol. 10(5), 373–379 (2014).
[Crossref]

Li, Z.

F. Shao, Z. Li, Q. Jiang, G. Jiang, M. Yu, and Z. Peng, “Visual discomfort relaxation for stereoscopic 3D images by adjusting zero-disparity plane for projection,” Displays 39, 125–132 (2015).
[Crossref]

Liao, H.

Lin, W.

Q. Jiang, F. Shao, W. Lin, G. Jiang, and M. Yu, “On predicting visual comfort of stereoscopic images: A learning to rank based approach,” IEEE Signal Process. Lett. 23(2), 302–306 (2016).
[Crossref]

Ling, N.

J. Lei, C. Zhang, Y. Fang, Z. Gu, N. Ling, and C. Hou, “Depth sensation enhancement for multiple virtual view rendering,” IEEE Trans. Multimed. 17(4), 457–469 (2015).
[Crossref]

Liu, H.

C. Jung, L. Cao, H. Liu, and J. Kim, “Visual comfort enhancement in stereoscopic 3D images using saliency-adaptive nonlinear disparity mapping,” Displays 40, 17–23 (2015).
[Crossref]

Masia, B.

S. P. Du, B. Masia, S. M. Hu, and D. Gutierrez, “A metric of visual comfort for stereoscopic motion,” ACM Trans. Graph. 32(6), 222 (2013).
[Crossref]

Matusik, W.

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, H. P. Seidel, and W. Matusik, “A luminance-contrast-aware disparity model and applications,” ACM Trans. Graph. 31(6), 184 (2012).
[Crossref]

Mori, Y.

Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1–2), 65–72 (2009).
[Crossref]

Myszkowski, K.

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, H. P. Seidel, and W. Matusik, “A luminance-contrast-aware disparity model and applications,” ACM Trans. Graph. 31(6), 184 (2012).
[Crossref]

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel, “E. Eisemann E, H. P. Seidel, and W. Matusik, “A perceptual model for disparity,” ACM Trans. Graph. 30(4), 96 (2011).
[Crossref]

Oh, C.

C. Oh, B. Ham, S. Choi, and K. Sohn, “Visual fatigue relaxation for stereoscopic video via nonlinear disparity remapping,” IEEE Trans. Broadcast 6(2), 142–153 (2015).

Park, I.

Park, J. G.

Park, J. H.

Peng, Z.

Q. Jiang, F. Shao, G. Jiang, M. Yu, Z. Peng, and C. Yu, “A depth perception and visual comfort guided computational model for stereoscopic 3D visual saliency,” Signal Process. Image Commun. 38, 57–69 (2015).
[Crossref]

F. Shao, Z. Li, Q. Jiang, G. Jiang, M. Yu, and Z. Peng, “Visual discomfort relaxation for stereoscopic 3D images by adjusting zero-disparity plane for projection,” Displays 39, 125–132 (2015).
[Crossref]

Percival, A.

A. Percival, “The CVZ: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref]

Pockett, L.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis[J]. Broadcasting,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

Poulakos, S.

M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross, “Nonlinear disparity mapping for stereoscopic 3D,” ACM Trans. Graph. 29(4), 75 (2010).
[Crossref]

A. Chapiro, S. Heinzle, T. O. Aydın, S. Poulakos, M. Zwicker, A. Smolic, and M. Gross, “Optimizing stereo-to-multiview conversion for autostereoscopic displays,” Proc. of Computer Graphics Forum33(2), 63–72 (2014).

Ritschel, T.

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, H. P. Seidel, and W. Matusik, “A luminance-contrast-aware disparity model and applications,” ACM Trans. Graph. 31(6), 184 (2012).
[Crossref]

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel, “E. Eisemann E, H. P. Seidel, and W. Matusik, “A perceptual model for disparity,” ACM Trans. Graph. 30(4), 96 (2011).
[Crossref]

Ro, Y. M.

Y. J. Jung, H. Sohn, S. Lee, and Y. M. Ro, “Visual comfort improvement in stereoscopic 3D displays using perceptually plausible assessment metric of visual comfort,” IEEE Trans. Consum. Electron. 60(1), 1–9 (2014).
[Crossref]

Seidel, H. P.

