Abstract

The origin of high-spatial-frequency laser-induced periodic surface structures (HSFL) driven by incident ultrafast laser fields, with their ability to achieve structure resolutions below λ/2, is often obscured by the overlap with regular ripples patterns at quasi-wavelength periodicities. We experimentally demonstrate here employing defined surface topographies that these structures are intrinsically related to surface roughness in the nano-scale domain. Using Zr-based bulk metallic glass (Zr-BMG) and its crystalline alloy (Zr-CA) counterpart formed by thermal annealing from its glassy precursor, we prepared surfaces showing either smooth appearances on thermoplastic BMG or high-density nano-protuberances from randomly distributed embedded nano-crystallites with average sizes below 200 nm on the recrystallized alloy. Upon ultrashort pulse irradiation employing linearly polarized 50 fs, 800 nm laser pulses, the surfaces show a range of nanoscale organized features. The change of topology was then followed under multiple pulse irradiation at fluences around and below the single pulse threshold. While the former material (Zr-BMG) shows a specific high quality arrangement of standard ripples around the laser wavelength, the latter (Zr-CA) demonstrates strong predisposition to form high spatial frequency rippled structures (HSFL). We discuss electromagnetic scenarios assisting their formation based on near-field interaction between particles and field-enhancement leading to structure linear growth. Finite-difference-time-domain simulations outline individual and collective effects of nanoparticles on electromagnetic energy modulation and the feedback processes in the formation of HSFL structures with correlation to regular ripples (LSFL).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses

Go Obara, Hisashi Shimizu, Taira Enami, Eric Mazur, Mitsuhiro Terakawa, and Minoru Obara
Opt. Express 21(22) 26323-26334 (2013)

In situ and ex-situ physical scenario of the femtosecond laser-induced periodic surface structures

Xiaohan Yu, Dongfeng Qi, Hongyang Wang, Yawen Zhang, Letian Wang, Zifeng Zhang, Shixun Dai, Xiang Shen, Peiqing Zhang, and Yinsheng Xu
Opt. Express 27(7) 10087-10097 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. Chichkov, and A. Tuennermann, “Sub-diffraction limited structuring of solid targets with femtosecond laser pulses,” Opt. Express 7(2), 41–49 (2000).
    [Crossref] [PubMed]
  2. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
    [Crossref]
  3. R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
    [Crossref]
  4. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
    [Crossref] [PubMed]
  5. O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252(13), 4702–4706 (2006).
    [Crossref]
  6. J. P. Colombier, P. Combis, E. Audouard, and R. Stoian, “Guiding heat in laser ablation of metals on ultrafast timescales: an adaptive modeling approachon aluminum,” New J. Phys. 14(1), 013039 (2012).
    [Crossref]
  7. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
    [Crossref]
  8. H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
    [Crossref]
  9. J. Schroers, T. Nguyen, S. O’Keeffe, and A. Desai, “Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication,” Mater. Sci. Eng. A 44, 9898–9902 (2007).
  10. W. H. Wang, C. Dong, and C. H. Shek, “Bulk metallic glasses,” Mater. Sci. Eng. Rep. 44(2-3), 45–89 (2004).
    [Crossref]
  11. W. H. Wang, “Cristallisation des verres métalliques massifs ZrTiCuNiBe,” Ann. Chim. Sci. Mat. 27, 99–105 (2002).
    [Crossref]
  12. S. Kikuchi, “Diffraction of cathode rays by mica,” Jpn. J. Phys. 5, 83–96 (1928).
  13. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  14. Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
    [Crossref]
  15. J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
    [Crossref]
  16. C. Li, G. Cheng, J. P. Colombier, N. Faure, S. Reynaud, H. Zhang, D. Jamon, and R. Stoian, “Impact of evolving surface nanoscale topologies in femtosecond laser structuring of Ni-based superalloy CMSX-4,” J. Opt. 18(1), 015402 (2016).
    [Crossref]
  17. S. I. Ashitkov, P. S. Komarov, A. V. Ovchinnikov, E. V. Struleva, V. V. Zhakhovskii, N. A. Inogamov, and M. B. Agranat, “Ablation and nanostructuring of metals by femtosecond laser pulses,” Quantum Electron. 44(6), 535–539 (2014).
    [Crossref]
  18. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [Crossref]
  19. M. Robert de Saint Vincent and J. P. Delville, “Thermocapillary migration in small-scale temperature gradients: application to optofluidic drop dispensing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(2), 026310 (2012).
    [Crossref] [PubMed]

