Abstract

We identify several beneficial characteristics of polarization spectroscopy as an absolute atomic reference for frequency stabilization of lasers, and demonstrate sub-kilohertz laser spectral linewidth narrowing using polarization spectroscopy with high-bandwidth feedback. Polarization spectroscopy provides a highly dispersive velocity-selective absolute atomic reference based on frequency-dependent birefringence in an optically pumped atomic gas. The pumping process leads to dominance of the primary closed transition, suppressing closely-spaced subsidiary resonances which reduce the effective capture range for conventional atomic references. The locking signal is based on subtraction of two orthogonal polarization signals, reducing the effect of laser intensity noise to the shot noise limit. We measure noise-limited servo bandwidth comparable to that of a high-finesse optical cavity without the frequency limit or complexity imposed by optical modulation normally associated with high bandwidth laser frequency stabilization. We demonstrate narrowing to 600±100 Hz laser linewidth using the beatnote between two similarly locked external cavity diode lasers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Absolute Te2 reference for barium ion at 455.4  nm

Tarun Dutta, Debashis De Munshi, and Manas Mukherjee
J. Opt. Soc. Am. B 33(6) 1177-1181 (2016)

Frequency stabilization of quantum-cascade lasers by use of optical cavities

Matthew S. Taubman, Tanya L. Myers, Bret D. Cannon, Richard M. Williams, Federico Capasso, Claire Gmachl, Deborah L. Sivco, and Alfred Y. Cho
Opt. Lett. 27(24) 2164-2166 (2002)

