J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).

[Crossref]

R. Landig, F. Brennecke, R. Mottl, T. Donner, and T. Esslinger, “Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition,” Nat. Commun. 6, 7046 (2015).

[Crossref]
[PubMed]

A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and B. L. Lev, “An adjustable-length cavity and Bose–Einstein condensate apparatus for multimode cavity QED,” New J. Phys. 17, 043012 (2015).

[Crossref]

M. Buchhold, P. Strack, S. Sachdev, and S. Diehl, “Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and experimental signatures,” Phys. Rev. A 87, 063622 (2013).

[Crossref]

E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities,” Phys. Rev. A 87, 023831 (2013).

[Crossref]

H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys. 85, 553–601 (2013).

[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Exploring models of associative memory via cavity quantum electrodynamics,” Philosophical Magazine 92, 353–361 (2012).

[Crossref]

M. Müller, P. Strack, and S. Sachdev, “Quantum charge glasses of itinerant fermions with cavity-mediated long-range interactions,” Phys. Rev. A 86, 023604 (2012).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Frustration and Glassiness in Spin Models with Cavity-Mediated Interactions,” Phys. Rev. Lett. 107, 277201 (2011).

[Crossref]

P. Strack and S. Sachdev, “Dicke Quantum Spin Glass of Atoms and Photons,” Phys. Rev. Lett. 107, 277202 (2011).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration,” Phys. Rev. A 82, 043612 (2010).

[Crossref]

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Emergent crystallinity and frustration with Bose–Einstein condensates in multimode cavities,” Nat Phys 5, 845–850 (2009).

[Crossref]

D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, “Prospects for a Millihertz-Linewidth Laser,” Phys. Rev. Lett. 102, 163601 (2009).

[Crossref]
[PubMed]

P. Maunz, T. Puppe, T. Fischer, P. W. H. Pinkse, and G. Rempe, “Emission pattern of an atomic dipole in a high-finesse optical cavity,” Opt. Lett. 28, 46–48 (2003).

[Crossref]
[PubMed]

A. T. Black, H. W. Chan, and V. Vuletić, “Observation of Collective Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering,” Phys. Rev. Lett. 91, 203001 (2003).

[Crossref]
[PubMed]

H. W. Chan, A. T. Black, and V. Vuletić, “Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity,” Phys. Rev. Lett. 90, 063003 (2003).

[Crossref]
[PubMed]

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).

[Crossref]
[PubMed]

V. Vuletić, H. W. Chan, and A. T. Black, “Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering,” Phys. Rev. A 64, 033405 (2001).

[Crossref]

M. Gangl, P. Horak, and H. Ritsch, “Cooling neutral particles in multimode cavities without spontaneous emission,” Journal of Modern Optics 47, 2741–2753 (2000).

[Crossref]

A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and B. L. Lev, “An adjustable-length cavity and Bose–Einstein condensate apparatus for multimode cavity QED,” New J. Phys. 17, 043012 (2015).

[Crossref]

D. Stuart, O. Barter, and A. Kuhn, “Fast algorithms for generating binary holograms,” arXiv:1409.1841 (2014).

A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and B. L. Lev, “An adjustable-length cavity and Bose–Einstein condensate apparatus for multimode cavity QED,” New J. Phys. 17, 043012 (2015).

[Crossref]

H. W. Chan, A. T. Black, and V. Vuletić, “Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity,” Phys. Rev. Lett. 90, 063003 (2003).

[Crossref]
[PubMed]

A. T. Black, H. W. Chan, and V. Vuletić, “Observation of Collective Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering,” Phys. Rev. Lett. 91, 203001 (2003).

[Crossref]
[PubMed]

V. Vuletić, H. W. Chan, and A. T. Black, “Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering,” Phys. Rev. A 64, 033405 (2001).

[Crossref]

R. Landig, F. Brennecke, R. Mottl, T. Donner, and T. Esslinger, “Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition,” Nat. Commun. 6, 7046 (2015).

[Crossref]
[PubMed]

H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys. 85, 553–601 (2013).

[Crossref]

M. Buchhold, P. Strack, S. Sachdev, and S. Diehl, “Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and experimental signatures,” Phys. Rev. A 87, 063622 (2013).

[Crossref]

D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, “Prospects for a Millihertz-Linewidth Laser,” Phys. Rev. Lett. 102, 163601 (2009).

[Crossref]
[PubMed]

A. T. Black, H. W. Chan, and V. Vuletić, “Observation of Collective Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering,” Phys. Rev. Lett. 91, 203001 (2003).

[Crossref]
[PubMed]

H. W. Chan, A. T. Black, and V. Vuletić, “Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity,” Phys. Rev. Lett. 90, 063003 (2003).