2016 (1)

C. Li, G. Cheng, J. P. Colombier, N. Faure, S. Reynaud, H. Zhang, D. Jamon, and R. Stoian, “Impact of evolving surface nanoscale topologies in femtosecond laser structuring of Ni-based superalloy CMSX-4,” J. Opt. 18(1), 015402 (2016).
[Crossref]

2015 (1)

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

2014 (2)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

S. I. Ashitkov, P. S. Komarov, A. V. Ovchinnikov, E. V. Struleva, V. V. Zhakhovskii, N. A. Inogamov, and M. B. Agranat, “Ablation and nanostructuring of metals by femtosecond laser pulses,” Quantum Electron. 44(6), 535–539 (2014).
[Crossref]

2012 (4)

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

M. Robert de Saint Vincent and J. P. Delville, “Thermocapillary migration in small-scale temperature gradients: application to optofluidic drop dispensing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(2), 026310 (2012).
[Crossref] [PubMed]

J. P. Colombier, P. Combis, E. Audouard, and R. Stoian, “Guiding heat in laser ablation of metals on ultrafast timescales: an adaptive modeling approachon aluminum,” New J. Phys. 14(1), 013039 (2012).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

2011 (1)

2007 (1)

J. Schroers, T. Nguyen, S. O’Keeffe, and A. Desai, “Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication,” Mater. Sci. Eng. A 44, 9898–9902 (2007).

2006 (1)

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252(13), 4702–4706 (2006).
[Crossref]

2004 (1)

W. H. Wang, C. Dong, and C. H. Shek, “Bulk metallic glasses,” Mater. Sci. Eng. Rep. 44(2-3), 45–89 (2004).
[Crossref]

2002 (1)

W. H. Wang, “Cristallisation des verres métalliques massifs ZrTiCuNiBe,” Ann. Chim. Sci. Mat. 27, 99–105 (2002).
[Crossref]

2000 (1)

1983 (2)

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

1982 (1)

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

1966 (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

1928 (1)

S. Kikuchi, “Diffraction of cathode rays by mica,” Jpn. J. Phys. 5, 83–96 (1928).

Adams, S.

Agranat, M. B.

S. I. Ashitkov, P. S. Komarov, A. V. Ovchinnikov, E. V. Struleva, V. V. Zhakhovskii, N. A. Inogamov, and M. B. Agranat, “Ablation and nanostructuring of metals by femtosecond laser pulses,” Quantum Electron. 44(6), 535–539 (2014).
[Crossref]

Ashitkov, S. I.

S. I. Ashitkov, P. S. Komarov, A. V. Ovchinnikov, E. V. Struleva, V. V. Zhakhovskii, N. A. Inogamov, and M. B. Agranat, “Ablation and nanostructuring of metals by femtosecond laser pulses,” Quantum Electron. 44(6), 535–539 (2014).
[Crossref]

Audouard, E.

J. P. Colombier, P. Combis, E. Audouard, and R. Stoian, “Guiding heat in laser ablation of metals on ultrafast timescales: an adaptive modeling approachon aluminum,” New J. Phys. 14(1), 013039 (2012).
[Crossref]

Bestehorn, M.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252(13), 4702–4706 (2006).
[Crossref]

Bonse, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Bounhalli, M.

Buividas, R.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Cheng, G.

C. Li, G. Cheng, J. P. Colombier, N. Faure, S. Reynaud, H. Zhang, D. Jamon, and R. Stoian, “Impact of evolving surface nanoscale topologies in femtosecond laser structuring of Ni-based superalloy CMSX-4,” J. Opt. 18(1), 015402 (2016).
[Crossref]

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

Chichkov, B.

Colombier, J. P.

C. Li, G. Cheng, J. P. Colombier, N. Faure, S. Reynaud, H. Zhang, D. Jamon, and R. Stoian, “Impact of evolving surface nanoscale topologies in femtosecond laser structuring of Ni-based superalloy CMSX-4,” J. Opt. 18(1), 015402 (2016).
[Crossref]

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

J. P. Colombier, P. Combis, E. Audouard, and R. Stoian, “Guiding heat in laser ablation of metals on ultrafast timescales: an adaptive modeling approachon aluminum,” New J. Phys. 14(1), 013039 (2012).
[Crossref]

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
[Crossref] [PubMed]

Combis, P.

