Abstract

We report the first application of gas total emission using a DFB diode laser for gas concentration measurements combined with two LEDs for gas velocity measurements. In situ gas total emissions and particle density measurements in an industrial pipeline using simultaneous tunable diode laser absorption spectroscopy (TDLAS) and optical scintillation cross-correlation technique (OSCC) are presented. Velocity mean values obtained are 7.59 m/s (OSCC, standard deviation is 1.37 m/s) and 8.20 m/s (Pitot tube, standard deviation is 1.47 m/s) in a steel plant pipeline for comparison. Our experiments demonstrate that the combined system of TDLAS and OSCC provides a new versatile tool for accurate measurements of total gas emissions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ammonia monitoring near 1.5 µm with diode-laser absorption sensors

Michael E. Webber, Douglas S. Baer, and Ronald K. Hanson
Appl. Opt. 40(12) 2031-2042 (2001)

Broadband spectroscopic sensor for real-time monitoring of industrial SO2 emissions

Feng Xu, Yungang Zhang, Gabriel Somesfalean, Huashan Wang, Shaohua Wu, and Zhiguo Zhang
Appl. Opt. 46(13) 2503-2506 (2007)

References

  • View by:
  • |
  • |
  • |

  1. F. Z. Dong, W. Q. Liu, Y. N. Chu, J. Q. Li, Z. R. Zhang, Y. Wang, T. Pang, B. Wu, G. J. Tu, H. Xia, Y. Yang, C. Y. Shen, Y. J. Wang, Z. B. Ni, and J. G. Liu, Real-Time in situ Measurements of Industrial Hazardous Gas Concentrations and Their Emission Gross (InTech Publisher, 2011), Chap. 5.
  2. Z. R. Zhang, H. Xia, F. Z. Dong, T. Pang, B. Wu, P. S. Sun, G. X. Wang, and Y. Wang, “Simultaneous detection of multiple gas concentrations with multi-frequency wavelength modulation spectroscopy,” Europhys. Lett. 104(4), 44002 (2013).
    [Crossref]
  3. O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, and V. Ebert, “VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines,” Opt. Express 21(17), 19951–19965 (2013).
    [Crossref] [PubMed]
  4. C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, “Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration,” Opt. Express 23(17), 22494–22511 (2015).
    [Crossref] [PubMed]
  5. D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21(7), 1185–1190 (1982).
    [Crossref] [PubMed]
  6. F. Z. Dong, W. Q. Liu, J. G. Liu, X. H. Tu, Y. J. Zhang, F. Qi, P. H. Xie, Y. H. Lu, S. M. Wang, Y. P. Wang, and Q. N. Wei, “On-line roadside vehicle emissions monitoring,” J. Test. Mea. Tec. 19(2), 119–127 (2005).
  7. X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82(3), 469–478 (2006).
    [Crossref]
  8. K. Tanaka and K. Tonokura, “Sensitive measurements of stable carbon isotopes of CO2 with wavelength modulation spectroscopy near 2μm,” Appl. Phys. B 105(2), 463–469 (2011).
    [Crossref]
  9. A. D. Sappev, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183(11), 1282–1295 (2011).
    [Crossref]
  10. A. Sepulveda-Jauregui, K. Martinez-Cruz, A. Strohm, M. W. A. Katey, and F. Thalasso, “A new method for field measurement of dissolved methane in water using infrared tunable diode laser absorption spectroscopy,” Limnol. Oceanogr-Meth. 10(7), 560–567 (2012).
    [Crossref]
  11. S. Svanberg, “Gas in scattering media absorption spectroscopy – from basic studies to biomedical applications,” Laser Photonics Rev. 7(5), 779–796 (2013).
    [Crossref]
  12. Y. Deguchi, T. Kamimoto, Z. Z. Wang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, “Applications of laser diagnostics to thermal power plants and engines,” Appl. Therm. Eng. 73(2), 1453–1464 (2014).
    [Crossref]
  13. A. Pogány, A. Klein, and V. Ebert, “Measurement of water vapor line strengths in the 1.4–2.7µm range by tunable diode laser absorption spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 165, 108–122 (2015).
    [Crossref]
  14. D. W. Choi, M. G. Jeon, G. R. Cho, T. Kamimoto, Y. Deguchi, and D. H. Doh, “Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS),” J. Therm. Sci. 25(1), 84–89 (2016).
    [Crossref]
  15. E. Ryznar, “Dependency of Optical Scintillation Frequency on Wind Speed,” Appl. Opt. 4(11), 1416–1418 (1965).
    [Crossref]
  16. A. Chen, J. Hao, Z. Zhou, and K. He, “Particulate Concentration Measured from Scattered Light Fluctuations,” Opt. Lett. 25(10), 689–691 (2000).
    [Crossref] [PubMed]
  17. T. I. Wang, G. R. Ochs, and R. S. Lawrence, “Wind measurements by the temporal cross-correlation of the optical scintillations,” Appl. Opt. 20(23), 4073–4081 (1981).
    [Crossref] [PubMed]
  18. R. Klopfenstein., “Air Velocity and Flow Measurement Using a Pitot Tube,” ISA T. 37(4), 257–263 (1998).
    [Crossref]
  19. M. Y. Xu, C. Du, and J. C. Mi, “Centreline statistics of the small-scale turbulence of a circular jet and their dependence on high frequency noise,” Wuli Xuebao 60(3), 034701 (2011).
  20. K. Maru and T. Hata, “Nonmechanical scanning laser Doppler velocimeter for cross-sectional two-dimensional velocity measurement,” Appl. Opt. 51(34), 8177–8183 (2012).
    [Crossref] [PubMed]
  21. T. I. Wang, “Optical flow sensor using fast correlation algorithm,” US Patent US20020145727 (2003–8-26).
  22. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers–Comparison of experiment and theory,” Appl. Phys. B 26(3), 203–210 (1981).
    [Crossref]
  23. S. T. Wang, J. Li, R. S. Che, and T. Y. Wang, “A Methane Gas Sensor with Optic Fiber Based on Frequency Harmonic Detection Technique,” J. Appl. Opt. 25(2), 44–47 (2004).
  24. R. F. Kan, W. Q. Liu, Y. J. Zhang, J. G. Liu, M. Wang, D. Chen, J. Y. Chen, and Y. B. Cui, “A high sensitivity spectrometer with tunable diode laser for ambient methane monitoring,” Chin. Opt. Lett. 5(1), 54–57 (2007).
  25. A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley-IEEE Press, 1999).
  26. W. Q. Liu, H. L. Liu, Z. Y. Zeng, and Y. Jiang, “Analysis of spectrum characteristics of optical scintillation in stack gas flow,” Chin. Phys. 15(8), 1777–1782 (2006).
    [Crossref]
  27. Y. Yang, F. Z. Dong, Z. B. Ni, T. Pang, Z. Y. Zeng, B. Wu, and Z. R. Zhang, “Theoretical Analysis of Stack Gas Emission Velocity Measurement by Optical Scintillation,” Chin. Phys. B 23(4), 040703 (2014).
    [Crossref]
  28. H. L. Liu, Z. Y. Zeng, and W. Q. Liu, “The study of stack gas velocity measurement using optical signal cross-correlation method,” Opt. Technol. 32(6), 920–925 (2006).
  29. Z. R. Zhang, F. Z. Dong, Y. Wang, B. Wu, T. Pang, H. Xia, and G. Tu, “Online monitoring of industrial flue gases using tunable diode laser with a digital-control module,” Proc. SPIE 7853, 785313 (2010).
    [Crossref]
  30. J. Zhou, Z. F. Yuan, X. G. Pu, K. Wang, Y. G. Lu, and K. F. Cen, “Study of zero-crossing polarity correlation for velocity measurement of high temperature flue gas,” Proc. CSEE. 19(3), 11–13, 45 (1999).