[Crossref]
[PubMed]

V. Vuletić, H. W. Chan, and A. T. Black, “Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering,” Phys. Rev. A 64, 033405 (2001).

[Crossref]

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).

[Crossref]

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).

[Crossref]

M. Buchhold, P. Strack, S. Sachdev, and S. Diehl, “Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and experimental signatures,” Phys. Rev. A 87, 063622 (2013).

[Crossref]

E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities,” Phys. Rev. A 87, 023831 (2013).

[Crossref]

H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys. 85, 553–601 (2013).

[Crossref]

R. Landig, F. Brennecke, R. Mottl, T. Donner, and T. Esslinger, “Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition,” Nat. Commun. 6, 7046 (2015).

[Crossref]
[PubMed]

R. Landig, F. Brennecke, R. Mottl, T. Donner, and T. Esslinger, “Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition,” Nat. Commun. 6, 7046 (2015).

[Crossref]
[PubMed]

H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys. 85, 553–601 (2013).

[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).

[Crossref]

P. Maunz, T. Puppe, T. Fischer, P. W. H. Pinkse, and G. Rempe, “Emission pattern of an atomic dipole in a high-finesse optical cavity,” Opt. Lett. 28, 46–48 (2003).

[Crossref]
[PubMed]

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).

[Crossref]
[PubMed]

M. Gangl, P. Horak, and H. Ritsch, “Cooling neutral particles in multimode cavities without spontaneous emission,” Journal of Modern Optics 47, 2741–2753 (2000).

[Crossref]

J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Exploring models of associative memory via cavity quantum electrodynamics,” Philosophical Magazine 92, 353–361 (2012).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Frustration and Glassiness in Spin Models with Cavity-Mediated Interactions,” Phys. Rev. Lett. 107, 277201 (2011).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration,” Phys. Rev. A 82, 043612 (2010).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Emergent crystallinity and frustration with Bose–Einstein condensates in multimode cavities,” Nat Phys 5, 845–850 (2009).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Exploring models of associative memory via cavity quantum electrodynamics,” Philosophical Magazine 92, 353–361 (2012).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Frustration and Glassiness in Spin Models with Cavity-Mediated Interactions,” Phys. Rev. Lett. 107, 277201 (2011).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration,” Phys. Rev. A 82, 043612 (2010).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Emergent crystallinity and frustration with Bose–Einstein condensates in multimode cavities,” Nat Phys 5, 845–850 (2009).

[Crossref]

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv:1511.07381 (2015).

J. Y. Vinet and P. Hello, “Matrix Simulation of Optical Cavities,” Journal of Modern Optics 40, 1981–1993 (2007).

[Crossref]

D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, “Prospects for a Millihertz-Linewidth Laser,” Phys. Rev. Lett. 102, 163601 (2009).

[Crossref]
[PubMed]

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).

[Crossref]
[PubMed]

M. Gangl, P. Horak, and H. Ritsch, “Cooling neutral particles in multimode cavities without spontaneous emission,” Journal of Modern Optics 47, 2741–2753 (2000).

[Crossref]

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and B. L. Lev, “An adjustable-length cavity and Bose–Einstein condensate apparatus for multimode cavity QED,” New J. Phys. 17, 043012 (2015).

[Crossref]

D. Stuart, O. Barter, and A. Kuhn, “Fast algorithms for generating binary holograms,” arXiv:1409.1841 (2014).

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).

[Crossref]

R. Landig, F. Brennecke, R. Mottl, T. Donner, and T. Esslinger, “Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition,” Nat. Commun. 6, 7046 (2015).

[Crossref]
[PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).

[Crossref]

A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and B. L. Lev, “An adjustable-length cavity and Bose–Einstein condensate apparatus for multimode cavity QED,” New J. Phys. 17, 043012 (2015).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Exploring models of associative memory via cavity quantum electrodynamics,” Philosophical Magazine 92, 353–361 (2012).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Frustration and Glassiness in Spin Models with Cavity-Mediated Interactions,” Phys. Rev. Lett. 107, 277201 (2011).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration,” Phys. Rev. A 82, 043612 (2010).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Emergent crystallinity and frustration with Bose–Einstein condensates in multimode cavities,” Nat Phys 5, 845–850 (2009).

[Crossref]

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities,” Phys. Rev. A 87, 023831 (2013).

[Crossref]

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

P. Maunz, T. Puppe, T. Fischer, P. W. H. Pinkse, and G. Rempe, “Emission pattern of an atomic dipole in a high-finesse optical cavity,” Opt. Lett. 28, 46–48 (2003).

