Abstract

The multiplexing transmission has always been a focus of attention for communication technology. In this paper, the radiation characteristics of circular microstrip patch antenna was firstly analyzed based on cavity model theory, and then spiral beams carrying orbital angular momentum (OAM) were generated, using elliptical microstrip patch antenna, with a single feed probe instead of a standard circular patch with two feedpoints. Moreover, by combining the proposed elliptic microstrip patch antenna with Universal Software Radio Peripheral (USRP), a wireless OAM transmission system was established and the real-time transmission of text, image and video in a real channel environment was realized. Since the wireless OAM transmission has the advantage of good safety and high spectrum utilization efficiency, this work has theoretical significance and potential application.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization controllable generation of flat superimposed OAM states based on metasurface

Ming Chen, Wenwen Gao, Houquan Liu, Chuanxin Teng, Shijie Deng, Hongchang Deng, and Libo Yuan
Opt. Express 27(15) 20133-20144 (2019)

Performance analysis of an OAM multiplexing-based MIMO FSO system over atmospheric turbulence using space-time coding with channel estimation

Yan Zhang, Ping Wang, Lixin Guo, Wei Wang, and Hongxin Tian
Opt. Express 25(17) 19995-20011 (2017)

Performance analysis of a LDPC coded OAM-based UCA FSO system exploring linear equalization with channel estimation over atmospheric turbulence

Yan Zhang, Ping Wang, Tao Liu, Lixin Guo, Yutao Li, and Wei Wang
Opt. Express 26(17) 22182-22196 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
    [Crossref]
  2. F. E. Mahmouli and S. D. Walker, “4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel,” IEEE Wirel. Commun. Lett. 2(2), 223–226 (2013).
    [Crossref]
  3. Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
    [Crossref] [PubMed]
  4. A. Tennant, E. Chatziantoniou, B. Allen, and Q. Bai, “Wireless data encoding and decoding using OAM modes,” Electron. Lett. 50(3), 232–233 (2014).
    [Crossref]
  5. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).
  6. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  7. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  8. O. Edfors and A. J. Johansson, “Is orbital angular momentum (OAM) based radio communication an unexploited area?” IEEE Trans. Antenn. Propag. 60(2), 1126–1131 (2012).
    [Crossref]
  9. M. Andersson, E. Berglind, and G. Björk, “Orbital angular momentum modes do not increase the channel capacity in communication links,” New J. Phys. 17(4), 043040 (2015).
    [Crossref]
  10. E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
    [Crossref]
  11. S. Zheng, X. Hui, J. Zhu, H. Chi, X. Jin, S. Yu, and X. Zhang, “Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture,” Opt. Express 23(9), 12251–12257 (2015).
    [Crossref] [PubMed]
  12. E. Berglind and G. Bjork, “Humblet’s Decomposition of the Electromagnetic Angular Moment in Metallic Waveguides,” IEEE Trans. Microw. Theory Tech. 62(4), 779–788 (2014).
    [Crossref]
  13. R. Gandhiraj and K. P. Soman, “Modern analog and digital communication systems development using GNU Radio with USRP,” Telecomm. Syst. 56(3), 367–381 (2014).
    [Crossref]
  14. A. G. Derneryd, “Analysis of the microstrip disk antenna element,” IEEE Trans. Antenn. Propag. 27(5), 660–664 (1979).
    [Crossref]
  15. J. Huang, “Circularly Polarized Conical Patterns from Circular Microstrip Antennas,” IEEE Trans. Antenn. Propag. 32(9), 991–994 (1984).
    [Crossref]
  16. M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano, “Circular polarized patch antenna generating orbital angular momentum,” Prog. Electromagnetics Res. 148, 23–30 (2014).
    [Crossref]
  17. Y. Zhang, J. J. Yang, and M. Huang, “A radio frequency OAM antenna based on planar circular loop microstrip,” China patent, 201520314145.9 (2015).
  18. J. J. Chen, J. J. Yang, M. Huang, and F. C. Mao, “A OAM microstrip antenna and wireless OAM transmission system,” China patent, 201520653345.7 (2015).

2015 (4)

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

M. Andersson, E. Berglind, and G. Björk, “Orbital angular momentum modes do not increase the channel capacity in communication links,” New J. Phys. 17(4), 043040 (2015).
[Crossref]

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

S. Zheng, X. Hui, J. Zhu, H. Chi, X. Jin, S. Yu, and X. Zhang, “Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture,” Opt. Express 23(9), 12251–12257 (2015).
[Crossref] [PubMed]

2014 (5)

M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano, “Circular polarized patch antenna generating orbital angular momentum,” Prog. Electromagnetics Res. 148, 23–30 (2014).
[Crossref]

E. Berglind and G. Bjork, “Humblet’s Decomposition of the Electromagnetic Angular Moment in Metallic Waveguides,” IEEE Trans. Microw. Theory Tech. 62(4), 779–788 (2014).
[Crossref]

R. Gandhiraj and K. P. Soman, “Modern analog and digital communication systems development using GNU Radio with USRP,” Telecomm. Syst. 56(3), 367–381 (2014).
[Crossref]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