2016 (1)

D. W. Choi, M. G. Jeon, G. R. Cho, T. Kamimoto, Y. Deguchi, and D. H. Doh, “Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS),” J. Therm. Sci. 25(1), 84–89 (2016).
[Crossref]

2015 (2)

A. Pogány, A. Klein, and V. Ebert, “Measurement of water vapor line strengths in the 1.4–2.7µm range by tunable diode laser absorption spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 165, 108–122 (2015).
[Crossref]

C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, “Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration,” Opt. Express 23(17), 22494–22511 (2015).
[Crossref] [PubMed]

2014 (2)

Y. Deguchi, T. Kamimoto, Z. Z. Wang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, “Applications of laser diagnostics to thermal power plants and engines,” Appl. Therm. Eng. 73(2), 1453–1464 (2014).
[Crossref]

Y. Yang, F. Z. Dong, Z. B. Ni, T. Pang, Z. Y. Zeng, B. Wu, and Z. R. Zhang, “Theoretical Analysis of Stack Gas Emission Velocity Measurement by Optical Scintillation,” Chin. Phys. B 23(4), 040703 (2014).
[Crossref]

2013 (3)

S. Svanberg, “Gas in scattering media absorption spectroscopy – from basic studies to biomedical applications,” Laser Photonics Rev. 7(5), 779–796 (2013).
[Crossref]

Z. R. Zhang, H. Xia, F. Z. Dong, T. Pang, B. Wu, P. S. Sun, G. X. Wang, and Y. Wang, “Simultaneous detection of multiple gas concentrations with multi-frequency wavelength modulation spectroscopy,” Europhys. Lett. 104(4), 44002 (2013).
[Crossref]

O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, and V. Ebert, “VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines,” Opt. Express 21(17), 19951–19965 (2013).
[Crossref] [PubMed]

2012 (2)

A. Sepulveda-Jauregui, K. Martinez-Cruz, A. Strohm, M. W. A. Katey, and F. Thalasso, “A new method for field measurement of dissolved methane in water using infrared tunable diode laser absorption spectroscopy,” Limnol. Oceanogr-Meth. 10(7), 560–567 (2012).
[Crossref]

K. Maru and T. Hata, “Nonmechanical scanning laser Doppler velocimeter for cross-sectional two-dimensional velocity measurement,” Appl. Opt. 51(34), 8177–8183 (2012).
[Crossref] [PubMed]

2011 (3)

M. Y. Xu, C. Du, and J. C. Mi, “Centreline statistics of the small-scale turbulence of a circular jet and their dependence on high frequency noise,” Wuli Xuebao 60(3), 034701 (2011).

K. Tanaka and K. Tonokura, “Sensitive measurements of stable carbon isotopes of CO2 with wavelength modulation spectroscopy near 2μm,” Appl. Phys. B 105(2), 463–469 (2011).
[Crossref]

A. D. Sappev, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183(11), 1282–1295 (2011).
[Crossref]

2010 (1)

Z. R. Zhang, F. Z. Dong, Y. Wang, B. Wu, T. Pang, H. Xia, and G. Tu, “Online monitoring of industrial flue gases using tunable diode laser with a digital-control module,” Proc. SPIE 7853, 785313 (2010).
[Crossref]

2007 (1)

2006 (3)

W. Q. Liu, H. L. Liu, Z. Y. Zeng, and Y. Jiang, “Analysis of spectrum characteristics of optical scintillation in stack gas flow,” Chin. Phys. 15(8), 1777–1782 (2006).
[Crossref]

H. L. Liu, Z. Y. Zeng, and W. Q. Liu, “The study of stack gas velocity measurement using optical signal cross-correlation method,” Opt. Technol. 32(6), 920–925 (2006).

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82(3), 469–478 (2006).
[Crossref]

2005 (1)

F. Z. Dong, W. Q. Liu, J. G. Liu, X. H. Tu, Y. J. Zhang, F. Qi, P. H. Xie, Y. H. Lu, S. M. Wang, Y. P. Wang, and Q. N. Wei, “On-line roadside vehicle emissions monitoring,” J. Test. Mea. Tec. 19(2), 119–127 (2005).

