Abstract

Digital micromirror devices (DMD) provide a robust platform with which to implement digital holography, in principle providing the means to rapidly generate propagating transverse electromagnetic fields with arbitrary mode profiles at visible and IR wavelengths. We use a DMD to probe a Fabry-Pérot cavity in single-mode and near-degenerate confocal configurations. Pumping arbitrary modes of the cavity is possible with excellent specificity by virtue of the spatial overlap between the incident light field and the cavity mode.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
360-degree tabletop electronic holographic display

Yongjun Lim, Keehoon Hong, Hwi Kim, Hyun-Eui Kim, Eun-Young Chang, Soohyun Lee, Taeone Kim, Jeho Nam, Hyon-Gon Choo, Jinwoong Kim, and Joonku Hahn
Opt. Express 24(22) 24999-25009 (2016)

High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device

Kevin J. Mitchell, Sergey Turtaev, Miles J. Padgett, Tomáš Čižmár, and David B. Phillips
Opt. Express 24(25) 29269-29282 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-VerlagBerlin Heidelberg, 2008).
  2. D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, “Prospects for a Millihertz-Linewidth Laser,” Phys. Rev. Lett. 102, 163601 (2009).
    [Crossref] [PubMed]
  3. H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys. 85, 553–601 (2013).
    [Crossref]
  4. M. Gangl, P. Horak, and H. Ritsch, “Cooling neutral particles in multimode cavities without spontaneous emission,” Journal of Modern Optics 47, 2741–2753 (2000).
    [Crossref]
  5. V. Vuletić, H. W. Chan, and A. T. Black, “Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering,” Phys. Rev. A 64, 033405 (2001).
    [Crossref]
  6. P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).
    [Crossref] [PubMed]
  7. P. Maunz, T. Puppe, T. Fischer, P. W. H. Pinkse, and G. Rempe, “Emission pattern of an atomic dipole in a high-finesse optical cavity,” Opt. Lett. 28, 46–48 (2003).
    [Crossref] [PubMed]
  8. A. T. Black, H. W. Chan, and V. Vuletić, “Observation of Collective Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering,” Phys. Rev. Lett. 91, 203001 (2003).
    [Crossref] [PubMed]
  9. H. W. Chan, A. T. Black, and V. Vuletić, “Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity,” Phys. Rev. Lett. 90, 063003 (2003).
    [Crossref] [PubMed]
  10. S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Emergent crystallinity and frustration with Bose–Einstein condensates in multimode cavities,” Nat Phys 5, 845–850 (2009).
    [Crossref]
  11. S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration,” Phys. Rev. A 82, 043612 (2010).
    [Crossref]
  12. S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Frustration and Glassiness in Spin Models with Cavity-Mediated Interactions,” Phys. Rev. Lett. 107, 277201 (2011).
    [Crossref]
  13. P. Strack and S. Sachdev, “Dicke Quantum Spin Glass of Atoms and Photons,” Phys. Rev. Lett. 107, 277202 (2011).
    [Crossref]
  14. S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Exploring models of associative memory via cavity quantum electrodynamics,” Philosophical Magazine 92, 353–361 (2012).
    [Crossref]
  15. M. Müller, P. Strack, and S. Sachdev, “Quantum charge glasses of itinerant fermions with cavity-mediated long-range interactions,” Phys. Rev. A 86, 023604 (2012).
    [Crossref]
  16. M. Buchhold, P. Strack, S. Sachdev, and S. Diehl, “Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and experimental signatures,” Phys. Rev. A 87, 063622 (2013).
    [Crossref]
  17. E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities,” Phys. Rev. A 87, 023831 (2013).
    [Crossref]
  18. A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and B. L. Lev, “An adjustable-length cavity and Bose–Einstein condensate apparatus for multimode cavity QED,” New J. Phys. 17, 043012 (2015).
    [Crossref]
  19. N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv:1511.07381 (2015).
  20. A. Sommer and J. Simon, “Engineering photonic Floquet Hamiltonians through Fabry–Pérot resonators,” New J. Phys. in press (2016).
    [Crossref]
  21. J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).
    [Crossref]
  22. A. E. Siegman, Lasers (University Science Books, 1986).
  23. R. Landig, F. Brennecke, R. Mottl, T. Donner, and T. Esslinger, “Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition,” Nat. Commun. 6, 7046 (2015).
    [Crossref] [PubMed]
  24. P. P. J. Zupancic, “Dynamic Holography and Beamshaping using Digital Micromirror Devices,” Master’s thesis, Ludwig-Maximilians-Universität, Munich (2013).
  25. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).
    [Crossref]
  26. S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22, 17999 (2014).
    [Crossref] [PubMed]
  27. P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).
  28. W.-H. Lee, “Binary Synthetic Holograms,” Appl. Opt. 13, 1677 (1974).
    [Crossref] [PubMed]
  29. D. Stuart, O. Barter, and A. Kuhn, “Fast algorithms for generating binary holograms,” arXiv:1409.1841 (2014).
  30. T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
    [Crossref]
  31. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref] [PubMed]
  32. J. Y. Vinet and P. Hello, “Matrix Simulation of Optical Cavities,” Journal of Modern Optics 40, 1981–1993 (2007).
    [Crossref]