References

  • View by:
  • |
  • |
  • |

  1. S. Uetake, A. Yamaguchi, S. Kato, and Y. Takahashi, “High power narrow linewidth laser at 556 nm for magneto-optical trapping of ytterbium,” App. Phys. B 92, 33–35 (2008).
    [Crossref]
  2. L. Ye, L. Yi-Ge, Z. Yang, W. Qiang, W. Shao-Kai, Y. Tao, C. Jian-Ping, L. Tian-Chu, F. Zhan-Jun, and Z. Er-Jun, “Stable narrow linewidth 689 nm diode laser for the second stage cooling and trapping of strontium atoms,” Chinese Phys. Lett. 27, 074208 (2010).
    [Crossref]
  3. D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20, 16010 (2012).
    [Crossref] [PubMed]
  4. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
    [Crossref] [PubMed]
  5. B. DeMarco and D. S. Jin, “Onset of Fermi degeneracy in a trapped atomic gas,” Science 285, 1703–1706 (1999).
    [Crossref] [PubMed]
  6. A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
    [Crossref] [PubMed]
  7. R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
    [Crossref] [PubMed]
  8. H. J. Metcalf and P. van der Straten, Laser cooling and trapping (Springer, 1999).
    [Crossref]
  9. J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320, 1734–1738 (2008).
    [Crossref] [PubMed]
  10. L. P. Maguire, R. M. W. van Bijnen, E. Mese, and R. E. Scholten, “Theoretical calculation of saturated absorption spectra for multi-level atoms,” J. Phys. B: Atom. Molec. Opt. Phys. 39, 2709–2720 (2006).
    [Crossref]
  11. S. Haroche and F. Hartmann, “Theory of saturated-absorption line shapes,” Phys. Rev. A 6, 1280–1300 (1972).
    [Crossref]
  12. D. W. Preston, “Doppler-free saturated absorption: Laser spectroscopy,” Am. J. Phys. 64, 1432 (1996).
    [Crossref]
  13. C. J. Cuneo, J. J. Maki, and D. H. McIntyre, “Optically stabilized diode laser using high-contrast saturated absorption,” Appl. Phys. Lett. 64, 2625–2627 (1994).
    [Crossref]
  14. S. D. Saliba and R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt. 48, 6961 (2009).
    [Crossref] [PubMed]
  15. R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  16. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10−15,” Opt. Lett. 32, 641 (2007).
    [Crossref] [PubMed]
  17. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
    [Crossref]
  18. D. A. Shaddock, M. B. Gray, and D. E. McClelland, “Frequency locking a laser to an optical cavity by use of spatial mode interference”, Opt. Lett. 24, 1499 (1999).
    [Crossref]
  19. N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett. 27, 1905 (2002).
    [Crossref]
  20. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998).
    [Crossref]
  21. A. Millett-Sikking, I. G. Hughes, P. Tierney, and S. L. Cornish, “DAVLL lineshapes in atomic rubidium,” J. Phys. B: Atom. Molec. Opt. Phys. 40, 187 (2007).
    [Crossref]
  22. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537 (1982).
    [Crossref] [PubMed]
  23. D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol. 19, 105601 (2008).
    [Crossref]
  24. V. Negnevitsky and L. D. Turner, “Wideband laser locking to an atomic reference with modulation transfer spectroscopy,” Opt. Express 21, 3103 (2013).
    [Crossref] [PubMed]
  25. G. Jundt, G. T. Purves, C. S. Adams, and I. G. Hughes, “Non-linear Sagnac interferometry for pump-probe dispersion spectroscopy,” Eur. Phys. J. D - Atom. Molec. Opt. Plasma Phys. 27, 273–276 (2003).
  26. C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
    [Crossref]
  27. W. Demtröder, Laser spectroscopy: Basic concepts and Instrumentation (Springer Science & Business Media, 2003).
    [Crossref]
  28. Y. Torii, H. Tashiro, N. Ohtsubo, and T. Aoki, “Laser-phase and frequency stabilization using atomic coherence,” Phys. Rev. A 86, 033805 (2012).
    [Crossref]
  29. Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga, “Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor,” Appl. Opt. 42, 6645 (2003).
    [Crossref] [PubMed]
  30. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B: Atom. Molec. Opt. Phys. 35, 5141 (2002).
    [Crossref]
  31. I. G. Hughes, “Polarization spectroscopy of alkali-metal atoms,” New Trends Quantum Coher. Nonlinear Opt. 263, 149–169 (2009).
  32. Lasers: MOGLabs ECD003 and Toptica DL pro. Laser Controllers: MOGLabs DLC 202 and DLC 252, Servo-controllers: NewFocus LB1005. PS Photodectors: Thorlabs PDA10A. Cavity Photodetector: Thorlabs PDA36A-EC. Heterodyne Photodetector: NewFocus 1621. Optical Cavity: Stable Laser Systems. Spectrum Analyzer: Rohde & Schwarz FSP7. Audio digitizer: E-Mu E-DSP. Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement, nor does it imply that the materials or equipment are necessarily the best available for the purpose.
  33. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics”, Rev. Sci. Instrum. 62, 1–20 (1991).
    [Crossref]
  34. V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
    [Crossref]
  35. M. W. Lee, M. C. Jarratt, C. Marciniak, and M. J. Biercuk, “Frequency stabilization of a 369 nm diode laser by nonlinear spectroscopy of ytterbium ions in a discharge,” Opt. Express 22, 7210 (2014).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (2)

2010 (1)

L. Ye, L. Yi-Ge, Z. Yang, W. Qiang, W. Shao-Kai, Y. Tao, C. Jian-Ping, L. Tian-Chu, F. Zhan-Jun, and Z. Er-Jun, “Stable narrow linewidth 689 nm diode laser for the second stage cooling and trapping of strontium atoms,” Chinese Phys. Lett. 27, 074208 (2010).
[Crossref]

2009 (2)

S. D. Saliba and R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt. 48, 6961 (2009).
[Crossref] [PubMed]

I. G. Hughes, “Polarization spectroscopy of alkali-metal atoms,” New Trends Quantum Coher. Nonlinear Opt. 263, 149–169 (2009).

2008 (4)

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol. 19, 105601 (2008).
[Crossref]

S. Uetake, A. Yamaguchi, S. Kato, and Y. Takahashi, “High power narrow linewidth laser at 556 nm for magneto-optical trapping of ytterbium,” App. Phys. B 92, 33–35 (2008).
[Crossref]

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320, 1734–1738 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
[Crossref]

L. P. Maguire, R. M. W. van Bijnen, E. Mese, and R. E. Scholten, “Theoretical calculation of saturated absorption spectra for multi-level atoms,” J. Phys. B: Atom. Molec. Opt. Phys. 39, 2709–2720 (2006).
[Crossref]

2003 (2)

Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga, “Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor,” Appl. Opt. 42, 6645 (2003).
[Crossref] [PubMed]

G. Jundt, G. T. Purves, C. S. Adams, and I. G. Hughes, “Non-linear Sagnac interferometry for pump-probe dispersion spectroscopy,” Eur. Phys. J. D - Atom. Molec. Opt. Plasma Phys. 27, 273–276 (2003).