2004 (1)

S. T. Wang, J. Li, R. S. Che, and T. Y. Wang, “A Methane Gas Sensor with Optic Fiber Based on Frequency Harmonic Detection Technique,” J. Appl. Opt. 25(2), 44–47 (2004).

2000 (1)

1998 (1)

R. Klopfenstein., “Air Velocity and Flow Measurement Using a Pitot Tube,” ISA T. 37(4), 257–263 (1998).
[Crossref]

1982 (1)

1981 (2)

T. I. Wang, G. R. Ochs, and R. S. Lawrence, “Wind measurements by the temporal cross-correlation of the optical scintillations,” Appl. Opt. 20(23), 4073–4081 (1981).
[Crossref] [PubMed]

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers–Comparison of experiment and theory,” Appl. Phys. B 26(3), 203–210 (1981).
[Crossref]

1965 (1)

Cai, W.

Cao, Z.

Cassidy, D. T.

Cen, K. F.

J. Zhou, Z. F. Yuan, X. G. Pu, K. Wang, Y. G. Lu, and K. F. Cen, “Study of zero-crossing polarity correlation for velocity measurement of high temperature flue gas,” Proc. CSEE. 19(3), 11–13, 45 (1999).

Che, R. S.

S. T. Wang, J. Li, R. S. Che, and T. Y. Wang, “A Methane Gas Sensor with Optic Fiber Based on Frequency Harmonic Detection Technique,” J. Appl. Opt. 25(2), 44–47 (2004).

Chen, A.

Chen, D.

Chen, J.

Chen, J. Y.

Cho, G. R.

D. W. Choi, M. G. Jeon, G. R. Cho, T. Kamimoto, Y. Deguchi, and D. H. Doh, “Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS),” J. Therm. Sci. 25(1), 84–89 (2016).
[Crossref]

Choi, D. W.

D. W. Choi, M. G. Jeon, G. R. Cho, T. Kamimoto, Y. Deguchi, and D. H. Doh, “Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS),” J. Therm. Sci. 25(1), 84–89 (2016).
[Crossref]

Cui, Y. B.

Deguchi, Y.

D. W. Choi, M. G. Jeon, G. R. Cho, T. Kamimoto, Y. Deguchi, and D. H. Doh, “Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS),” J. Therm. Sci. 25(1), 84–89 (2016).
[Crossref]

Y. Deguchi, T. Kamimoto, Z. Z. Wang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, “Applications of laser diagnostics to thermal power plants and engines,” Appl. Therm. Eng. 73(2), 1453–1464 (2014).
[Crossref]

Doh, D. H.

D. W. Choi, M. G. Jeon, G. R. Cho, T. Kamimoto, Y. Deguchi, and D. H. Doh, “Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS),” J. Therm. Sci. 25(1), 84–89 (2016).
[Crossref]

Dong, F. Z.

Y. Yang, F. Z. Dong, Z. B. Ni, T. Pang, Z. Y. Zeng, B. Wu, and Z. R. Zhang, “Theoretical Analysis of Stack Gas Emission Velocity Measurement by Optical Scintillation,” Chin. Phys. B 23(4), 040703 (2014).
[Crossref]

Z. R. Zhang, H. Xia, F. Z. Dong, T. Pang, B. Wu, P. S. Sun, G. X. Wang, and Y. Wang, “Simultaneous detection of multiple gas concentrations with multi-frequency wavelength modulation spectroscopy,” Europhys. Lett. 104(4), 44002 (2013).
[Crossref]

Z. R. Zhang, F. Z. Dong, Y. Wang, B. Wu, T. Pang, H. Xia, and G. Tu, “Online monitoring of industrial flue gases using tunable diode laser with a digital-control module,” Proc. SPIE 7853, 785313 (2010).
[Crossref]

F. Z. Dong, W. Q. Liu, J. G. Liu, X. H. Tu, Y. J. Zhang, F. Qi, P. H. Xie, Y. H. Lu, S. M. Wang, Y. P. Wang, and Q. N. Wei, “On-line roadside vehicle emissions monitoring,” J. Test. Mea. Tec. 19(2), 119–127 (2005).

Du, C.

M. Y. Xu, C. Du, and J. C. Mi, “Centreline statistics of the small-scale turbulence of a circular jet and their dependence on high frequency noise,” Wuli Xuebao 60(3), 034701 (2011).

Ebert, V.

A. Pogány, A. Klein, and V. Ebert, “Measurement of water vapor line strengths in the 1.4–2.7µm range by tunable diode laser absorption spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 165, 108–122 (2015).
[Crossref]

O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, and V. Ebert, “VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines,” Opt. Express 21(17), 19951–19965 (2013).
[Crossref] [PubMed]

Estes, M.

A. D. Sappev, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183(11), 1282–1295 (2011).
[Crossref]

Hanson, R. K.

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82(3), 469–478 (2006).
[Crossref]

Hao, J.

Hata, T.

He, K.

Hinckley, K. M.

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82(3), 469–478 (2006).
[Crossref]

Hofvander, H.

A. D. Sappev, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183(11), 1282–1295 (2011).
[Crossref]

Howell, J.

A. D. Sappev, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183(11), 1282–1295 (2011).
[Crossref]

Huelson, E.

A. D. Sappev, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183(11), 1282–1295 (2011).
[Crossref]

Jeffries, J. B.

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82(3), 469–478 (2006).
[Crossref]

Jeon, M. G.

D. W. Choi, M. G. Jeon, G. R. Cho, T. Kamimoto, Y. Deguchi, and D. H. Doh, “Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS),” J. Therm. Sci. 25(1), 84–89 (2016).
[Crossref]

Jiang, Y.