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, H. P. Seidel, and W. Matusik, “A luminance-contrast-aware disparity model and applications,” ACM Trans. Graph. 31(6), 184 (2012).
[Crossref]

Seidel, H.-P.

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel, “E. Eisemann E, H. P. Seidel, and W. Matusik, “A perceptual model for disparity,” ACM Trans. Graph. 30(4), 96 (2011).
[Crossref]

Seo, G.

Shao, F.

Q. Jiang, F. Shao, W. Lin, G. Jiang, and M. Yu, “On predicting visual comfort of stereoscopic images: A learning to rank based approach,” IEEE Signal Process. Lett. 23(2), 302–306 (2016).
[Crossref]

Q. Jiang, F. Shao, G. Jiang, M. Yu, Z. Peng, and C. Yu, “A depth perception and visual comfort guided computational model for stereoscopic 3D visual saliency,” Signal Process. Image Commun. 38, 57–69 (2015).
[Crossref]

F. Shao, Z. Li, Q. Jiang, G. Jiang, M. Yu, and Z. Peng, “Visual discomfort relaxation for stereoscopic 3D images by adjusting zero-disparity plane for projection,” Displays 39, 125–132 (2015).
[Crossref]

Smolic, A.

M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross, “Nonlinear disparity mapping for stereoscopic 3D,” ACM Trans. Graph. 29(4), 75 (2010).
[Crossref]

A. Chapiro, S. Heinzle, T. O. Aydın, S. Poulakos, M. Zwicker, A. Smolic, and M. Gross, “Optimizing stereo-to-multiview conversion for autostereoscopic displays,” Proc. of Computer Graphics Forum33(2), 63–72 (2014).

Sohn, H.

H. Sohn, Y. J. Jung, S. Lee, and F. Speranza, “Visual comfort amelioration technique for stereoscopic images: Disparity remapping to mitigate global and local discomfort causes,” IEEE Trans. Circ. Syst. Video Tech. 24(5), 745–758 (2014).
[Crossref]

Y. J. Jung, H. Sohn, S. Lee, and Y. M. Ro, “Visual comfort improvement in stereoscopic 3D displays using perceptually plausible assessment metric of visual comfort,” IEEE Trans. Consum. Electron. 60(1), 1–9 (2014).
[Crossref]

Sohn, K.

C. Oh, B. Ham, S. Choi, and K. Sohn, “Visual fatigue relaxation for stereoscopic video via nonlinear disparity remapping,” IEEE Trans. Broadcast 6(2), 142–153 (2015).

D. Kim, S. Choi, and K. Sohn, “Depth adjustment for stereoscopic images and subjective preference evaluation,” J. Electron. Imaging 20(3), 033011 (2011).
[Crossref]

Speranza, F.

H. Sohn, Y. J. Jung, S. Lee, and F. Speranza, “Visual comfort amelioration technique for stereoscopic images: Disparity remapping to mitigate global and local discomfort causes,” IEEE Trans. Circ. Syst. Video Tech. 24(5), 745–758 (2014).
[Crossref]

Su, B.

Tanimoto, M.

Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1–2), 65–72 (2009).
[Crossref]

Urvoy, M.

M. Urvoy, M. Barkowsky, and P. Le Callet, “How visual fatigue and discomfort impact 3D-TV quality of experience: A comprehensive review of technological, psychophysical, and psychological factors,” Ann. Telecommun. 68(11–12), 641–655 (2013).
[Crossref]

Wang, B.

J. Lei, S. Li, B. Wang, K. Fang, and C. Hou, “Stereoscopic visual attention guided disparity control for multiview images,” J. Disp. Technol. 10(5), 373–379 (2014).
[Crossref]

Wang, O.

M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross, “Nonlinear disparity mapping for stereoscopic 3D,” ACM Trans. Graph. 29(4), 75 (2010).
[Crossref]

Worrall, S. T.

D. V. S. X. De Silva, E. Ekmekcioglu, W. A. C. Fernando, and S. T. Worrall, “Display dependent preprocessing of depth maps based on just noticeable depth difference modeling,” IEEE J. Sel. Top. Signal Process. 5(2), 335–351 (2011).
[Crossref]

Xu, Y.