A. Tennant, E. Chatziantoniou, B. Allen, and Q. Bai, “Wireless data encoding and decoding using OAM modes,” Electron. Lett. 50(3), 232–233 (2014).
[Crossref]

2013 (2)

F. E. Mahmouli and S. D. Walker, “4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel,” IEEE Wirel. Commun. Lett. 2(2), 223–226 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

2012 (3)

O. Edfors and A. J. Johansson, “Is orbital angular momentum (OAM) based radio communication an unexploited area?” IEEE Trans. Antenn. Propag. 60(2), 1126–1131 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

1984 (1)

J. Huang, “Circularly Polarized Conical Patterns from Circular Microstrip Antennas,” IEEE Trans. Antenn. Propag. 32(9), 991–994 (1984).
[Crossref]

1979 (1)

A. G. Derneryd, “Analysis of the microstrip disk antenna element,” IEEE Trans. Antenn. Propag. 27(5), 660–664 (1979).
[Crossref]

Ahmed, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Allen, B.

A. Tennant, E. Chatziantoniou, B. Allen, and Q. Bai, “Wireless data encoding and decoding using OAM modes,” Electron. Lett. 50(3), 232–233 (2014).
[Crossref]

Andersson, M.

M. Andersson, E. Berglind, and G. Björk, “Orbital angular momentum modes do not increase the channel capacity in communication links,” New J. Phys. 17(4), 043040 (2015).
[Crossref]

Ashrafi, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Ashrafi, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Bai, Q.

A. Tennant, E. Chatziantoniou, B. Allen, and Q. Bai, “Wireless data encoding and decoding using OAM modes,” Electron. Lett. 50(3), 232–233 (2014).
[Crossref]

Bao, C.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Barbuto, M.

M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano, “Circular polarized patch antenna generating orbital angular momentum,” Prog. Electromagnetics Res. 148, 23–30 (2014).
[Crossref]

Berglind, E.

M. Andersson, E. Berglind, and G. Björk, “Orbital angular momentum modes do not increase the channel capacity in communication links,” New J. Phys. 17(4), 043040 (2015).
[Crossref]

E. Berglind and G. Bjork, “Humblet’s Decomposition of the Electromagnetic Angular Moment in Metallic Waveguides,” IEEE Trans. Microw. Theory Tech. 62(4), 779–788 (2014).
[Crossref]

Bianchini, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Bilotti, F.

M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano, “Circular polarized patch antenna generating orbital angular momentum,” Prog. Electromagnetics Res. 148, 23–30 (2014).
[Crossref]

Bjork, G.

E. Berglind and G. Bjork, “Humblet’s Decomposition of the Electromagnetic Angular Moment in Metallic Waveguides,” IEEE Trans. Microw. Theory Tech. 62(4), 779–788 (2014).
[Crossref]

Björk, G.

M. Andersson, E. Berglind, and G. Björk, “Orbital angular momentum modes do not increase the channel capacity in communication links,” New J. Phys. 17(4), 043040 (2015).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Cao, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Chatziantoniou, E.

A. Tennant, E. Chatziantoniou, B. Allen, and Q. Bai, “Wireless data encoding and decoding using OAM modes,” Electron. Lett. 50(3), 232–233 (2014).
[Crossref]

Chi, H.

Derneryd, A. G.

A. G. Derneryd, “Analysis of the microstrip disk antenna element,” IEEE Trans. Antenn. Propag. 27(5), 660–664 (1979).
[Crossref]

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Edfors, O.

O. Edfors and A. J. Johansson, “Is orbital angular momentum (OAM) based radio communication an unexploited area?” IEEE Trans. Antenn. Propag. 60(2), 1126–1131 (2012).
[Crossref]

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Gandhiraj, R.

R. Gandhiraj and K. P. Soman, “Modern analog and digital communication systems development using GNU Radio with USRP,” Telecomm. Syst. 56(3), 367–381 (2014).
[Crossref]

Huang, H.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Huang, J.

J. Huang, “Circularly Polarized Conical Patterns from Circular Microstrip Antennas,” IEEE Trans. Antenn. Propag. 32(9), 991–994 (1984).
[Crossref]

Hui, X.

Jin, X.

Johansson, A. J.

O. Edfors and A. J. Johansson, “Is orbital angular momentum (OAM) based radio communication an unexploited area?” IEEE Trans. Antenn. Propag. 60(2), 1126–1131 (2012).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Lavery, M. P. J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Li, L.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Mahmouli, F. E.

F. E. Mahmouli and S. D. Walker, “4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel,” IEEE Wirel. Commun. Lett. 2(2), 223–226 (2013).
[Crossref]

Mari, E.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Molisch, A. F.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Oldoni, M.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

Padgett, M. J.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Parisi, G.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

Ramachandran, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ravanelli, R. A.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

Ren, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Romanato, F.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Soman, K. P.

R. Gandhiraj and K. P. Soman, “Modern analog and digital communication systems development using GNU Radio with USRP,” Telecomm. Syst. 56(3), 367–381 (2014).
[Crossref]

Spinello, F.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

Sponselli, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Tamburini, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Tennant, A.