W. Q. Liu, H. L. Liu, Z. Y. Zeng, and Y. Jiang, “Analysis of spectrum characteristics of optical scintillation in stack gas flow,” Chin. Phys. 15(8), 1777–1782 (2006).
[Crossref]

Jobson, A.

A. D. Sappev, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183(11), 1282–1295 (2011).
[Crossref]

Kaiser, S.

Kamimoto, T.

D. W. Choi, M. G. Jeon, G. R. Cho, T. Kamimoto, Y. Deguchi, and D. H. Doh, “Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS),” J. Therm. Sci. 25(1), 84–89 (2016).
[Crossref]

Y. Deguchi, T. Kamimoto, Z. Z. Wang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, “Applications of laser diagnostics to thermal power plants and engines,” Appl. Therm. Eng. 73(2), 1453–1464 (2014).
[Crossref]

Kan, R. F.

Katey, M. W. A.

A. Sepulveda-Jauregui, K. Martinez-Cruz, A. Strohm, M. W. A. Katey, and F. Thalasso, “A new method for field measurement of dissolved methane in water using infrared tunable diode laser absorption spectroscopy,” Limnol. Oceanogr-Meth. 10(7), 560–567 (2012).
[Crossref]

Klein, A.

A. Pogány, A. Klein, and V. Ebert, “Measurement of water vapor line strengths in the 1.4–2.7µm range by tunable diode laser absorption spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 165, 108–122 (2015).
[Crossref]

O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, and V. Ebert, “VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines,” Opt. Express 21(17), 19951–19965 (2013).
[Crossref] [PubMed]

Klopfenstein, R.

R. Klopfenstein., “Air Velocity and Flow Measurement Using a Pitot Tube,” ISA T. 37(4), 257–263 (1998).
[Crossref]

Kurose, R.

Y. Deguchi, T. Kamimoto, Z. Z. Wang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, “Applications of laser diagnostics to thermal power plants and engines,” Appl. Therm. Eng. 73(2), 1453–1464 (2014).
[Crossref]

Labrie, D.

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers–Comparison of experiment and theory,” Appl. Phys. B 26(3), 203–210 (1981).
[Crossref]

Lawrence, R. S.

Li, J.

S. T. Wang, J. Li, R. S. Che, and T. Y. Wang, “A Methane Gas Sensor with Optic Fiber Based on Frequency Harmonic Detection Technique,” J. Appl. Opt. 25(2), 44–47 (2004).

Lin, Y.

Liu, C.

Liu, H. L.

H. L. Liu, Z. Y. Zeng, and W. Q. Liu, “The study of stack gas velocity measurement using optical signal cross-correlation method,” Opt. Technol. 32(6), 920–925 (2006).

W. Q. Liu, H. L. Liu, Z. Y. Zeng, and Y. Jiang, “Analysis of spectrum characteristics of optical scintillation in stack gas flow,” Chin. Phys. 15(8), 1777–1782 (2006).
[Crossref]

Liu, J. G.

R. F. Kan, W. Q. Liu, Y. J. Zhang, J. G. Liu, M. Wang, D. Chen, J. Y. Chen, and Y. B. Cui, “A high sensitivity spectrometer with tunable diode laser for ambient methane monitoring,” Chin. Opt. Lett. 5(1), 54–57 (2007).

F. Z. Dong, W. Q. Liu, J. G. Liu, X. H. Tu, Y. J. Zhang, F. Qi, P. H. Xie, Y. H. Lu, S. M. Wang, Y. P. Wang, and Q. N. Wei, “On-line roadside vehicle emissions monitoring,” J. Test. Mea. Tec. 19(2), 119–127 (2005).

Liu, J. P.

Y. Deguchi, T. Kamimoto, Z. Z. Wang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, “Applications of laser diagnostics to thermal power plants and engines,” Appl. Therm. Eng. 73(2), 1453–1464 (2014).
[Crossref]

Liu, W. Q.

R. F. Kan, W. Q. Liu, Y. J. Zhang, J. G. Liu, M. Wang, D. Chen, J. Y. Chen, and Y. B. Cui, “A high sensitivity spectrometer with tunable diode laser for ambient methane monitoring,” Chin. Opt. Lett. 5(1), 54–57 (2007).

H. L. Liu, Z. Y. Zeng, and W. Q. Liu, “The study of stack gas velocity measurement using optical signal cross-correlation method,” Opt. Technol. 32(6), 920–925 (2006).

W. Q. Liu, H. L. Liu, Z. Y. Zeng, and Y. Jiang, “Analysis of spectrum characteristics of optical scintillation in stack gas flow,” Chin. Phys. 15(8), 1777–1782 (2006).
[Crossref]

F. Z. Dong, W. Q. Liu, J. G. Liu, X. H. Tu, Y. J. Zhang, F. Qi, P. H. Xie, Y. H. Lu, S. M. Wang, Y. P. Wang, and Q. N. Wei, “On-line roadside vehicle emissions monitoring,” J. Test. Mea. Tec. 19(2), 119–127 (2005).

Liu, X.

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82(3), 469–478 (2006).
[Crossref]

Lu, Y. G.

J. Zhou, Z. F. Yuan, X. G. Pu, K. Wang, Y. G. Lu, and K. F. Cen, “Study of zero-crossing polarity correlation for velocity measurement of high temperature flue gas,” Proc. CSEE. 19(3), 11–13, 45 (1999).

Lu, Y. H.

F. Z. Dong, W. Q. Liu, J. G. Liu, X. H. Tu, Y. J. Zhang, F. Qi, P. H. Xie, Y. H. Lu, S. M. Wang, Y. P. Wang, and Q. N. Wei, “On-line roadside vehicle emissions monitoring,” J. Test. Mea. Tec. 19(2), 119–127 (2005).

Martinez-Cruz, K.