2016 (1)

J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).
[Crossref]

2015 (2)

R. Landig, F. Brennecke, R. Mottl, T. Donner, and T. Esslinger, “Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition,” Nat. Commun. 6, 7046 (2015).
[Crossref] [PubMed]

A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and B. L. Lev, “An adjustable-length cavity and Bose–Einstein condensate apparatus for multimode cavity QED,” New J. Phys. 17, 043012 (2015).
[Crossref]

2014 (1)

2013 (3)

M. Buchhold, P. Strack, S. Sachdev, and S. Diehl, “Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and experimental signatures,” Phys. Rev. A 87, 063622 (2013).
[Crossref]

E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities,” Phys. Rev. A 87, 023831 (2013).
[Crossref]

H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys. 85, 553–601 (2013).
[Crossref]

2012 (3)

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Exploring models of associative memory via cavity quantum electrodynamics,” Philosophical Magazine 92, 353–361 (2012).
[Crossref]

M. Müller, P. Strack, and S. Sachdev, “Quantum charge glasses of itinerant fermions with cavity-mediated long-range interactions,” Phys. Rev. A 86, 023604 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).
[Crossref]

2011 (2)

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Frustration and Glassiness in Spin Models with Cavity-Mediated Interactions,” Phys. Rev. Lett. 107, 277201 (2011).
[Crossref]

P. Strack and S. Sachdev, “Dicke Quantum Spin Glass of Atoms and Photons,” Phys. Rev. Lett. 107, 277202 (2011).
[Crossref]

2010 (2)

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration,” Phys. Rev. A 82, 043612 (2010).
[Crossref]

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[Crossref]

2009 (2)

D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, “Prospects for a Millihertz-Linewidth Laser,” Phys. Rev. Lett. 102, 163601 (2009).
[Crossref] [PubMed]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Emergent crystallinity and frustration with Bose–Einstein condensates in multimode cavities,” Nat Phys 5, 845–850 (2009).
[Crossref]

2007 (2)

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref] [PubMed]

J. Y. Vinet and P. Hello, “Matrix Simulation of Optical Cavities,” Journal of Modern Optics 40, 1981–1993 (2007).
[Crossref]

2003 (3)

P. Maunz, T. Puppe, T. Fischer, P. W. H. Pinkse, and G. Rempe, “Emission pattern of an atomic dipole in a high-finesse optical cavity,” Opt. Lett. 28, 46–48 (2003).
[Crossref] [PubMed]

A. T. Black, H. W. Chan, and V. Vuletić, “Observation of Collective Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering,” Phys. Rev. Lett. 91, 203001 (2003).
[Crossref] [PubMed]

H. W. Chan, A. T. Black, and V. Vuletić, “Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity,” Phys. Rev. Lett. 90, 063003 (2003).
[Crossref] [PubMed]

2002 (1)

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).
[Crossref] [PubMed]

2001 (1)

V. Vuletić, H. W. Chan, and A. T. Black, “Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering,” Phys. Rev. A 64, 033405 (2001).
[Crossref]

2000 (1)

M. Gangl, P. Horak, and H. Ritsch, “Cooling neutral particles in multimode cavities without spontaneous emission,” Journal of Modern Optics 47, 2741–2753 (2000).
[Crossref]

1974 (1)

Armen, M. A.

A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and B. L. Lev, “An adjustable-length cavity and Bose–Einstein condensate apparatus for multimode cavity QED,” New J. Phys. 17, 043012 (2015).
[Crossref]

Barter, O.