2002 (2)

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B: Atom. Molec. Opt. Phys. 35, 5141 (2002).
[Crossref]

N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett. 27, 1905 (2002).
[Crossref]

2000 (1)

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref] [PubMed]

1999 (2)

1998 (1)

1996 (1)

D. W. Preston, “Doppler-free saturated absorption: Laser spectroscopy,” Am. J. Phys. 64, 1432 (1996).
[Crossref]

1995 (1)

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

1994 (1)

C. J. Cuneo, J. J. Maki, and D. H. McIntyre, “Optically stabilized diode laser using high-contrast saturated absorption,” Appl. Phys. Lett. 64, 2625–2627 (1994).
[Crossref]

1991 (1)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics”, Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

1983 (1)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

1982 (1)

1980 (1)

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

1976 (1)

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

1972 (1)

S. Haroche and F. Hartmann, “Theory of saturated-absorption line shapes,” Phys. Rev. A 6, 1280–1300 (1972).
[Crossref]

Adams, C. S.

G. Jundt, G. T. Purves, C. S. Adams, and I. G. Hughes, “Non-linear Sagnac interferometry for pump-probe dispersion spectroscopy,” Eur. Phys. J. D - Atom. Molec. Opt. Plasma Phys. 27, 273–276 (2003).

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B: Atom. Molec. Opt. Phys. 35, 5141 (2002).
[Crossref]

Akamatsu, D.

Anderson, M. H.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

Aoki, T.

Y. Torii, H. Tashiro, N. Ohtsubo, and T. Aoki, “Laser-phase and frequency stabilization using atomic coherence,” Phys. Rev. A 86, 033805 (2012).
[Crossref]

Barber, Z. W.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

Beall, J. A.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref] [PubMed]

Beck, K. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

Bergquist, J. C.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref] [PubMed]

Biercuk, M. J.

Blatt, S.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10−15,” Opt. Lett. 32, 641 (2007).
[Crossref] [PubMed]

Boyd, M. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10−15,” Opt. Lett. 32, 641 (2007).
[Crossref] [PubMed]

Campbell, G. K.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

Close, J. D.

Coq, Y. L.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

Cornell, E. A.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

Cornish, S. L.

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol. 19, 105601 (2008).
[Crossref]

A. Millett-Sikking, I. G. Hughes, P. Tierney, and S. L. Cornish, “DAVLL lineshapes in atomic rubidium,” J. Phys. B: Atom. Molec. Opt. Phys. 40, 187 (2007).
[Crossref]

Corwin, K. L.

Couillaud, B.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

Cox, S. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B: Atom. Molec. Opt. Phys. 35, 5141 (2002).
[Crossref]

Cuneo, C. J.

C. J. Cuneo, J. J. Maki, and D. H. McIntyre, “Optically stabilized diode laser using high-contrast saturated absorption,” Appl. Phys. Lett. 64, 2625–2627 (1994).
[Crossref]

de Miranda, M. H. G.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

DeMarco, B.

B. DeMarco and D. S. Jin, “Onset of Fermi degeneracy in a trapped atomic gas,” Science 285, 1703–1706 (1999).
[Crossref] [PubMed]

Demtröder, W.

W. Demtröder, Laser spectroscopy: Basic concepts and Instrumentation (Springer Science & Business Media, 2003).
[Crossref]

Diddams, S. A.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

Drever, R.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Ensher, J. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

Epstein, R. J.

Er-Jun, Z.

L. Ye, L. Yi-Ge, Z. Yang, W. Qiang, W. Shao-Kai, Y. Tao, C. Jian-Ping, L. Tian-Chu, F. Zhan-Jun, and Z. Er-Jun, “Stable narrow linewidth 689 nm diode laser for the second stage cooling and trapping of strontium atoms,” Chinese Phys. Lett. 27, 074208 (2010).
[Crossref]

Ford, G.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Foreman, S. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10−15,” Opt. Lett. 32, 641 (2007).
[Crossref] [PubMed]

Fortier, T. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

Gray, M. B.