A. Sepulveda-Jauregui, K. Martinez-Cruz, A. Strohm, M. W. A. Katey, and F. Thalasso, “A new method for field measurement of dissolved methane in water using infrared tunable diode laser absorption spectroscopy,” Limnol. Oceanogr-Meth. 10(7), 560–567 (2012).
[Crossref]

Maru, K.

Masterson, P.

A. D. Sappev, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183(11), 1282–1295 (2011).
[Crossref]

Meffert, C.

Mi, J. C.

M. Y. Xu, C. Du, and J. C. Mi, “Centreline statistics of the small-scale turbulence of a circular jet and their dependence on high frequency noise,” Wuli Xuebao 60(3), 034701 (2011).

Ni, Z. B.

Y. Yang, F. Z. Dong, Z. B. Ni, T. Pang, Z. Y. Zeng, B. Wu, and Z. R. Zhang, “Theoretical Analysis of Stack Gas Emission Velocity Measurement by Optical Scintillation,” Chin. Phys. B 23(4), 040703 (2014).
[Crossref]

Ochs, G. R.

Pang, T.

Y. Yang, F. Z. Dong, Z. B. Ni, T. Pang, Z. Y. Zeng, B. Wu, and Z. R. Zhang, “Theoretical Analysis of Stack Gas Emission Velocity Measurement by Optical Scintillation,” Chin. Phys. B 23(4), 040703 (2014).
[Crossref]

Z. R. Zhang, H. Xia, F. Z. Dong, T. Pang, B. Wu, P. S. Sun, G. X. Wang, and Y. Wang, “Simultaneous detection of multiple gas concentrations with multi-frequency wavelength modulation spectroscopy,” Europhys. Lett. 104(4), 44002 (2013).
[Crossref]

Z. R. Zhang, F. Z. Dong, Y. Wang, B. Wu, T. Pang, H. Xia, and G. Tu, “Online monitoring of industrial flue gases using tunable diode laser with a digital-control module,” Proc. SPIE 7853, 785313 (2010).
[Crossref]

Pogány, A.

A. Pogány, A. Klein, and V. Ebert, “Measurement of water vapor line strengths in the 1.4–2.7µm range by tunable diode laser absorption spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 165, 108–122 (2015).
[Crossref]

Pu, X. G.

J. Zhou, Z. F. Yuan, X. G. Pu, K. Wang, Y. G. Lu, and K. F. Cen, “Study of zero-crossing polarity correlation for velocity measurement of high temperature flue gas,” Proc. CSEE. 19(3), 11–13, 45 (1999).

Qi, F.

F. Z. Dong, W. Q. Liu, J. G. Liu, X. H. Tu, Y. J. Zhang, F. Qi, P. H. Xie, Y. H. Lu, S. M. Wang, Y. P. Wang, and Q. N. Wei, “On-line roadside vehicle emissions monitoring,” J. Test. Mea. Tec. 19(2), 119–127 (2005).

Reid, J.

D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21(7), 1185–1190 (1982).
[Crossref] [PubMed]

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers–Comparison of experiment and theory,” Appl. Phys. B 26(3), 203–210 (1981).
[Crossref]

Ryznar, E.

Sappev, A. D.

A. D. Sappev, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183(11), 1282–1295 (2011).
[Crossref]

Schulz, C.

Sepulveda-Jauregui, A.

A. Sepulveda-Jauregui, K. Martinez-Cruz, A. Strohm, M. W. A. Katey, and F. Thalasso, “A new method for field measurement of dissolved methane in water using infrared tunable diode laser absorption spectroscopy,” Limnol. Oceanogr-Meth. 10(7), 560–567 (2012).
[Crossref]

Strohm, A.

A. Sepulveda-Jauregui, K. Martinez-Cruz, A. Strohm, M. W. A. Katey, and F. Thalasso, “A new method for field measurement of dissolved methane in water using infrared tunable diode laser absorption spectroscopy,” Limnol. Oceanogr-Meth. 10(7), 560–567 (2012).
[Crossref]

Sun, P. S.

Z. R. Zhang, H. Xia, F. Z. Dong, T. Pang, B. Wu, P. S. Sun, G. X. Wang, and Y. Wang, “Simultaneous detection of multiple gas concentrations with multi-frequency wavelength modulation spectroscopy,” Europhys. Lett. 104(4), 44002 (2013).
[Crossref]

Svanberg, S.

S. Svanberg, “Gas in scattering media absorption spectroscopy – from basic studies to biomedical applications,” Laser Photonics Rev. 7(5), 779–796 (2013).
[Crossref]

Tanaka, K.

K. Tanaka and K. Tonokura, “Sensitive measurements of stable carbon isotopes of CO2 with wavelength modulation spectroscopy near 2μm,” Appl. Phys. B 105(2), 463–469 (2011).
[Crossref]

Thalasso, F.

A. Sepulveda-Jauregui, K. Martinez-Cruz, A. Strohm, M. W. A. Katey, and F. Thalasso, “A new method for field measurement of dissolved methane in water using infrared tunable diode laser absorption spectroscopy,” Limnol. Oceanogr-Meth. 10(7), 560–567 (2012).
[Crossref]

Tonokura, K.

K. Tanaka and K. Tonokura, “Sensitive measurements of stable carbon isotopes of CO2 with wavelength modulation spectroscopy near 2μm,” Appl. Phys. B 105(2), 463–469 (2011).
[Crossref]

Tu, G.

Z. R. Zhang, F. Z. Dong, Y. Wang, B. Wu, T. Pang, H. Xia, and G. Tu, “Online monitoring of industrial flue gases using tunable diode laser with a digital-control module,” Proc. SPIE 7853, 785313 (2010).
[Crossref]

Tu, X. H.

F. Z. Dong, W. Q. Liu, J. G. Liu, X. H. Tu, Y. J. Zhang, F. Qi, P. H. Xie, Y. H. Lu, S. M. Wang, Y. P. Wang, and Q. N. Wei, “On-line roadside vehicle emissions monitoring,” J. Test. Mea. Tec. 19(2), 119–127 (2005).