J. P. Colombier, P. Combis, E. Audouard, and R. Stoian, “Guiding heat in laser ablation of metals on ultrafast timescales: an adaptive modeling approachon aluminum,” New J. Phys. 14(1), 013039 (2012).
[Crossref]

Costache, F.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252(13), 4702–4706 (2006).
[Crossref]

De Hosson, J. T. M.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Delville, J. P.

M. Robert de Saint Vincent and J. P. Delville, “Thermocapillary migration in small-scale temperature gradients: application to optofluidic drop dispensing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(2), 026310 (2012).
[Crossref] [PubMed]

Desai, A.

J. Schroers, T. Nguyen, S. O’Keeffe, and A. Desai, “Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication,” Mater. Sci. Eng. A 44, 9898–9902 (2007).

Dong, C.

W. H. Wang, C. Dong, and C. H. Shek, “Bulk metallic glasses,” Mater. Sci. Eng. Rep. 44(2-3), 45–89 (2004).
[Crossref]

Egbert, A.

Fallnich, C.

Fauchet, P. M.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Faure, N.

C. Li, G. Cheng, J. P. Colombier, N. Faure, S. Reynaud, H. Zhang, D. Jamon, and R. Stoian, “Impact of evolving surface nanoscale topologies in femtosecond laser structuring of Ni-based superalloy CMSX-4,” J. Opt. 18(1), 015402 (2016).
[Crossref]

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
[Crossref] [PubMed]

Garrelie, F.

Guosheng, Z.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Höhm, S.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Huis in ’t Veld, A. J.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Inogamov, N. A.

S. I. Ashitkov, P. S. Komarov, A. V. Ovchinnikov, E. V. Struleva, V. V. Zhakhovskii, N. A. Inogamov, and M. B. Agranat, “Ablation and nanostructuring of metals by femtosecond laser pulses,” Quantum Electron. 44(6), 535–539 (2014).
[Crossref]

Jamon, D.

C. Li, G. Cheng, J. P. Colombier, N. Faure, S. Reynaud, H. Zhang, D. Jamon, and R. Stoian, “Impact of evolving surface nanoscale topologies in femtosecond laser structuring of Ni-based superalloy CMSX-4,” J. Opt. 18(1), 015402 (2016).
[Crossref]

Juodkazis, S.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Kikuchi, S.

S. Kikuchi, “Diffraction of cathode rays by mica,” Jpn. J. Phys. 5, 83–96 (1928).

Komarov, P. S.

S. I. Ashitkov, P. S. Komarov, A. V. Ovchinnikov, E. V. Struleva, V. V. Zhakhovskii, N. A. Inogamov, and M. B. Agranat, “Ablation and nanostructuring of metals by femtosecond laser pulses,” Quantum Electron. 44(6), 535–539 (2014).
[Crossref]

Korte, F.

Krüger, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Li, C.

C. Li, G. Cheng, J. P. Colombier, N. Faure, S. Reynaud, H. Zhang, D. Jamon, and R. Stoian, “Impact of evolving surface nanoscale topologies in femtosecond laser structuring of Ni-based superalloy CMSX-4,” J. Opt. 18(1), 015402 (2016).
[Crossref]

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

Mikutis, M.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Nguyen, T.

J. Schroers, T. Nguyen, S. O’Keeffe, and A. Desai, “Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication,” Mater. Sci. Eng. A 44, 9898–9902 (2007).

Nolte, S.

O’Keeffe, S.

J. Schroers, T. Nguyen, S. O’Keeffe, and A. Desai, “Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication,” Mater. Sci. Eng. A 44, 9898–9902 (2007).

Obona, J. V.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Ocelik, V.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Ostendorf, A.

Ovchinnikov, A. V.

S. I. Ashitkov, P. S. Komarov, A. V. Ovchinnikov, E. V. Struleva, V. V. Zhakhovskii, N. A. Inogamov, and M. B. Agranat, “Ablation and nanostructuring of metals by femtosecond laser pulses,” Quantum Electron. 44(6), 535–539 (2014).
[Crossref]

Parriaux, O.

Pigeon, F.

Preston, J. S.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Reif, J.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252(13), 4702–4706 (2006).
[Crossref]

Reynaud, S.