T. Yan, R. W. H. Lau, Y. Xu, and L. Huang, “Depth mapping for stereoscopic videos,” Int. J. Comput. Vis. 102(1–3), 293–307 (2013).
[Crossref]

Yan, T.

T. Yan, R. W. H. Lau, Y. Xu, and L. Huang, “Depth mapping for stereoscopic videos,” Int. J. Comput. Vis. 102(1–3), 293–307 (2013).
[Crossref]

Yendo, T.

Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1–2), 65–72 (2009).
[Crossref]

Yeom, H. J.

Yoon, K. H.

Yu, C.

Q. Jiang, F. Shao, G. Jiang, M. Yu, Z. Peng, and C. Yu, “A depth perception and visual comfort guided computational model for stereoscopic 3D visual saliency,” Signal Process. Image Commun. 38, 57–69 (2015).
[Crossref]

Yu, M.

Q. Jiang, F. Shao, W. Lin, G. Jiang, and M. Yu, “On predicting visual comfort of stereoscopic images: A learning to rank based approach,” IEEE Signal Process. Lett. 23(2), 302–306 (2016).
[Crossref]

Q. Jiang, F. Shao, G. Jiang, M. Yu, Z. Peng, and C. Yu, “A depth perception and visual comfort guided computational model for stereoscopic 3D visual saliency,” Signal Process. Image Commun. 38, 57–69 (2015).
[Crossref]

F. Shao, Z. Li, Q. Jiang, G. Jiang, M. Yu, and Z. Peng, “Visual discomfort relaxation for stereoscopic 3D images by adjusting zero-disparity plane for projection,” Displays 39, 125–132 (2015).
[Crossref]

Zhang, C.

J. Lei, C. Zhang, Y. Fang, Z. Gu, N. Ling, and C. Hou, “Depth sensation enhancement for multiple virtual view rendering,” IEEE Trans. Multimed. 17(4), 457–469 (2015).
[Crossref]

Zhang, H.

Zhao, D.

Zwicker, M.

A. Chapiro, S. Heinzle, T. O. Aydın, S. Poulakos, M. Zwicker, A. Smolic, and M. Gross, “Optimizing stereo-to-multiview conversion for autostereoscopic displays,” Proc. of Computer Graphics Forum33(2), 63–72 (2014).

ACM Trans. Graph. (4)

M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross, “Nonlinear disparity mapping for stereoscopic 3D,” ACM Trans. Graph. 29(4), 75 (2010).
[Crossref]

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel, “E. Eisemann E, H. P. Seidel, and W. Matusik, “A perceptual model for disparity,” ACM Trans. Graph. 30(4), 96 (2011).
[Crossref]

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, H. P. Seidel, and W. Matusik, “A luminance-contrast-aware disparity model and applications,” ACM Trans. Graph. 31(6), 184 (2012).
[Crossref]

S. P. Du, B. Masia, S. M. Hu, and D. Gutierrez, “A metric of visual comfort for stereoscopic motion,” ACM Trans. Graph. 32(6), 222 (2013).
[Crossref]

Ann. Telecommun. (1)

M. Urvoy, M. Barkowsky, and P. Le Callet, “How visual fatigue and discomfort impact 3D-TV quality of experience: A comprehensive review of technological, psychophysical, and psychological factors,” Ann. Telecommun. 68(11–12), 641–655 (2013).
[Crossref]

Displays (2)

F. Shao, Z. Li, Q. Jiang, G. Jiang, M. Yu, and Z. Peng, “Visual discomfort relaxation for stereoscopic 3D images by adjusting zero-disparity plane for projection,” Displays 39, 125–132 (2015).
[Crossref]

C. Jung, L. Cao, H. Liu, and J. Kim, “Visual comfort enhancement in stereoscopic 3D images using saliency-adaptive nonlinear disparity mapping,” Displays 40, 17–23 (2015).
[Crossref]

IEEE J. Sel. Top. Signal Process. (1)

D. V. S. X. De Silva, E. Ekmekcioglu, W. A. C. Fernando, and S. T. Worrall, “Display dependent preprocessing of depth maps based on just noticeable depth difference modeling,” IEEE J. Sel. Top. Signal Process. 5(2), 335–351 (2011).
[Crossref]