D. Stuart, O. Barter, and A. Kuhn, “Fast algorithms for generating binary holograms,” arXiv:1409.1841 (2014).

Baumann, K.

A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and B. L. Lev, “An adjustable-length cavity and Bose–Einstein condensate apparatus for multimode cavity QED,” New J. Phys. 17, 043012 (2015).
[Crossref]

Bertolotti, J.

Black, A. T.

A. T. Black, H. W. Chan, and V. Vuletić, “Observation of Collective Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering,” Phys. Rev. Lett. 91, 203001 (2003).
[Crossref] [PubMed]

H. W. Chan, A. T. Black, and V. Vuletić, “Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity,” Phys. Rev. Lett. 90, 063003 (2003).
[Crossref] [PubMed]

V. Vuletić, H. W. Chan, and A. T. Black, “Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering,” Phys. Rev. A 64, 033405 (2001).
[Crossref]

Brennecke, F.

R. Landig, F. Brennecke, R. Mottl, T. Donner, and T. Esslinger, “Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition,” Nat. Commun. 6, 7046 (2015).
[Crossref] [PubMed]

H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys. 85, 553–601 (2013).
[Crossref]

Buchhold, M.

M. Buchhold, P. Strack, S. Sachdev, and S. Diehl, “Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and experimental signatures,” Phys. Rev. A 87, 063622 (2013).
[Crossref]

Carlson, D. R.

D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, “Prospects for a Millihertz-Linewidth Laser,” Phys. Rev. Lett. 102, 163601 (2009).
[Crossref] [PubMed]

Chan, H. W.

A. T. Black, H. W. Chan, and V. Vuletić, “Observation of Collective Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering,” Phys. Rev. Lett. 91, 203001 (2003).
[Crossref] [PubMed]

H. W. Chan, A. T. Black, and V. Vuletić, “Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity,” Phys. Rev. Lett. 90, 063003 (2003).
[Crossref] [PubMed]

V. Vuletić, H. W. Chan, and A. T. Black, “Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering,” Phys. Rev. A 64, 033405 (2001).
[Crossref]

Cizmar, T.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[Crossref]

Dholakia, K.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[Crossref]

Diehl, S.

M. Buchhold, P. Strack, S. Sachdev, and S. Diehl, “Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and experimental signatures,” Phys. Rev. A 87, 063622 (2013).
[Crossref]

E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities,” Phys. Rev. A 87, 023831 (2013).
[Crossref]

Domokos, P.

H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys. 85, 553–601 (2013).
[Crossref]

Donner, T.

R. Landig, F. Brennecke, R. Mottl, T. Donner, and T. Esslinger, “Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition,” Nat. Commun. 6, 7046 (2015).
[Crossref] [PubMed]

Esslinger, T.

R. Landig, F. Brennecke, R. Mottl, T. Donner, and T. Esslinger, “Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition,” Nat. Commun. 6, 7046 (2015).
[Crossref] [PubMed]

H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys. 85, 553–601 (2013).
[Crossref]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).
[Crossref]

Fischer, T.

P. Maunz, T. Puppe, T. Fischer, P. W. H. Pinkse, and G. Rempe, “Emission pattern of an atomic dipole in a high-finesse optical cavity,” Opt. Lett. 28, 46–48 (2003).
[Crossref] [PubMed]

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).
[Crossref] [PubMed]

Gangl, M.

M. Gangl, P. Horak, and H. Ritsch, “Cooling neutral particles in multimode cavities without spontaneous emission,” Journal of Modern Optics 47, 2741–2753 (2000).
[Crossref]

Georgakopoulos, A.

J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).
[Crossref]

Goldbart, P. M.

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Exploring models of associative memory via cavity quantum electrodynamics,” Philosophical Magazine 92, 353–361 (2012).
[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Frustration and Glassiness in Spin Models with Cavity-Mediated Interactions,” Phys. Rev. Lett. 107, 277201 (2011).
[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration,” Phys. Rev. A 82, 043612 (2010).
[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Emergent crystallinity and frustration with Bose–Einstein condensates in multimode cavities,” Nat Phys 5, 845–850 (2009).
[Crossref]

Goorden, S. A.

Gopalakrishnan, S.