[Crossref]
[PubMed]

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).

[Crossref]
[PubMed]

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).

[Crossref]

D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, “Prospects for a Millihertz-Linewidth Laser,” Phys. Rev. Lett. 102, 163601 (2009).

[Crossref]
[PubMed]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-VerlagBerlin Heidelberg, 2008).

S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22, 17999 (2014).

[Crossref]
[PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).

[Crossref]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).

[Crossref]
[PubMed]

R. Landig, F. Brennecke, R. Mottl, T. Donner, and T. Esslinger, “Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition,” Nat. Commun. 6, 7046 (2015).

[Crossref]
[PubMed]

M. Müller, P. Strack, and S. Sachdev, “Quantum charge glasses of itinerant fermions with cavity-mediated long-range interactions,” Phys. Rev. A 86, 023604 (2012).

[Crossref]

J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).

[Crossref]

A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and B. L. Lev, “An adjustable-length cavity and Bose–Einstein condensate apparatus for multimode cavity QED,” New J. Phys. 17, 043012 (2015).

[Crossref]

P. Maunz, T. Puppe, T. Fischer, P. W. H. Pinkse, and G. Rempe, “Emission pattern of an atomic dipole in a high-finesse optical cavity,” Opt. Lett. 28, 46–48 (2003).

[Crossref]
[PubMed]

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).

[Crossref]
[PubMed]

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

P. Maunz, T. Puppe, T. Fischer, P. W. H. Pinkse, and G. Rempe, “Emission pattern of an atomic dipole in a high-finesse optical cavity,” Opt. Lett. 28, 46–48 (2003).

[Crossref]
[PubMed]

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).

[Crossref]
[PubMed]

P. Maunz, T. Puppe, T. Fischer, P. W. H. Pinkse, and G. Rempe, “Emission pattern of an atomic dipole in a high-finesse optical cavity,” Opt. Lett. 28, 46–48 (2003).

[Crossref]
[PubMed]

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).

[Crossref]
[PubMed]

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys. 85, 553–601 (2013).

[Crossref]

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).

[Crossref]
[PubMed]

M. Gangl, P. Horak, and H. Ritsch, “Cooling neutral particles in multimode cavities without spontaneous emission,” Journal of Modern Optics 47, 2741–2753 (2000).

[Crossref]

J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).

[Crossref]

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv:1511.07381 (2015).

M. Buchhold, P. Strack, S. Sachdev, and S. Diehl, “Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and experimental signatures,” Phys. Rev. A 87, 063622 (2013).

[Crossref]

E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities,” Phys. Rev. A 87, 023831 (2013).

[Crossref]

M. Müller, P. Strack, and S. Sachdev, “Quantum charge glasses of itinerant fermions with cavity-mediated long-range interactions,” Phys. Rev. A 86, 023604 (2012).

[Crossref]

P. Strack and S. Sachdev, “Dicke Quantum Spin Glass of Atoms and Photons,” Phys. Rev. Lett. 107, 277202 (2011).

[Crossref]

J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).

[Crossref]

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv:1511.07381 (2015).

A. E. Siegman, Lasers (University Science Books, 1986).

J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).

[Crossref]

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv:1511.07381 (2015).

A. Sommer and J. Simon, “Engineering photonic Floquet Hamiltonians through Fabry–Pérot resonators,” New J. Phys. in press (2016).

[Crossref]

J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).

[Crossref]

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv:1511.07381 (2015).

A. Sommer and J. Simon, “Engineering photonic Floquet Hamiltonians through Fabry–Pérot resonators,” New J. Phys. in press (2016).

[Crossref]

E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities,” Phys. Rev. A 87, 023831 (2013).

[Crossref]

M. Buchhold, P. Strack, S. Sachdev, and S. Diehl, “Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and experimental signatures,” Phys. Rev. A 87, 063622 (2013).

[Crossref]

M. Müller, P. Strack, and S. Sachdev, “Quantum charge glasses of itinerant fermions with cavity-mediated long-range interactions,” Phys. Rev. A 86, 023604 (2012).

[Crossref]

P. Strack and S. Sachdev, “Dicke Quantum Spin Glass of Atoms and Photons,” Phys. Rev. Lett. 107, 277202 (2011).

[Crossref]

D. Stuart, O. Barter, and A. Kuhn, “Fast algorithms for generating binary holograms,” arXiv:1409.1841 (2014).

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities,” Phys. Rev. A 87, 023831 (2013).