Wagner, S.

Wang, G. X.

Z. R. Zhang, H. Xia, F. Z. Dong, T. Pang, B. Wu, P. S. Sun, G. X. Wang, and Y. Wang, “Simultaneous detection of multiple gas concentrations with multi-frequency wavelength modulation spectroscopy,” Europhys. Lett. 104(4), 44002 (2013).
[Crossref]

Wang, K.

J. Zhou, Z. F. Yuan, X. G. Pu, K. Wang, Y. G. Lu, and K. F. Cen, “Study of zero-crossing polarity correlation for velocity measurement of high temperature flue gas,” Proc. CSEE. 19(3), 11–13, 45 (1999).

Wang, M.

Wang, S. M.

F. Z. Dong, W. Q. Liu, J. G. Liu, X. H. Tu, Y. J. Zhang, F. Qi, P. H. Xie, Y. H. Lu, S. M. Wang, Y. P. Wang, and Q. N. Wei, “On-line roadside vehicle emissions monitoring,” J. Test. Mea. Tec. 19(2), 119–127 (2005).

Wang, S. T.

S. T. Wang, J. Li, R. S. Che, and T. Y. Wang, “A Methane Gas Sensor with Optic Fiber Based on Frequency Harmonic Detection Technique,” J. Appl. Opt. 25(2), 44–47 (2004).

Wang, T. I.

Wang, T. Y.

S. T. Wang, J. Li, R. S. Che, and T. Y. Wang, “A Methane Gas Sensor with Optic Fiber Based on Frequency Harmonic Detection Technique,” J. Appl. Opt. 25(2), 44–47 (2004).

Wang, Y.

Z. R. Zhang, H. Xia, F. Z. Dong, T. Pang, B. Wu, P. S. Sun, G. X. Wang, and Y. Wang, “Simultaneous detection of multiple gas concentrations with multi-frequency wavelength modulation spectroscopy,” Europhys. Lett. 104(4), 44002 (2013).
[Crossref]

Z. R. Zhang, F. Z. Dong, Y. Wang, B. Wu, T. Pang, H. Xia, and G. Tu, “Online monitoring of industrial flue gases using tunable diode laser with a digital-control module,” Proc. SPIE 7853, 785313 (2010).
[Crossref]

Wang, Y. P.

F. Z. Dong, W. Q. Liu, J. G. Liu, X. H. Tu, Y. J. Zhang, F. Qi, P. H. Xie, Y. H. Lu, S. M. Wang, Y. P. Wang, and Q. N. Wei, “On-line roadside vehicle emissions monitoring,” J. Test. Mea. Tec. 19(2), 119–127 (2005).

Wang, Z. Z.

Y. Deguchi, T. Kamimoto, Z. Z. Wang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, “Applications of laser diagnostics to thermal power plants and engines,” Appl. Therm. Eng. 73(2), 1453–1464 (2014).
[Crossref]

Watanabe, H.

Y. Deguchi, T. Kamimoto, Z. Z. Wang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, “Applications of laser diagnostics to thermal power plants and engines,” Appl. Therm. Eng. 73(2), 1453–1464 (2014).
[Crossref]

Wei, Q. N.

F. Z. Dong, W. Q. Liu, J. G. Liu, X. H. Tu, Y. J. Zhang, F. Qi, P. H. Xie, Y. H. Lu, S. M. Wang, Y. P. Wang, and Q. N. Wei, “On-line roadside vehicle emissions monitoring,” J. Test. Mea. Tec. 19(2), 119–127 (2005).

Witzel, O.

Woodmansee, M. A.

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82(3), 469–478 (2006).
[Crossref]

Wu, B.

Y. Yang, F. Z. Dong, Z. B. Ni, T. Pang, Z. Y. Zeng, B. Wu, and Z. R. Zhang, “Theoretical Analysis of Stack Gas Emission Velocity Measurement by Optical Scintillation,” Chin. Phys. B 23(4), 040703 (2014).
[Crossref]

Z. R. Zhang, H. Xia, F. Z. Dong, T. Pang, B. Wu, P. S. Sun, G. X. Wang, and Y. Wang, “Simultaneous detection of multiple gas concentrations with multi-frequency wavelength modulation spectroscopy,” Europhys. Lett. 104(4), 44002 (2013).
[Crossref]

Z. R. Zhang, F. Z. Dong, Y. Wang, B. Wu, T. Pang, H. Xia, and G. Tu, “Online monitoring of industrial flue gases using tunable diode laser with a digital-control module,” Proc. SPIE 7853, 785313 (2010).
[Crossref]

Xia, H.

Z. R. Zhang, H. Xia, F. Z. Dong, T. Pang, B. Wu, P. S. Sun, G. X. Wang, and Y. Wang, “Simultaneous detection of multiple gas concentrations with multi-frequency wavelength modulation spectroscopy,” Europhys. Lett. 104(4), 44002 (2013).
[Crossref]

Z. R. Zhang, F. Z. Dong, Y. Wang, B. Wu, T. Pang, H. Xia, and G. Tu, “Online monitoring of industrial flue gases using tunable diode laser with a digital-control module,” Proc. SPIE 7853, 785313 (2010).
[Crossref]

Xie, P. H.

F. Z. Dong, W. Q. Liu, J. G. Liu, X. H. Tu, Y. J. Zhang, F. Qi, P. H. Xie, Y. H. Lu, S. M. Wang, Y. P. Wang, and Q. N. Wei, “On-line roadside vehicle emissions monitoring,” J. Test. Mea. Tec. 19(2), 119–127 (2005).

Xu, L.

Xu, M. Y.

M. Y. Xu, C. Du, and J. C. Mi, “Centreline statistics of the small-scale turbulence of a circular jet and their dependence on high frequency noise,” Wuli Xuebao 60(3), 034701 (2011).

Yan, J. J.