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Exploring models of associative memory via cavity quantum electrodynamics,” Philosophical Magazine 92, 353–361 (2012).
[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Frustration and Glassiness in Spin Models with Cavity-Mediated Interactions,” Phys. Rev. Lett. 107, 277201 (2011).
[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration,” Phys. Rev. A 82, 043612 (2010).
[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Emergent crystallinity and frustration with Bose–Einstein condensates in multimode cavities,” Nat Phys 5, 845–850 (2009).
[Crossref]

Greiner, M.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

Gromov, A.

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv:1511.07381 (2015).

Hello, P.

J. Y. Vinet and P. Hello, “Matrix Simulation of Optical Cavities,” Journal of Modern Optics 40, 1981–1993 (2007).
[Crossref]

Holland, M. J.

D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, “Prospects for a Millihertz-Linewidth Laser,” Phys. Rev. Lett. 102, 163601 (2009).
[Crossref] [PubMed]

Horak, P.

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).
[Crossref] [PubMed]

M. Gangl, P. Horak, and H. Ritsch, “Cooling neutral particles in multimode cavities without spontaneous emission,” Journal of Modern Optics 47, 2741–2753 (2000).
[Crossref]

Islam, R.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

Kollár, A. J.

A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and B. L. Lev, “An adjustable-length cavity and Bose–Einstein condensate apparatus for multimode cavity QED,” New J. Phys. 17, 043012 (2015).
[Crossref]

Kuhn, A.

D. Stuart, O. Barter, and A. Kuhn, “Fast algorithms for generating binary holograms,” arXiv:1409.1841 (2014).

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).
[Crossref]

Landig, R.

R. Landig, F. Brennecke, R. Mottl, T. Donner, and T. Esslinger, “Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition,” Nat. Commun. 6, 7046 (2015).
[Crossref] [PubMed]

Lee, W.-H.

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).
[Crossref]

Lev, B. L.

A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and B. L. Lev, “An adjustable-length cavity and Bose–Einstein condensate apparatus for multimode cavity QED,” New J. Phys. 17, 043012 (2015).
[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Exploring models of associative memory via cavity quantum electrodynamics,” Philosophical Magazine 92, 353–361 (2012).
[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Frustration and Glassiness in Spin Models with Cavity-Mediated Interactions,” Phys. Rev. Lett. 107, 277201 (2011).
[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration,” Phys. Rev. A 82, 043612 (2010).
[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Emergent crystallinity and frustration with Bose–Einstein condensates in multimode cavities,” Nat Phys 5, 845–850 (2009).
[Crossref]

Lukin, A.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

Lukin, M. D.

E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities,” Phys. Rev. A 87, 023831 (2013).
[Crossref]

Ma, R.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

Maunz, P.

P. Maunz, T. Puppe, T. Fischer, P. W. H. Pinkse, and G. Rempe, “Emission pattern of an atomic dipole in a high-finesse optical cavity,” Opt. Lett. 28, 46–48 (2003).
[Crossref] [PubMed]

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).
[Crossref] [PubMed]

Mazilu, M.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[Crossref]

Meiser, D.

D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, “Prospects for a Millihertz-Linewidth Laser,” Phys. Rev. Lett. 102, 163601 (2009).
[Crossref] [PubMed]

Milburn, G. J.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-VerlagBerlin Heidelberg, 2008).

Mosk, A. P.

Mottl, R.

R. Landig, F. Brennecke, R. Mottl, T. Donner, and T. Esslinger, “Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition,” Nat. Commun. 6, 7046 (2015).
[Crossref] [PubMed]

Müller, M.

M. Müller, P. Strack, and S. Sachdev, “Quantum charge glasses of itinerant fermions with cavity-mediated long-range interactions,” Phys. Rev. A 86, 023604 (2012).
[Crossref]

Ningyuan, J.

J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).
[Crossref]

Papageorge, A. T.

A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and B. L. Lev, “An adjustable-length cavity and Bose–Einstein condensate apparatus for multimode cavity QED,” New J. Phys. 17, 043012 (2015).
[Crossref]

Pinkse, P. W. H.

P. Maunz, T. Puppe, T. Fischer, P. W. H. Pinkse, and G. Rempe, “Emission pattern of an atomic dipole in a high-finesse optical cavity,” Opt. Lett. 28, 46–48 (2003).
[Crossref] [PubMed]

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).
[Crossref] [PubMed]

Preiss, P. M.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

Puppe, T.