Griffin, P. F.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B: Atom. Molec. Opt. Phys. 35, 5141 (2002).
[Crossref]

Hall, J. L.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hand, C. F.

Hänsch, T. W.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

Haroche, S.

S. Haroche and F. Hartmann, “Theory of saturated-absorption line shapes,” Phys. Rev. A 6, 1280–1300 (1972).
[Crossref]

Hartmann, F.

S. Haroche and F. Hartmann, “Theory of saturated-absorption line shapes,” Phys. Rev. A 6, 1280–1300 (1972).
[Crossref]

Hollberg, L.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics”, Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

Hong, F.-L.

Hosaka, K.

Hough, J.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Huang, X.

Hughes, I. G.

I. G. Hughes, “Polarization spectroscopy of alkali-metal atoms,” New Trends Quantum Coher. Nonlinear Opt. 263, 149–169 (2009).

A. Millett-Sikking, I. G. Hughes, P. Tierney, and S. L. Cornish, “DAVLL lineshapes in atomic rubidium,” J. Phys. B: Atom. Molec. Opt. Phys. 40, 187 (2007).
[Crossref]

G. Jundt, G. T. Purves, C. S. Adams, and I. G. Hughes, “Non-linear Sagnac interferometry for pump-probe dispersion spectroscopy,” Eur. Phys. J. D - Atom. Molec. Opt. Plasma Phys. 27, 273–276 (2003).

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B: Atom. Molec. Opt. Phys. 35, 5141 (2002).
[Crossref]

Inaba, H.

Itano, W. M.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref] [PubMed]

Jarratt, M. C.

Jian-Ping, C.

L. Ye, L. Yi-Ge, Z. Yang, W. Qiang, W. Shao-Kai, Y. Tao, C. Jian-Ping, L. Tian-Chu, F. Zhan-Jun, and Z. Er-Jun, “Stable narrow linewidth 689 nm diode laser for the second stage cooling and trapping of strontium atoms,” Chinese Phys. Lett. 27, 074208 (2010).
[Crossref]

Jin, D. S.

B. DeMarco and D. S. Jin, “Onset of Fermi degeneracy in a trapped atomic gas,” Science 285, 1703–1706 (1999).
[Crossref] [PubMed]

Jundt, G.

G. Jundt, G. T. Purves, C. S. Adams, and I. G. Hughes, “Non-linear Sagnac interferometry for pump-probe dispersion spectroscopy,” Eur. Phys. J. D - Atom. Molec. Opt. Plasma Phys. 27, 273–276 (2003).

Kato, S.

S. Uetake, A. Yamaguchi, S. Kato, and Y. Takahashi, “High power narrow linewidth laser at 556 nm for magneto-optical trapping of ytterbium,” App. Phys. B 92, 33–35 (2008).
[Crossref]

Katori, H.

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320, 1734–1738 (2008).
[Crossref] [PubMed]

Kimble, H. J.

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320, 1734–1738 (2008).
[Crossref] [PubMed]

King, S. A.

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol. 19, 105601 (2008).
[Crossref]

Kowalski, F.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kuga, T.

Lee, M. W.

Lemke, N. D.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

Lu, Z.-T.

Ludlow, A. D.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10−15,” Opt. Lett. 32, 641 (2007).
[Crossref] [PubMed]

Maguire, L. P.

L. P. Maguire, R. M. W. van Bijnen, E. Mese, and R. E. Scholten, “Theoretical calculation of saturated absorption spectra for multi-level atoms,” J. Phys. B: Atom. Molec. Opt. Phys. 39, 2709–2720 (2006).
[Crossref]

Maki, J. J.

C. J. Cuneo, J. J. Maki, and D. H. McIntyre, “Optically stabilized diode laser using high-contrast saturated absorption,” Appl. Phys. Lett. 64, 2625–2627 (1994).
[Crossref]

Marciniak, C.

Martin, M. J.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

Matthews, M. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

McCarron, D. J.

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol. 19, 105601 (2008).
[Crossref]

McClelland, D. E.

McIntyre, D. H.