Y. Deguchi, T. Kamimoto, Z. Z. Wang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, “Applications of laser diagnostics to thermal power plants and engines,” Appl. Therm. Eng. 73(2), 1453–1464 (2014).
[Crossref]

Yang, Y.

Y. Yang, F. Z. Dong, Z. B. Ni, T. Pang, Z. Y. Zeng, B. Wu, and Z. R. Zhang, “Theoretical Analysis of Stack Gas Emission Velocity Measurement by Optical Scintillation,” Chin. Phys. B 23(4), 040703 (2014).
[Crossref]

Yuan, Z. F.

J. Zhou, Z. F. Yuan, X. G. Pu, K. Wang, Y. G. Lu, and K. F. Cen, “Study of zero-crossing polarity correlation for velocity measurement of high temperature flue gas,” Proc. CSEE. 19(3), 11–13, 45 (1999).

Zeng, Z. Y.

Y. Yang, F. Z. Dong, Z. B. Ni, T. Pang, Z. Y. Zeng, B. Wu, and Z. R. Zhang, “Theoretical Analysis of Stack Gas Emission Velocity Measurement by Optical Scintillation,” Chin. Phys. B 23(4), 040703 (2014).
[Crossref]

H. L. Liu, Z. Y. Zeng, and W. Q. Liu, “The study of stack gas velocity measurement using optical signal cross-correlation method,” Opt. Technol. 32(6), 920–925 (2006).

W. Q. Liu, H. L. Liu, Z. Y. Zeng, and Y. Jiang, “Analysis of spectrum characteristics of optical scintillation in stack gas flow,” Chin. Phys. 15(8), 1777–1782 (2006).
[Crossref]

Zhang, Y. J.

R. F. Kan, W. Q. Liu, Y. J. Zhang, J. G. Liu, M. Wang, D. Chen, J. Y. Chen, and Y. B. Cui, “A high sensitivity spectrometer with tunable diode laser for ambient methane monitoring,” Chin. Opt. Lett. 5(1), 54–57 (2007).

F. Z. Dong, W. Q. Liu, J. G. Liu, X. H. Tu, Y. J. Zhang, F. Qi, P. H. Xie, Y. H. Lu, S. M. Wang, Y. P. Wang, and Q. N. Wei, “On-line roadside vehicle emissions monitoring,” J. Test. Mea. Tec. 19(2), 119–127 (2005).

Zhang, Z. R.

Y. Yang, F. Z. Dong, Z. B. Ni, T. Pang, Z. Y. Zeng, B. Wu, and Z. R. Zhang, “Theoretical Analysis of Stack Gas Emission Velocity Measurement by Optical Scintillation,” Chin. Phys. B 23(4), 040703 (2014).
[Crossref]

Z. R. Zhang, H. Xia, F. Z. Dong, T. Pang, B. Wu, P. S. Sun, G. X. Wang, and Y. Wang, “Simultaneous detection of multiple gas concentrations with multi-frequency wavelength modulation spectroscopy,” Europhys. Lett. 104(4), 44002 (2013).
[Crossref]

Z. R. Zhang, F. Z. Dong, Y. Wang, B. Wu, T. Pang, H. Xia, and G. Tu, “Online monitoring of industrial flue gases using tunable diode laser with a digital-control module,” Proc. SPIE 7853, 785313 (2010).
[Crossref]

Zhou, J.

J. Zhou, Z. F. Yuan, X. G. Pu, K. Wang, Y. G. Lu, and K. F. Cen, “Study of zero-crossing polarity correlation for velocity measurement of high temperature flue gas,” Proc. CSEE. 19(3), 11–13, 45 (1999).

Zhou, Z.

Appl. Opt. (4)

Appl. Phys. B (3)

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers–Comparison of experiment and theory,” Appl. Phys. B 26(3), 203–210 (1981).
[Crossref]

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82(3), 469–478 (2006).
[Crossref]

K. Tanaka and K. Tonokura, “Sensitive measurements of stable carbon isotopes of CO2 with wavelength modulation spectroscopy near 2μm,” Appl. Phys. B 105(2), 463–469 (2011).
[Crossref]

Appl. Therm. Eng. (1)

Y. Deguchi, T. Kamimoto, Z. Z. Wang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, “Applications of laser diagnostics to thermal power plants and engines,” Appl. Therm. Eng. 73(2), 1453–1464 (2014).
[Crossref]

Chin. Opt. Lett. (1)

Chin. Phys. (1)

W. Q. Liu, H. L. Liu, Z. Y. Zeng, and Y. Jiang, “Analysis of spectrum characteristics of optical scintillation in stack gas flow,” Chin. Phys. 15(8), 1777–1782 (2006).
[Crossref]

Chin. Phys. B (1)

Y. Yang, F. Z. Dong, Z. B. Ni, T. Pang, Z. Y. Zeng, B. Wu, and Z. R. Zhang, “Theoretical Analysis of Stack Gas Emission Velocity Measurement by Optical Scintillation,” Chin. Phys. B 23(4), 040703 (2014).
[Crossref]

Combust. Sci. Technol. (1)

A. D. Sappev, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183(11), 1282–1295 (2011).
[Crossref]

Europhys. Lett. (1)

Z. R. Zhang, H. Xia, F. Z. Dong, T. Pang, B. Wu, P. S. Sun, G. X. Wang, and Y. Wang, “Simultaneous detection of multiple gas concentrations with multi-frequency wavelength modulation spectroscopy,” Europhys. Lett. 104(4), 44002 (2013).
[Crossref]

ISA T. (1)

R. Klopfenstein., “Air Velocity and Flow Measurement Using a Pitot Tube,” ISA T. 37(4), 257–263 (1998).
[Crossref]

J. Appl. Opt. (1)

S. T. Wang, J. Li, R. S. Che, and T. Y. Wang, “A Methane Gas Sensor with Optic Fiber Based on Frequency Harmonic Detection Technique,” J. Appl. Opt. 25(2), 44–47 (2004).