P. Maunz, T. Puppe, T. Fischer, P. W. H. Pinkse, and G. Rempe, “Emission pattern of an atomic dipole in a high-finesse optical cavity,” Opt. Lett. 28, 46–48 (2003).
[Crossref] [PubMed]

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).
[Crossref] [PubMed]

Rempe, G.

P. Maunz, T. Puppe, T. Fischer, P. W. H. Pinkse, and G. Rempe, “Emission pattern of an atomic dipole in a high-finesse optical cavity,” Opt. Lett. 28, 46–48 (2003).
[Crossref] [PubMed]

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).
[Crossref] [PubMed]

Rispoli, M.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

Ritsch, H.

H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys. 85, 553–601 (2013).
[Crossref]

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).
[Crossref] [PubMed]

M. Gangl, P. Horak, and H. Ritsch, “Cooling neutral particles in multimode cavities without spontaneous emission,” Journal of Modern Optics 47, 2741–2753 (2000).
[Crossref]

Ryou, A.

J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).
[Crossref]

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv:1511.07381 (2015).

Sachdev, S.

E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities,” Phys. Rev. A 87, 023831 (2013).
[Crossref]

M. Buchhold, P. Strack, S. Sachdev, and S. Diehl, “Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and experimental signatures,” Phys. Rev. A 87, 063622 (2013).
[Crossref]

M. Müller, P. Strack, and S. Sachdev, “Quantum charge glasses of itinerant fermions with cavity-mediated long-range interactions,” Phys. Rev. A 86, 023604 (2012).
[Crossref]

P. Strack and S. Sachdev, “Dicke Quantum Spin Glass of Atoms and Photons,” Phys. Rev. Lett. 107, 277202 (2011).
[Crossref]

Schine, N.

J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).
[Crossref]

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv:1511.07381 (2015).

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Simon, J.

J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).
[Crossref]

A. Sommer and J. Simon, “Engineering photonic Floquet Hamiltonians through Fabry–Pérot resonators,” New J. Phys. in press (2016).
[Crossref]

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv:1511.07381 (2015).

Sommer, A.

J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).
[Crossref]

A. Sommer and J. Simon, “Engineering photonic Floquet Hamiltonians through Fabry–Pérot resonators,” New J. Phys. in press (2016).
[Crossref]

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv:1511.07381 (2015).

Strack, P.

E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities,” Phys. Rev. A 87, 023831 (2013).
[Crossref]

M. Buchhold, P. Strack, S. Sachdev, and S. Diehl, “Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and experimental signatures,” Phys. Rev. A 87, 063622 (2013).
[Crossref]

M. Müller, P. Strack, and S. Sachdev, “Quantum charge glasses of itinerant fermions with cavity-mediated long-range interactions,” Phys. Rev. A 86, 023604 (2012).
[Crossref]

P. Strack and S. Sachdev, “Dicke Quantum Spin Glass of Atoms and Photons,” Phys. Rev. Lett. 107, 277202 (2011).
[Crossref]

Stuart, D.

D. Stuart, O. Barter, and A. Kuhn, “Fast algorithms for generating binary holograms,” arXiv:1409.1841 (2014).

Tai, M. E.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

Torre, E. G. D.

E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities,” Phys. Rev. A 87, 023831 (2013).
[Crossref]

Vellekoop, I. M.

Vinet, J. Y.

J. Y. Vinet and P. Hello, “Matrix Simulation of Optical Cavities,” Journal of Modern Optics 40, 1981–1993 (2007).
[Crossref]

Vuletic, V.

A. T. Black, H. W. Chan, and V. Vuletić, “Observation of Collective Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering,” Phys. Rev. Lett. 91, 203001 (2003).
[Crossref] [PubMed]

H. W. Chan, A. T. Black, and V. Vuletić, “Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity,” Phys. Rev. Lett. 90, 063003 (2003).
[Crossref] [PubMed]

V. Vuletić, H. W. Chan, and A. T. Black, “Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering,” Phys. Rev. A 64, 033405 (2001).
[Crossref]

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-VerlagBerlin Heidelberg, 2008).

Ye, J.

D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, “Prospects for a Millihertz-Linewidth Laser,” Phys. Rev. Lett. 102, 163601 (2009).
[Crossref] [PubMed]

Zupancic, P.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

Zupancic, P. P. J.