C. J. Cuneo, J. J. Maki, and D. H. McIntyre, “Optically stabilized diode laser using high-contrast saturated absorption,” Appl. Phys. Lett. 64, 2625–2627 (1994).
[Crossref]

Mehendale, S. C.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
[Crossref]

Mese, E.

L. P. Maguire, R. M. W. van Bijnen, E. Mese, and R. E. Scholten, “Theoretical calculation of saturated absorption spectra for multi-level atoms,” J. Phys. B: Atom. Molec. Opt. Phys. 39, 2709–2720 (2006).
[Crossref]

Metcalf, H. J.

H. J. Metcalf and P. van der Straten, Laser cooling and trapping (Springer, 1999).
[Crossref]

Millett-Sikking, A.

A. Millett-Sikking, I. G. Hughes, P. Tierney, and S. L. Cornish, “DAVLL lineshapes in atomic rubidium,” J. Phys. B: Atom. Molec. Opt. Phys. 40, 187 (2007).
[Crossref]

Mishra, S. R.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
[Crossref]

Mukae, T.

Munley, A.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Nakajima, Y.

Negnevitsky, V.

Notcutt, M.

Oates, C. W.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

Ohtsubo, N.

Y. Torii, H. Tashiro, N. Ohtsubo, and T. Aoki, “Laser-phase and frequency stabilization using atomic coherence,” Phys. Rev. A 86, 033805 (2012).
[Crossref]

Onae, A.

Pearman, C. P.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B: Atom. Molec. Opt. Phys. 35, 5141 (2002).
[Crossref]

Poli, N.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

Preston, D. W.

D. W. Preston, “Doppler-free saturated absorption: Laser spectroscopy,” Am. J. Phys. 64, 1432 (1996).
[Crossref]

Purves, G. T.

G. Jundt, G. T. Purves, C. S. Adams, and I. G. Hughes, “Non-linear Sagnac interferometry for pump-probe dispersion spectroscopy,” Eur. Phys. J. D - Atom. Molec. Opt. Plasma Phys. 27, 273–276 (2003).

Qiang, W.

L. Ye, L. Yi-Ge, Z. Yang, W. Qiang, W. Shao-Kai, Y. Tao, C. Jian-Ping, L. Tian-Chu, F. Zhan-Jun, and Z. Er-Jun, “Stable narrow linewidth 689 nm diode laser for the second stage cooling and trapping of strontium atoms,” Chinese Phys. Lett. 27, 074208 (2010).
[Crossref]

Rafac, R. J.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref] [PubMed]

Rawat, H. S.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
[Crossref]

Robins, N. P.

Saliba, S. D.

Scholten, R. E.

S. D. Saliba and R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt. 48, 6961 (2009).
[Crossref] [PubMed]

L. P. Maguire, R. M. W. van Bijnen, E. Mese, and R. E. Scholten, “Theoretical calculation of saturated absorption spectra for multi-level atoms,” J. Phys. B: Atom. Molec. Opt. Phys. 39, 2709–2720 (2006).
[Crossref]

Shaddock, D. A.

Shao-Kai, W.

L. Ye, L. Yi-Ge, Z. Yang, W. Qiang, W. Shao-Kai, Y. Tao, C. Jian-Ping, L. Tian-Chu, F. Zhan-Jun, and Z. Er-Jun, “Stable narrow linewidth 689 nm diode laser for the second stage cooling and trapping of strontium atoms,” Chinese Phys. Lett. 27, 074208 (2010).
[Crossref]

Shirley, J. H.

Singh, S.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
[Crossref]

Slagmolen, B. J. J.

Smith, D. A.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B: Atom. Molec. Opt. Phys. 35, 5141 (2002).
[Crossref]

Stalnaker, J. E.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

Takahashi, Y.

S. Uetake, A. Yamaguchi, S. Kato, and Y. Takahashi, “High power narrow linewidth laser at 556 nm for magneto-optical trapping of ytterbium,” App. Phys. B 92, 33–35 (2008).
[Crossref]

Tao, Y.

L. Ye, L. Yi-Ge, Z. Yang, W. Qiang, W. Shao-Kai, Y. Tao, C. Jian-Ping, L. Tian-Chu, F. Zhan-Jun, and Z. Er-Jun, “Stable narrow linewidth 689 nm diode laser for the second stage cooling and trapping of strontium atoms,” Chinese Phys. Lett. 27, 074208 (2010).
[Crossref]

Tashiro, H.