C. Li, G. Cheng, J. P. Colombier, N. Faure, S. Reynaud, H. Zhang, D. Jamon, and R. Stoian, “Impact of evolving surface nanoscale topologies in femtosecond laser structuring of Ni-based superalloy CMSX-4,” J. Opt. 18(1), 015402 (2016).
[Crossref]

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
[Crossref] [PubMed]

Robert de Saint Vincent, M.

M. Robert de Saint Vincent and J. P. Delville, “Thermocapillary migration in small-scale temperature gradients: application to optofluidic drop dispensing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(2), 026310 (2012).
[Crossref] [PubMed]

Römer, G. R. B. E.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Rosenfeld, A.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Ruske, J. P.

Schroers, J.

J. Schroers, T. Nguyen, S. O’Keeffe, and A. Desai, “Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication,” Mater. Sci. Eng. A 44, 9898–9902 (2007).

Shek, C. H.

W. H. Wang, C. Dong, and C. H. Shek, “Bulk metallic glasses,” Mater. Sci. Eng. Rep. 44(2-3), 45–89 (2004).
[Crossref]

Siegman, A. E.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

Skolski, J. Z. P.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Stoian, R.

C. Li, G. Cheng, J. P. Colombier, N. Faure, S. Reynaud, H. Zhang, D. Jamon, and R. Stoian, “Impact of evolving surface nanoscale topologies in femtosecond laser structuring of Ni-based superalloy CMSX-4,” J. Opt. 18(1), 015402 (2016).
[Crossref]

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

J. P. Colombier, P. Combis, E. Audouard, and R. Stoian, “Guiding heat in laser ablation of metals on ultrafast timescales: an adaptive modeling approachon aluminum,” New J. Phys. 14(1), 013039 (2012).
[Crossref]

Struleva, E. V.

S. I. Ashitkov, P. S. Komarov, A. V. Ovchinnikov, E. V. Struleva, V. V. Zhakhovskii, N. A. Inogamov, and M. B. Agranat, “Ablation and nanostructuring of metals by femtosecond laser pulses,” Quantum Electron. 44(6), 535–539 (2014).
[Crossref]

Tonchev, S.

Tuennermann, A.

van Driel, H. M.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Varlamova, O.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252(13), 4702–4706 (2006).
[Crossref]

Wang, W. H.

W. H. Wang, C. Dong, and C. H. Shek, “Bulk metallic glasses,” Mater. Sci. Eng. Rep. 44(2-3), 45–89 (2004).
[Crossref]

W. H. Wang, “Cristallisation des verres métalliques massifs ZrTiCuNiBe,” Ann. Chim. Sci. Mat. 27, 99–105 (2002).
[Crossref]

Will, M.

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

Young, J. F.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Zhakhovskii, V. V.

S. I. Ashitkov, P. S. Komarov, A. V. Ovchinnikov, E. V. Struleva, V. V. Zhakhovskii, N. A. Inogamov, and M. B. Agranat, “Ablation and nanostructuring of metals by femtosecond laser pulses,” Quantum Electron. 44(6), 535–539 (2014).
[Crossref]

Zhang, H.

C. Li, G. Cheng, J. P. Colombier, N. Faure, S. Reynaud, H. Zhang, D. Jamon, and R. Stoian, “Impact of evolving surface nanoscale topologies in femtosecond laser structuring of Ni-based superalloy CMSX-4,” J. Opt. 18(1), 015402 (2016).
[Crossref]

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

Ann. Chim. Sci. Mat. (1)

W. H. Wang, “Cristallisation des verres métalliques massifs ZrTiCuNiBe,” Ann. Chim. Sci. Mat. 27, 99–105 (2002).
[Crossref]

Appl. Surf. Sci. (1)

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252(13), 4702–4706 (2006).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

J. Laser Appl. (1)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Opt. (1)

C. Li, G. Cheng, J. P. Colombier, N. Faure, S. Reynaud, H. Zhang, D. Jamon, and R. Stoian, “Impact of evolving surface nanoscale topologies in femtosecond laser structuring of Ni-based superalloy CMSX-4,” J. Opt. 18(1), 015402 (2016).
[Crossref]

Jpn. J. Phys. (1)

S. Kikuchi, “Diffraction of cathode rays by mica,” Jpn. J. Phys. 5, 83–96 (1928).

Mater. Sci. Eng. A (1)

J. Schroers, T. Nguyen, S. O’Keeffe, and A. Desai, “Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication,” Mater. Sci. Eng. A 44, 9898–9902 (2007).