P. P. J. Zupancic, “Dynamic Holography and Beamshaping using Digital Micromirror Devices,” Master’s thesis, Ludwig-Maximilians-Universität, Munich (2013).

Appl. Opt. (1)

Journal of Modern Optics (2)

J. Y. Vinet and P. Hello, “Matrix Simulation of Optical Cavities,” Journal of Modern Optics 40, 1981–1993 (2007).
[Crossref]

M. Gangl, P. Horak, and H. Ritsch, “Cooling neutral particles in multimode cavities without spontaneous emission,” Journal of Modern Optics 47, 2741–2753 (2000).
[Crossref]

Nat Phys (1)

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Emergent crystallinity and frustration with Bose–Einstein condensates in multimode cavities,” Nat Phys 5, 845–850 (2009).
[Crossref]

Nat. Commun. (1)

R. Landig, F. Brennecke, R. Mottl, T. Donner, and T. Esslinger, “Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition,” Nat. Commun. 6, 7046 (2015).
[Crossref] [PubMed]

Nature Photon. (2)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).
[Crossref]

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[Crossref]

New J. Phys. (1)

A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and B. L. Lev, “An adjustable-length cavity and Bose–Einstein condensate apparatus for multimode cavity QED,” New J. Phys. 17, 043012 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Philosophical Magazine (1)

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Exploring models of associative memory via cavity quantum electrodynamics,” Philosophical Magazine 92, 353–361 (2012).
[Crossref]

Phys. Rev. A (6)

M. Müller, P. Strack, and S. Sachdev, “Quantum charge glasses of itinerant fermions with cavity-mediated long-range interactions,” Phys. Rev. A 86, 023604 (2012).
[Crossref]

M. Buchhold, P. Strack, S. Sachdev, and S. Diehl, “Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and experimental signatures,” Phys. Rev. A 87, 063622 (2013).
[Crossref]

E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities,” Phys. Rev. A 87, 023831 (2013).
[Crossref]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration,” Phys. Rev. A 82, 043612 (2010).
[Crossref]

V. Vuletić, H. W. Chan, and A. T. Black, “Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering,” Phys. Rev. A 64, 033405 (2001).
[Crossref]

J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A. Sommer, and J. Simon, “Observation and characterization of cavity Rydberg polaritons,” Phys. Rev. A 93, 041802 (2016).
[Crossref]

Phys. Rev. Lett. (6)

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical Kaleidoscope Using a Single Atom,” Phys. Rev. Lett. 88, 043601 (2002).
[Crossref] [PubMed]

D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, “Prospects for a Millihertz-Linewidth Laser,” Phys. Rev. Lett. 102, 163601 (2009).
[Crossref] [PubMed]

S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, “Frustration and Glassiness in Spin Models with Cavity-Mediated Interactions,” Phys. Rev. Lett. 107, 277201 (2011).
[Crossref]

P. Strack and S. Sachdev, “Dicke Quantum Spin Glass of Atoms and Photons,” Phys. Rev. Lett. 107, 277202 (2011).
[Crossref]

A. T. Black, H. W. Chan, and V. Vuletić, “Observation of Collective Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering,” Phys. Rev. Lett. 91, 203001 (2003).
[Crossref] [PubMed]

H. W. Chan, A. T. Black, and V. Vuletić, “Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity,” Phys. Rev. Lett. 90, 063003 (2003).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, “Cold atoms in cavity-generated dynamical optical potentials,” Rev. Mod. Phys. 85, 553–601 (2013).
[Crossref]

Other (7)

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv:1511.07381 (2015).

A. Sommer and J. Simon, “Engineering photonic Floquet Hamiltonians through Fabry–Pérot resonators,” New J. Phys. in press (2016).
[Crossref]

A. E. Siegman, Lasers (University Science Books, 1986).

P. P. J. Zupancic, “Dynamic Holography and Beamshaping using Digital Micromirror Devices,” Master’s thesis, Ludwig-Maximilians-Universität, Munich (2013).

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” arXiv:1604.07653 (2016).