IEEE Signal Process. Lett. (1)

Q. Jiang, F. Shao, W. Lin, G. Jiang, and M. Yu, “On predicting visual comfort of stereoscopic images: A learning to rank based approach,” IEEE Signal Process. Lett. 23(2), 302–306 (2016).
[Crossref]

IEEE Trans. Broadcast (2)

C. Oh, B. Ham, S. Choi, and K. Sohn, “Visual fatigue relaxation for stereoscopic video via nonlinear disparity remapping,” IEEE Trans. Broadcast 6(2), 142–153 (2015).

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis[J]. Broadcasting,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

IEEE Trans. Circ. Syst. Video Tech. (1)

H. Sohn, Y. J. Jung, S. Lee, and F. Speranza, “Visual comfort amelioration technique for stereoscopic images: Disparity remapping to mitigate global and local discomfort causes,” IEEE Trans. Circ. Syst. Video Tech. 24(5), 745–758 (2014).
[Crossref]

IEEE Trans. Consum. Electron. (1)

Y. J. Jung, H. Sohn, S. Lee, and Y. M. Ro, “Visual comfort improvement in stereoscopic 3D displays using perceptually plausible assessment metric of visual comfort,” IEEE Trans. Consum. Electron. 60(1), 1–9 (2014).
[Crossref]

IEEE Trans. Image Process. (2)

S. W. Jung and S. J. Ko, “Depth sensation enhancement using the just noticeable depth difference,” IEEE Trans. Image Process. 21(8), 3624–3637 (2012).
[Crossref] [PubMed]

S. W. Jung, “A modified model of the just noticeable depth difference and its application to depth sensation enhancement,” IEEE Trans. Image Process. 22(10), 3892–3903 (2013).
[Crossref] [PubMed]

IEEE Trans. Multimed. (1)

J. Lei, C. Zhang, Y. Fang, Z. Gu, N. Ling, and C. Hou, “Depth sensation enhancement for multiple virtual view rendering,” IEEE Trans. Multimed. 17(4), 457–469 (2015).
[Crossref]

IEICE Trans. Fundam. Electron. Commun. Comput. Sci. (1)

S. W. Jung and S. J. Ko, “Depth enhancement considering just noticeable difference in depth,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 95(3), 673–675 (2012).
[Crossref]

Int. J. Comput. Vis. (1)

T. Yan, R. W. H. Lau, Y. Xu, and L. Huang, “Depth mapping for stereoscopic videos,” Int. J. Comput. Vis. 102(1–3), 293–307 (2013).
[Crossref]

J. Disp. Technol. (1)

J. Lei, S. Li, B. Wang, K. Fang, and C. Hou, “Stereoscopic visual attention guided disparity control for multiview images,” J. Disp. Technol. 10(5), 373–379 (2014).
[Crossref]

J. Electron. Imaging (1)

D. Kim, S. Choi, and K. Sohn, “Depth adjustment for stereoscopic images and subjective preference evaluation,” J. Electron. Imaging 20(3), 033011 (2011).
[Crossref]

J. Vis. (2)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

A. Percival, “The CVZ: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref]

Opt. Express (5)

Signal Process. Image Commun. (2)

Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1–2), 65–72 (2009).
[Crossref]

Q. Jiang, F. Shao, G. Jiang, M. Yu, Z. Peng, and C. Yu, “A depth perception and visual comfort guided computational model for stereoscopic 3D visual saliency,” Signal Process. Image Commun. 38, 57–69 (2015).
[Crossref]

Other (5)

ITU-R BT-500.11, “Methodology for the subjective assessment of the quality of television pictures,” ITU-R BT-500.11, 2002.

ITU-R BT.1438, “Subjective assessment for stereoscopic television pictures,” ITU-R BT.1438 (2000).

ITU-T P.910, “Subjective video quality assessment methods for multimedia applications,” Recommendation ITU-T P.910, ITU Telecom. Sector of ITU (1999).

ITU-T P.911, Subjective video quality assessment methods for multimedia applications, Recommendation ITU-T P.911, ITU Telecom. Sector of ITU (1999).