Mater. Sci. Eng. Rep. (1)

W. H. Wang, C. Dong, and C. H. Shek, “Bulk metallic glasses,” Mater. Sci. Eng. Rep. 44(2-3), 45–89 (2004).
[Crossref]

New J. Phys. (1)

J. P. Colombier, P. Combis, E. Audouard, and R. Stoian, “Guiding heat in laser ablation of metals on ultrafast timescales: an adaptive modeling approachon aluminum,” New J. Phys. 14(1), 013039 (2012).
[Crossref]

Opt. Express (2)

Phys. Rev. B (5)

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Robert de Saint Vincent and J. P. Delville, “Thermocapillary migration in small-scale temperature gradients: application to optofluidic drop dispensing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(2), 026310 (2012).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Quantum Electron. (1)

S. I. Ashitkov, P. S. Komarov, A. V. Ovchinnikov, E. V. Struleva, V. V. Zhakhovskii, N. A. Inogamov, and M. B. Agranat, “Ablation and nanostructuring of metals by femtosecond laser pulses,” Quantum Electron. 44(6), 535–539 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 SEM images of (a) Zr-BMG surface and (b) Zr-CA surface. The presence of nano-particulates and protuberances is visible for the crystalline alloy surface and is a product of the annealing procedure. Inset: EDX analysis of nano-crystallites.
Fig. 2
Fig. 2 SEM images of BMG (a, c) and CA (b, d) sample surfaces after irradiation with linearly polarized laser pulses at the fluence F = 0.38 J/cm2 (a, b) and F = 0.15 J/cm2 (c, d). Magnified zones for CA topographies are shown in the insets as well as EBSD structural evaluations of BMG surfaces for amorphous and crystalline phases. A low number of pulses was used for the higher fluence value (N = 1, 2, 4) while a higher number of pulses (N = 20, 50, 100) was used for the low fluence case. An example for a higher fluence F = 0.6 J/cm2 at N = 4 is given in the inset in (a). The polarization direction of the laser beam is indicated with a double-headed arrow. LSFL denotes LSFL ripples formed typically perpendicular to the laser polarization direction. HSFL represents high-spatial-frequency ripples parallel to the laser polarization direction in this case. The 2D Fourier-transformation (FT) representations of LIPSS at N = 4 pulses are given for BMG and CA cases in (a,b), indicating the development of LSFL and HSFL and their specific spatial periodicities in the spatial-frequency space (K-space).
Fig. 3
Fig. 3 Energy distribution patterns around a nanoscale topological feature of a ϕ = 100 nm hemisphere on flat Zr-CA surface. (a) Total energy distribution pattern derived from time-averaged E2 with (b) its Fourier transform (FT). (c) Insights into the X-component of energy distribution derived from time-averaged EX2 with (d) its FT. Note that the laser polarization direction is set along the X axis. Identical colorbars are used for (b) and (d). K0 = 2π/λ.
Fig. 4
Fig. 4 Energy distribution patterns for an ensemble of nanoscale topological features of randomly distributed nanoparticles on flat Zr-CA surface. (a) Total energy distribution pattern derived from time-averaged E2 with (b) its Fourier transform (FT). Note that laser polarization direction is along the X axis. K0 = 2π/λ.
Fig. 5
Fig. 5 (a) Time-averaged E2 distribution on the surface (XOY plane) induced by a hemisphere of different diameters: ϕ = 100 nm, ϕ = 200 nm, ϕ = 400 nm, ϕ = 800 nm; (b) Time-averaged E2 distribution along Y = 0 axis induced by a hemisphere with different sections: ϕ = 100 nm, ϕ = 200 nm, ϕ = 400 nm, ϕ = 800 nm. (c) Time-averaged E2 distribution on the XOY plane induced by four hemispheres of ϕ = 100 nm as a function of the number of pulses. Top: a first incident pulse, middle: elongated structures interact with a second pulse, bottom; more elongated ripple in interaction with a forth pulse. The ripple domains are indicated by the pink color. The polarization direction of the incident planewave is along the X axis.
Fig. 6
Fig. 6 Time-averaged E2 distribution for an ensemble of randomly-distributed nanoparticles subject to near-field induced elongation for a number of pulses of (a) N = 1, (b) N = 2, (c) N = 3, (d) N = 4. The corresponding Fourier transformations are respectively given in (e, f, g, h). The polarization direction of the incident planewave is along the X axis. K0 = 2π/λ.

Metrics