D. Stuart, O. Barter, and A. Kuhn, “Fast algorithms for generating binary holograms,” arXiv:1409.1841 (2014).

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-VerlagBerlin Heidelberg, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Overview of the experiment. Laser light at 780.23 nm is incident on the DMD. The ‘on’ pixels direct the light into the cavity via the first-order diffraction peak of the programmed holographic grating. The light reflected from the ‘off’ pixels is caught by a beam block (not shown). The light emitted by the cavity is analyzed by a photodetector and a CCD camera. The computer can analyse the images for mode content or generate the aberration-canceling phase mask. Software communicates a binary mask file to the DMD, called the DMD mask, for arbitrary field generation. A second CCD is put in the setup to record the calibration images necessary for measuring the optical aberrations in the system.

Fig. 2
Fig. 2

An example of the window functions used in calibrating the DMD along with the associated interference patterns in the far field. a) Schematic of two activated regions containing a phase-coherent grating. In the actual DMD, the 912×1140 pixels are grouped into 1,440 rectangular regions, each of which is 19×38 pixels in extent. b) The interference pattern generated in the Fourier plane by a DMD programmed with the above mask. The phase of the fringe pattern reflects the ϕΔx, Δy) accumulated due to aberrations. c) The real and d) imaginary parts of the numerical Fourier transform of the interference pattern shown in panel b). The function describing the fringes in panel b) is cos2(k1x′+ k2y′), meaning that in the Fourier space of panels c) and d), the spots are at ±(k1, k2) and (0, 0). The orientation of the fringes in each spot in c) and d) reflects the real space orientation of the DMD grating in panel a). For ease, the phase ϕΔx, Δy) is found not by analysing the fringes in panel b), but by taking the difference in phase between the pair of fringes marked by white circles in panel c) and d).

Fig. 3
Fig. 3

Cavity transmission versus pump frequency; the offsets in the blue traces are artificially introduced to ensure all three curves are visible. a) Coupling to the cavity (3,1) mode. Native mixing in the cavity results in mixing of the ideal cavity modes such that the (3,1) does not equal the ideal HG3,1. The red transmission curve results from in-coupling an ideal HG3,1 mode into the cavity. The imperfect overlap induces a coupling to the adjacent modes in addition to the targeted (3,1). The blue curves show the result of increasing optimization of the DMD mask, resulting in a hologram that couples exclusively to the cavity (3,1) mode, which is shown in the inset. We determine that the cavity (3,1) mode roughly consists of 8% HG2,2, 8% HG4,0, and 84% HG3,1. b) Same is in panel a), but with respect to the (2,1) mode. We determine the cavity (2,1) mode roughly consists of 4% HG1,2, 4% HG3,0, and 92% HG2,1.

Fig. 4
Fig. 4

Cavity transmission versus pump frequency for different DMD masks. Each trace corresponds to a distinct mask generating a unique and orthogonal hologram on the DMD. a) Even mode families. Insets show the cavity transmission for the 2nd and 4th-order families. The feature above the noise floor marked ‘reference’ was created with a superimposed Gaussian beam in order to align the transmission curves to one another. b) Same as in panel a), but odd mode families. Insets show the cavity transmission for the 3rd and 5th-order families of modes.

Fig. 5
Fig. 5

Spectroscopy of the cavity in a near-degenerate configuration wherein the first even mode becomes degenerate with the fundamental. The modes arrange in clusters as the confocal degeneracy condition is approached. Inset: zoomed-in spectrum of the first cluster of degenerate modes.

Fig. 6
Fig. 6

Cavity transmission when the cavity is pumped by fields created by DMD masks of ideal HG-modes; the offset is artificially introduced to ensure all curves are visible. a) Even mode spectra. b) Odd mode spectra.

Fig. 7
Fig. 7

a) Four transmission images of the near-degenerate cavity when pumped at a particular frequency by a mask consisting of an increasing amount of an HG2,0 mode added to an HG0,0 mode. Each image is the light emitted from the cavity and is the coherent addition of the two degenerate modes at a single probe frequency (i.e., the frequency is not swept during the camera integration time). b) Same as panel a), but with an increasing amount of an HG3,0 mode added to an HG1,0 mode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f q m n = c 2 L ( q + m + 1 2 π arccos g 1 x g 2 x + n + 1 2 π arccos g 1 y g 2 y ) ,
E DMD = | Φ HG ( x , y ) | cos ( k f [ x x 0 + y y 0 + z 0 2 f C ( x , y ) ] + ϕ m ( x , y ) ) 2 ,

Metrics