A. Tennant, E. Chatziantoniou, B. Allen, and Q. Bai, “Wireless data encoding and decoding using OAM modes,” Electron. Lett. 50(3), 232–233 (2014).
[Crossref]

Thide, B.

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Toscano, A.

M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano, “Circular polarized patch antenna generating orbital angular momentum,” Prog. Electromagnetics Res. 148, 23–30 (2014).
[Crossref]

Trotta, F.

M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano, “Circular polarized patch antenna generating orbital angular momentum,” Prog. Electromagnetics Res. 148, 23–30 (2014).
[Crossref]

Tur, M.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Walker, S. D.

F. E. Mahmouli and S. D. Walker, “4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel,” IEEE Wirel. Commun. Lett. 2(2), 223–226 (2013).
[Crossref]

Wang, J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Willner, A. E.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Xie, G.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Yan, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yu, S.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zhang, X.

Zhao, Z.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Zheng, S.

Zhu, J.

Adv. Opt. Photonics (1)

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beam,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Electron. Lett. (1)

A. Tennant, E. Chatziantoniou, B. Allen, and Q. Bai, “Wireless data encoding and decoding using OAM modes,” Electron. Lett. 50(3), 232–233 (2014).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

A. G. Derneryd, “Analysis of the microstrip disk antenna element,” IEEE Trans. Antenn. Propag. 27(5), 660–664 (1979).
[Crossref]

J. Huang, “Circularly Polarized Conical Patterns from Circular Microstrip Antennas,” IEEE Trans. Antenn. Propag. 32(9), 991–994 (1984).
[Crossref]

O. Edfors and A. J. Johansson, “Is orbital angular momentum (OAM) based radio communication an unexploited area?” IEEE Trans. Antenn. Propag. 60(2), 1126–1131 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

E. Berglind and G. Bjork, “Humblet’s Decomposition of the Electromagnetic Angular Moment in Metallic Waveguides,” IEEE Trans. Microw. Theory Tech. 62(4), 779–788 (2014).
[Crossref]

IEEE Wirel. Commun. Lett. (1)

F. E. Mahmouli and S. D. Walker, “4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel,” IEEE Wirel. Commun. Lett. 2(2), 223–226 (2013).
[Crossref]

Nat. Commun. (1)

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

New J. Phys. (2)

M. Andersson, E. Berglind, and G. Björk, “Orbital angular momentum modes do not increase the channel capacity in communication links,” New J. Phys. 17(4), 043040 (2015).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Opt. Express (1)

Prog. Electromagnetics Res. (1)

M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano, “Circular polarized patch antenna generating orbital angular momentum,” Prog. Electromagnetics Res. 148, 23–30 (2014).
[Crossref]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Telecomm. Syst. (1)

R. Gandhiraj and K. P. Soman, “Modern analog and digital communication systems development using GNU Radio with USRP,” Telecomm. Syst. 56(3), 367–381 (2014).
[Crossref]

Other (2)

Y. Zhang, J. J. Yang, and M. Huang, “A radio frequency OAM antenna based on planar circular loop microstrip,” China patent, 201520314145.9 (2015).

J. J. Chen, J. J. Yang, M. Huang, and F. C. Mao, “A OAM microstrip antenna and wireless OAM transmission system,” China patent, 201520653345.7 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The transmission system.
Fig. 2
Fig. 2 Electric field distributions under the patch. (a)TM21. (b)TM31. (c)TM41.
Fig. 3
Fig. 3 Phase distribution of x and y components of the radiated eld in the case of modes (a) 2. (b) 3. (c) 4.
Fig. 4
Fig. 4 Numerical simulation. (a) A schematic view of the circular patch antenna with two feed-points. (b) Electric field distribution. (c) Far-field phase distribution.
Fig. 5
Fig. 5 Schematic diagram of the proposed antenna.
Fig. 6
Fig. 6 Simulation results of reflection coefficients.
Fig. 7
Fig. 7 Simulation results. (a) electric field distribution. (b) far-field phase distribution. (c) 3D radiation pattern.
Fig. 8
Fig. 8 Simulated S21 at different transmission distance.
Fig. 9
Fig. 9 The wireless OAM transmission system.
Fig. 10
Fig. 10 Comparison between a coin and the OAM antenna.
Fig. 11
Fig. 11 Experiment of picture transmission (a) the transmitted picture. (b) the received picture.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f n m = X n m C ( 2 π a e ε r ) 1
E x = j n e j k 0 r 2 r a h k 0 J n ( a k 0 ε r ) [ e j ( n 1 ) φ J n 1 ( γ ) e j ( n + 1 ) φ J n + 1 ( γ ) ] cos [ θ ] = A e j ( n 1 ) φ B e j ( n + 1 ) φ
E y = j n + 1 e j k 0 r 2 r a h k 0 J n ( a k 0 ε r ) [ e j ( n 1 ) φ J n 1 ( γ ) + e j ( n + 1 ) φ J n + 1 ( γ ) ] cos [ θ ] = j [ A e j ( n 1 ) φ + B e j ( n + 1 ) φ ]

Metrics