Y. Torii, H. Tashiro, N. Ohtsubo, and T. Aoki, “Laser-phase and frequency stabilization using atomic coherence,” Phys. Rev. A 86, 033805 (2012).
[Crossref]

Thomsen, J. W.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

Tian-Chu, L.

L. Ye, L. Yi-Ge, Z. Yang, W. Qiang, W. Shao-Kai, Y. Tao, C. Jian-Ping, L. Tian-Chu, F. Zhan-Jun, and Z. Er-Jun, “Stable narrow linewidth 689 nm diode laser for the second stage cooling and trapping of strontium atoms,” Chinese Phys. Lett. 27, 074208 (2010).
[Crossref]

Tierney, P.

A. Millett-Sikking, I. G. Hughes, P. Tierney, and S. L. Cornish, “DAVLL lineshapes in atomic rubidium,” J. Phys. B: Atom. Molec. Opt. Phys. 40, 187 (2007).
[Crossref]

Tiwari, V. B.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
[Crossref]

Torii, Y.

Y. Torii, H. Tashiro, N. Ohtsubo, and T. Aoki, “Laser-phase and frequency stabilization using atomic coherence,” Phys. Rev. A 86, 033805 (2012).
[Crossref]

Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga, “Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor,” Appl. Opt. 42, 6645 (2003).
[Crossref] [PubMed]

Turner, L. D.

Uetake, S.

S. Uetake, A. Yamaguchi, S. Kato, and Y. Takahashi, “High power narrow linewidth laser at 556 nm for magneto-optical trapping of ytterbium,” App. Phys. B 92, 33–35 (2008).
[Crossref]

Umeki, T.

van Bijnen, R. M. W.

L. P. Maguire, R. M. W. van Bijnen, E. Mese, and R. E. Scholten, “Theoretical calculation of saturated absorption spectra for multi-level atoms,” J. Phys. B: Atom. Molec. Opt. Phys. 39, 2709–2720 (2006).
[Crossref]

van der Straten, P.

H. J. Metcalf and P. van der Straten, Laser cooling and trapping (Springer, 1999).
[Crossref]

Ward, H.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Wieman, C.

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

Wieman, C. E.

K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998).
[Crossref]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics”, Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

Wineland, D. J.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref] [PubMed]

Yamaguchi, A.

S. Uetake, A. Yamaguchi, S. Kato, and Y. Takahashi, “High power narrow linewidth laser at 556 nm for magneto-optical trapping of ytterbium,” App. Phys. B 92, 33–35 (2008).
[Crossref]

Yang, Z.

L. Ye, L. Yi-Ge, Z. Yang, W. Qiang, W. Shao-Kai, Y. Tao, C. Jian-Ping, L. Tian-Chu, F. Zhan-Jun, and Z. Er-Jun, “Stable narrow linewidth 689 nm diode laser for the second stage cooling and trapping of strontium atoms,” Chinese Phys. Lett. 27, 074208 (2010).
[Crossref]

Yasuda, M.

Ye, J.

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320, 1734–1738 (2008).
[Crossref] [PubMed]

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10−15,” Opt. Lett. 32, 641 (2007).
[Crossref] [PubMed]

Ye, L.

L. Ye, L. Yi-Ge, Z. Yang, W. Qiang, W. Shao-Kai, Y. Tao, C. Jian-Ping, L. Tian-Chu, F. Zhan-Jun, and Z. Er-Jun, “Stable narrow linewidth 689 nm diode laser for the second stage cooling and trapping of strontium atoms,” Chinese Phys. Lett. 27, 074208 (2010).
[Crossref]

Yi-Ge, L.

L. Ye, L. Yi-Ge, Z. Yang, W. Qiang, W. Shao-Kai, Y. Tao, C. Jian-Ping, L. Tian-Chu, F. Zhan-Jun, and Z. Er-Jun, “Stable narrow linewidth 689 nm diode laser for the second stage cooling and trapping of strontium atoms,” Chinese Phys. Lett. 27, 074208 (2010).
[Crossref]

Yoshikawa, Y.

Young, B. C.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref] [PubMed]

Zanon-Willette, T.

Zelevinsky, T.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

Zhan-Jun, F.