J. Quant. Spectrosc. Radiat. Transf. (1)

A. Pogány, A. Klein, and V. Ebert, “Measurement of water vapor line strengths in the 1.4–2.7µm range by tunable diode laser absorption spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 165, 108–122 (2015).
[Crossref]

J. Test. Mea. Tec. (1)

F. Z. Dong, W. Q. Liu, J. G. Liu, X. H. Tu, Y. J. Zhang, F. Qi, P. H. Xie, Y. H. Lu, S. M. Wang, Y. P. Wang, and Q. N. Wei, “On-line roadside vehicle emissions monitoring,” J. Test. Mea. Tec. 19(2), 119–127 (2005).

J. Therm. Sci. (1)

D. W. Choi, M. G. Jeon, G. R. Cho, T. Kamimoto, Y. Deguchi, and D. H. Doh, “Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS),” J. Therm. Sci. 25(1), 84–89 (2016).
[Crossref]

Laser Photonics Rev. (1)

S. Svanberg, “Gas in scattering media absorption spectroscopy – from basic studies to biomedical applications,” Laser Photonics Rev. 7(5), 779–796 (2013).
[Crossref]

Limnol. Oceanogr-Meth. (1)

A. Sepulveda-Jauregui, K. Martinez-Cruz, A. Strohm, M. W. A. Katey, and F. Thalasso, “A new method for field measurement of dissolved methane in water using infrared tunable diode laser absorption spectroscopy,” Limnol. Oceanogr-Meth. 10(7), 560–567 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Technol. (1)

H. L. Liu, Z. Y. Zeng, and W. Q. Liu, “The study of stack gas velocity measurement using optical signal cross-correlation method,” Opt. Technol. 32(6), 920–925 (2006).

Proc. SPIE (1)

Z. R. Zhang, F. Z. Dong, Y. Wang, B. Wu, T. Pang, H. Xia, and G. Tu, “Online monitoring of industrial flue gases using tunable diode laser with a digital-control module,” Proc. SPIE 7853, 785313 (2010).
[Crossref]

Wuli Xuebao (1)

M. Y. Xu, C. Du, and J. C. Mi, “Centreline statistics of the small-scale turbulence of a circular jet and their dependence on high frequency noise,” Wuli Xuebao 60(3), 034701 (2011).

Other (4)

F. Z. Dong, W. Q. Liu, Y. N. Chu, J. Q. Li, Z. R. Zhang, Y. Wang, T. Pang, B. Wu, G. J. Tu, H. Xia, Y. Yang, C. Y. Shen, Y. J. Wang, Z. B. Ni, and J. G. Liu, Real-Time in situ Measurements of Industrial Hazardous Gas Concentrations and Their Emission Gross (InTech Publisher, 2011), Chap. 5.

J. Zhou, Z. F. Yuan, X. G. Pu, K. Wang, Y. G. Lu, and K. F. Cen, “Study of zero-crossing polarity correlation for velocity measurement of high temperature flue gas,” Proc. CSEE. 19(3), 11–13, 45 (1999).

T. I. Wang, “Optical flow sensor using fast correlation algorithm,” US Patent US20020145727 (2003–8-26).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley-IEEE Press, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Layout of optical scintillation measurement.
Fig. 2
Fig. 2 The numerical computer simulations.
Fig. 3
Fig. 3 The schematic diagram of the online total emission measurement experimental setup.
Fig. 4
Fig. 4 Photographs of the (a) WMS gas concentration measurement system and (b) OSCC velocity measurement system. The two systems are combined into one device thus reducing the volume and improving the easiness of operation.
Fig. 5
Fig. 5 The channel A and channel B original and processed optical scintillation signals within 5.5 s form data acquisition card. (a) the collected two sets signals; (b) cross correlation data, maximum is 4 × 10−4 s, v = 1000 m/s;(c) the band-pass filtered signals; (d) cross correlation data, maximum is 4.1 × 10−2 s, v = 7.3 m/s.
Fig. 6
Fig. 6 The continuous measurement results of gas flow velocity with Pitot tube (upper panel) and OSCC method (lower panel).
Fig. 7
Fig. 7 Continuous measurement results of oxygen. (a) the oxygen concentration derived from TDLAS; (b) the oxygen flow rate based on Eq. (18) and OSCC measurement data.
Fig. 8
Fig. 8 (a) Measurements of the distribution of particle number density vs particle size in air and 4 measurements in flue gas; and (b) continuous measurement results of particle concentrations.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 exp ( k L )
I = I 0 ( 1 k L ) = I 0 [ 1 σ ( ν ) C L ]
I 2 f I 0 σ 0 C L
C M e a = a I M e a C R e f L R e f I R e f L M e a
C M e a = ( I 2 f I 1 f ) M e a C R e f L R e f ( I 2 f I 1 f ) R e f L M e a
f = v D r
ln I ( t ) = ln < I > 0 L α ' ( r , t ) d x
C ln I ( l , τ ) = 0 L 0 L R α ( | r 1 r 2 | , τ ) d x 1 d x 2
R α ( r 1 r 2 , τ ) = R α ( x 1 x 2 , l v τ , 0 )
C ln I ( l , τ ) = C α 2 0 L ( L x ) ( L 0 2 / 3 r 2 / 3 ) d x , ( r = x 2 + ( l v τ ) 2 )
v ¯ = l τ
f v ξ + D r
G = 0 T Q ( t ) d t
M = 0 T m ( t ) Q ( t ) d t
C l n I ( l , τ ) = 2 0 L ( L x ) R α ( x , l v ( x ) τ ) d x
Q T = v s
Q = ω v s
E ( K g / s ) = { [ Q ( m 3 / s ) C g a s ( % ) 1000 ( L / m 3 ) ] 22.4 ( L / m o l ) 1000 ( g / k g ) t ( s ) } M ( g / m o l )

Metrics