A. Chapiro, S. Heinzle, T. O. Aydın, S. Poulakos, M. Zwicker, A. Smolic, and M. Gross, “Optimizing stereo-to-multiview conversion for autostereoscopic displays,” Proc. of Computer Graphics Forum33(2), 63–72 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Illustration of our proposed depth mapping model.
Fig. 2
Fig. 2 Results of original (left) and our depth mapping. The histograms show how our approach nicely adjusts depth range for some discomfort regions.
Fig. 3
Fig. 3 Results of the No. 106 test image in the IVY LAB Stereoscopic 3D image database: (a) the anaglyph image of input stereo pair, (b) the anaglyph image of Lei’s scheme [13], (c) the anaglyph image of Jung’s scheme [18], (d) the anaglyph image of Shao’s scheme [14], (e) the anaglyph image of our approach, and (f) the adjusted depth map of our approach. The anaglyph images should be viewed with a red-green glass.
Fig. 4
Fig. 4 Results of the No. 112 test image in the IVY LAB Stereoscopic 3D image database: (a) the anaglyph image of input stereo pair, (b) the anaglyph image of Lei’s scheme [13], (c) the anaglyph image of Jung’s scheme [18], (d) the anaglyph image of Shao’s scheme [14], (e) the anaglyph image of our approach, and (f) the adjusted depth map of our approach. The anaglyph images should be viewed with a red-green glass.
Fig. 5
Fig. 5 Results of the ‘Newspaper’ 3D test sequence: (a) the anaglyph image of input stereo pair, (b) the anaglyph image of Lei’s scheme [13], (c) the anaglyph image of Jung’s scheme [18], (d) the anaglyph image of Shao’s scheme [14], (e) the anaglyph image of our approach, and (f) the adjusted depth map of our approach. The anaglyph images should be viewed with a red-green glass.
Fig. 6
Fig. 6 Results of the No. 115 test image in the IVY LAB Stereoscopic 3D image database: (a) the anaglyph image of input stereo pair, (b) the anaglyph image of Lei’s scheme [13], (c) the anaglyph image of Jung’s scheme [18], (d) the anaglyph image of Shao’s scheme [14], (e) the anaglyph image of our approach, and (f) the adjusted depth map of our approach. The anaglyph images should be viewed with a red-green glass.
Fig. 7
Fig. 7 Results of the two-stage optimization: (a) the anaglyph image of Scheme-A, (b) the anaglyph image of Scheme-B, and (c) the anaglyph image of our approach.

Tables (2)

Tables Icon

Table 1 Quantitative Subjective Assessment Results of Different Stereoscopic Images

Tables Icon

Table 2 Quantitative Subjective Assessment Results of Different Stereoscopic Images

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Z ^ =k(Z Z min )+ Z ^ min
k= Z ^ max Z ^ min Z max Z min
Z= eV es
Z ^ = eV e(s s ZDP ) = 1 ( 1 Z ZDP + 1 Z ) 1 V
p * = argmin p { E DATA ( p o ,p)+ E JNDD ( p o ,p) } s.t. Φ(f)>V C GT
p o ={ p 1 o , p 2 o ,, p L o }, p * ={ p 1 * , p 2 * ,, p L * }.
φ i (x)= γ i x+ α i
E DATA ( p o ,p)= i=1 L β i ( p i p i o )
E JNDD = λ 1 i=1 L j Ω i max( 0, D JNDD ( p i 0 )| p i p j | )
D JNDD (d)={ 21, if 0d64 19, if 64d128 18, if 128d192 20, if 192d255
d * (x,y)= p i+1 * p i * p i+1 o p i o ( d o (x,y) p i o )+ p i *
p i * γ i p i o + α i s.t.{ Φ( f i * )V C GT j, | p i * p j o | max j Ω i { D JNDD ( p j o ) }
γ i { larger than 1, if Φ( f i o )V C GT lower than 1, otherwise
i=1 L γ i γ global
(X,Y,Z) T = R 1 A 1 1 (u,v,1) T d u,v + T 1
(u',v',w') T = A 2 R 2 1 (X,Y,Z) T A 2 R 2 1 T 2

Metrics