L. Ye, L. Yi-Ge, Z. Yang, W. Qiang, W. Shao-Kai, Y. Tao, C. Jian-Ping, L. Tian-Chu, F. Zhan-Jun, and Z. Er-Jun, “Stable narrow linewidth 689 nm diode laser for the second stage cooling and trapping of strontium atoms,” Chinese Phys. Lett. 27, 074208 (2010).
[Crossref]

Am. J. Phys. (1)

D. W. Preston, “Doppler-free saturated absorption: Laser spectroscopy,” Am. J. Phys. 64, 1432 (1996).
[Crossref]

App. Phys. B (1)

S. Uetake, A. Yamaguchi, S. Kato, and Y. Takahashi, “High power narrow linewidth laser at 556 nm for magneto-optical trapping of ytterbium,” App. Phys. B 92, 33–35 (2008).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Appl. Phys. Lett. (1)

C. J. Cuneo, J. J. Maki, and D. H. McIntyre, “Optically stabilized diode laser using high-contrast saturated absorption,” Appl. Phys. Lett. 64, 2625–2627 (1994).
[Crossref]

Chinese Phys. Lett. (1)

L. Ye, L. Yi-Ge, Z. Yang, W. Qiang, W. Shao-Kai, Y. Tao, C. Jian-Ping, L. Tian-Chu, F. Zhan-Jun, and Z. Er-Jun, “Stable narrow linewidth 689 nm diode laser for the second stage cooling and trapping of strontium atoms,” Chinese Phys. Lett. 27, 074208 (2010).
[Crossref]

Eur. Phys. J. D - Atom. Molec. Opt. Plasma Phys. (1)

G. Jundt, G. T. Purves, C. S. Adams, and I. G. Hughes, “Non-linear Sagnac interferometry for pump-probe dispersion spectroscopy,” Eur. Phys. J. D - Atom. Molec. Opt. Plasma Phys. 27, 273–276 (2003).

J. Phys. B: Atom. Molec. Opt. Phys. (3)

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B: Atom. Molec. Opt. Phys. 35, 5141 (2002).
[Crossref]

L. P. Maguire, R. M. W. van Bijnen, E. Mese, and R. E. Scholten, “Theoretical calculation of saturated absorption spectra for multi-level atoms,” J. Phys. B: Atom. Molec. Opt. Phys. 39, 2709–2720 (2006).
[Crossref]

A. Millett-Sikking, I. G. Hughes, P. Tierney, and S. L. Cornish, “DAVLL lineshapes in atomic rubidium,” J. Phys. B: Atom. Molec. Opt. Phys. 40, 187 (2007).
[Crossref]

Meas. Sci. Technol. (1)

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol. 19, 105601 (2008).
[Crossref]

New Trends Quantum Coher. Nonlinear Opt. (1)

I. G. Hughes, “Polarization spectroscopy of alkali-metal atoms,” New Trends Quantum Coher. Nonlinear Opt. 263, 149–169 (2009).

Opt. Commun. (2)

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
[Crossref]

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (2)

S. Haroche and F. Hartmann, “Theory of saturated-absorption line shapes,” Phys. Rev. A 6, 1280–1300 (1972).
[Crossref]

Y. Torii, H. Tashiro, N. Ohtsubo, and T. Aoki, “Laser-phase and frequency stabilization using atomic coherence,” Phys. Rev. A 86, 033805 (2012).
[Crossref]

Phys. Rev. Lett. (2)

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics”, Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

Science (4)

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320, 1734–1738 (2008).
[Crossref] [PubMed]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

B. DeMarco and D. S. Jin, “Onset of Fermi degeneracy in a trapped atomic gas,” Science 285, 1703–1706 (1999).
[Crossref] [PubMed]

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[Crossref] [PubMed]

Other (3)

H. J. Metcalf and P. van der Straten, Laser cooling and trapping (Springer, 1999).
[Crossref]

W. Demtröder, Laser spectroscopy: Basic concepts and Instrumentation (Springer Science & Business Media, 2003).
[Crossref]