[Crossref]

J. Y. Vinet and P. Hello, “Matrix Simulation of Optical Cavities,” Journal of Modern Optics 40, 1981–1993 (2007).

[Crossref]

H. W. Chan, A. T. Black, and V. Vuletić, “Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity,” Phys. Rev. Lett. 90, 063003 (2003).

[Crossref]
[PubMed]

A. T. Black, H. W. Chan, and V. Vuletić, “Observation of Collective Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering,” Phys. Rev. Lett. 91, 203001 (2003).

[Crossref]
[PubMed]

V. Vuletić, H. W. Chan, and A. T. Black, “Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering,” Phys. Rev. A 64, 033405 (2001).

[Crossref]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-VerlagBerlin Heidelberg, 2008).

D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, “Prospects for a Millihertz-Linewidth Laser,” Phys. Rev. Lett. 102, 163601 (2009).

[Crossref]
[PubMed]

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

P. P. J. Zupancic, “Dynamic Holography and Beamshaping using Digital Micromirror Devices,” Master’s thesis, Ludwig-Maximilians-Universität, Munich (2013).

J. Y. Vinet and P. Hello, “Matrix Simulation of Optical Cavities,” Journal of Modern Optics 40, 1981–1993 (2007).

[Crossref]

M. Gangl, P. Horak, and H. Ritsch, “Cooling neutral particles in multimode cavities without spontaneous emission,” Journal of Modern Optics 47, 2741–2753 (2000).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Emergent crystallinity and frustration with Bose–Einstein condensates in multimode cavities,” Nat Phys 5, 845–850 (2009).

[Crossref]

R. Landig, F. Brennecke, R. Mottl, T. Donner, and T. Esslinger, “Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition,” Nat. Commun. 6, 7046 (2015).

[Crossref]
[PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).

[Crossref]

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).

[Crossref]

A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and B. L. Lev, “An adjustable-length cavity and Bose–Einstein condensate apparatus for multimode cavity QED,” New J. Phys. 17, 043012 (2015).

[Crossref]

P. Maunz, T. Puppe, T. Fischer, P. W. H. Pinkse, and G. Rempe, “Emission pattern of an atomic dipole in a high-finesse optical cavity,” Opt. Lett. 28, 46–48 (2003).

[Crossref]
[PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).

[Crossref]
[PubMed]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Exploring models of associative memory via cavity quantum electrodynamics,” Philosophical Magazine 92, 353–361 (2012).

[Crossref]

M. Müller, P. Strack, and S. Sachdev, “Quantum charge glasses of itinerant fermions with cavity-mediated long-range interactions,” Phys. Rev. A 86, 023604 (2012).

[Crossref]

M. Buchhold, P. Strack, S. Sachdev, and S. Diehl, “Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and experimental signatures,” Phys. Rev. A 87, 063622 (2013).

[Crossref]

E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities,” Phys. Rev. A 87, 023831 (2013).

[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration,” Phys. Rev. A 82, 043612 (2010).

[Crossref]

J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).

[Crossref]

V. Vuletić, H. W. Chan, and A. T. Black, “Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering,” Phys. Rev. A 64, 033405 (2001).

[Crossref]

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).

[Crossref]
[PubMed]

D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, “Prospects for a Millihertz-Linewidth Laser,” Phys. Rev. Lett. 102, 163601 (2009).

[Crossref]
[PubMed]

A. T. Black, H. W. Chan, and V. Vuletić, “Observation of Collective Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering,” Phys. Rev. Lett. 91, 203001 (2003).

[Crossref]
[PubMed]

H. W. Chan, A. T. Black, and V. Vuletić, “Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity,” Phys. Rev. Lett. 90, 063003 (2003).

[Crossref]
[PubMed]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Frustration and Glassiness in Spin Models with Cavity-Mediated Interactions,” Phys. Rev. Lett. 107, 277201 (2011).

[Crossref]

P. Strack and S. Sachdev, “Dicke Quantum Spin Glass of Atoms and Photons,” Phys. Rev. Lett. 107, 277202 (2011).

[Crossref]

H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys. 85, 553–601 (2013).

[Crossref]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-VerlagBerlin Heidelberg, 2008).

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

D. Stuart, O. Barter, and A. Kuhn, “Fast algorithms for generating binary holograms,” arXiv:1409.1841 (2014).

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv:1511.07381 (2015).

A. Sommer and J. Simon, “Engineering photonic Floquet Hamiltonians through Fabry–Pérot resonators,” New J. Phys. in press (2016).

[Crossref]

A. E. Siegman, Lasers (University Science Books, 1986).

P. P. J. Zupancic, “Dynamic Holography and Beamshaping using Digital Micromirror Devices,” Master’s thesis, Ludwig-Maximilians-Universität, Munich (2013).