Lasers: MOGLabs ECD003 and Toptica DL pro. Laser Controllers: MOGLabs DLC 202 and DLC 252, Servo-controllers: NewFocus LB1005. PS Photodectors: Thorlabs PDA10A. Cavity Photodetector: Thorlabs PDA36A-EC. Heterodyne Photodetector: NewFocus 1621. Optical Cavity: Stable Laser Systems. Spectrum Analyzer: Rohde & Schwarz FSP7. Audio digitizer: E-Mu E-DSP. Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement, nor does it imply that the materials or equipment are necessarily the best available for the purpose.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of polarization spectroscopy (PS) apparatus. The beam from the laser passes through an isolator before being split into two beams by a polarizing beam splitter (PBS) and coupled into optical fibers. One fiber leads to the PS setup shown here, the other to measurement or experimental apparatus via an acousto-optic modulator (AOM). The PS setup consists of a polarization stabilizing Glan-Thompson prism followed by a beam expanding telescope. The expanded beam is then divided by a PBS into a linearly polarized probe and circularly polarized pump which counter-propagate, via a non-polarizing 50:50 beam splitter (BS), through the magnetically shielded atomic gas sample. The polarization rotation of the probe beam is then measured by a balanced polarimeter which consists of a λ/2 waveplate, PBS and two photodetectors.

Fig. 2
Fig. 2

Saturated absorption spectroscopy (SA, upper) and polarization spectroscopy (PS, lower) absorption and error spectra for the 85Rb D2 transition. The components of the PS error signal (Px,y) are also shown. The shaded regions indicate the approximate capture range of the respective error signals. Zero frequency corresponds to the 85Rb, 52S1/2F = 3 → 52P3/2F = 4 transition.

Fig. 3
Fig. 3

Frequency noise measurements. (a) Power spectral density (PSD) of polarization spectroscopy (PS) error signals for a range of laser locking regimes with laser on resonance: unlocked; piezo-only feedback; slow current and piezo feedback; piezo, slow current, and fast current feedback; the noise floor of the noise measurement with the laser frequency off the atomic resonance. Laser power 6.5 mW after the stabilizing Glan-Thompson prism. The measurements are shown with a superposed smoothed curve (moving average with window size 10log10(f) where f is the frequency). (b) PSD of transmitted cavity signal at half peak height for the piezo, slow current and fast current feedback. (c) Optical cavity transmission as a function of laser offset frequency for locking with varying bandwidth. Piezo only (left), piezo and slow current (middle) and piezo, slow current and fast current (right). Cavity FWHM linewidth 72 kHz, AOM scan time 100 ms, laser power incident on the cavity 170 µW. For (a) and (b) noise below 104 Hz was measured with a high dynamic range audio digitizer with a resolution bandwidth (RBW) of 12 Hz; a radio frequency spectrum analyzer was used at higher frequencies, with RBW of 30 Hz between 104 Hz–106 Hz and RBW of 300 Hz above 106 Hz.

Fig. 4
Fig. 4

Heterodyne measurement for two lasers locked with polarization spectroscopy. Inset: Higher resolution measurement of the central peak with −3dB width of 2.0±0.36 kHz. Both figures are 50 shot averages with resolution bandwidths of 30 kHz and 100 Hz and total measurement times of approximately 0.5 s and 2 s respectively.

Fig. 5
Fig. 5

Frequency drift of a polarization spectroscopy locked laser, in units of natural linewidth Γ and MHz, over a 60 hour period measured every 10 seconds. The standard deviation of the frequency measurements was 51 kHz.

Tables (1)

Tables Icon

Table 1 Linewidth results. (i) Mapping the transmission signal through a cavity with a FWHM of 72 kHz to a Lorentzian signal followed by deconvolving from the amplitude noise. (ii) The results from integrating the power-spectral density of the cavity transmission signal, Fig. 3(b). (iii) Laser linewidth derived from the heterodyne measurement, Fig. 4.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P P S = P x P y = P 0 cos ( 2 ϕ + 2 Φ )
P P S = 2 P 0 Φ .
Φ = π L Δ n λ ,
Δ n = Δ α 0 2 c ω A Γ δ 1 + 4 ( δ Γ ) 2 .
Δ α 0 = m F = F + F [ α ( F , m F F , m F + 1 ) ( P F , m F P F , m F + 1 ) α ( F , m F F , m F 1 ) ( P F , m F P F , m F 1 ) ] .

Metrics