Abstract

We theoretically demonstrate a novel, efficient and cost effective thermal emitter using a Mie-resonance metamaterial for thermophotovoltaic (TPV) applications. We propose for the first time the design of a thermal emitter which is based on nanoparticle-embedded thin film. The emitter consists of a thin film of SiO2 on the top of tungsten layer deposited on a substrate. The thin film is embedded with tungsten nanoparticles which alter the refractive index of the film. This gives rise to desired emissive properties in the wavelength range of 0.4 μm to 2 μm suitable for GaSb and InGaAs based photovoltaics. Effective dielectric properties are calculated using Maxwell-Garnett-Mie theory. Our calculations indicate this would significantly improve the efficiency of TPV cells. We introduce a new parameter to gauge the efficacy of thermal emitters and use it to compare different designs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures

Etienne Blandre, Makoto Shimizu, Asaka Kohiyama, Hiroo Yugami, Pierre-Olivier Chapuis, and Rodolphe Vaillon
Opt. Express 26(4) 4346-4357 (2018)

Porous metal-based multilayers for selective thermal emitters

Shiwei Shu, Lingxia Zheng, Hui Li, Chun Kwan Tsang, Liange Shi, and Yang Yang Li
Opt. Lett. 37(23) 4883-4885 (2012)

Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems

Yi Xiang Yeng, Walker R. Chan, Veronika Rinnerbauer, John D. Joannopoulos, Marin Soljačić, and Ivan Celanovic
Opt. Express 21(S6) A1035-A1051 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Basu, Y. Chen, and Z. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31, 689–716 (2007).
    [Crossref]
  2. M. Bosi, C. Ferrari, F. Melino, M. Pinelli, P. Spina, and M. Venturini, “Thermophotovoltaic generation: a state of the art review,” Proceedings ECOS (2012).
  3. T. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renewable Sustainable Energy Rev. 3, 77–184 (1999).
    [Crossref]
  4. G. Colangelo, A. De Risi, and D. Laforgia, “Experimental study of a burner with high temperature heat recovery system for tpv applications,” Energy Convers. Manage. 47, 1192–1206 (2006).
    [Crossref]
  5. B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, and C. S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
    [Crossref]
  6. D. C. White, B. D. Wedlock, and J. Blair, “Recent advances in thermal energy conversion,” in “15th Annual Proceedings, Power Sources Conference,” (1961), pp. 125–132.
  7. J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film’thermal well’emitters and absorbers for high-efficiency thermophotovoltaics,” arXiv preprint arXiv:1502.02061 (2015).
  8. N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151 (2003).
    [Crossref]
  9. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the shockley-queisser limit,” Opt. Express 17, 15145–15159 (2009).
    [Crossref] [PubMed]
  10. P. Wurfel and W. Ruppel, “Upper limit of thermophotovoltaic solar-energy conversion,” IEEE Trans. Electron. Dev. 27, 745–750 (1980).
    [Crossref]
  11. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
    [Crossref] [PubMed]
  12. W. R. Chan, P. Bermel, R. C. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U. S. A. 110, 5309–5314 (2013).
    [Crossref] [PubMed]
  13. B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
    [Crossref]
  14. L. Wang and Z. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 063902 (2012).
    [Crossref]
  15. P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
    [Crossref] [PubMed]
  16. K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, and G. S. Girolami, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
    [Crossref] [PubMed]
  17. M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
    [Crossref]
  18. Y. Zheng and A. Ghanekar, “Radiative energy and momentum transfer for various spherical shapes: a single sphere, a bubble, a spherical shell and a coated sphere,” J. Appl. Phys. 117, 064314 (2015).
    [Crossref]
  19. L. Ferguson and F. Dogan, “Spectral analysis of transition metal-doped mgo ‘matched emitters’ for thermophotovoltaic energy conversion,” J. Mater. Sci. 37, 1301–1308 (2002).
    [Crossref]
  20. A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18, S174 (2003).
    [Crossref]
  21. Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
    [Crossref]
  22. A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the nir based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
    [Crossref]
  23. J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
    [Crossref] [PubMed]
  24. H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15, S243 (2005).
    [Crossref]
  25. I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. G. Kassakian, “1d and 2d photonic crystals for thermophotovoltaic applications,” in “Photonics Europe,” (International Society for Optics and Photonics, 2004), pp. 416–422.
  26. G. Kiziltas, J. L. Volakis, and N. Kikuchi, “Design of a frequency selective structure with inhomogeneous substrates as a thermophotovoltaic filter,” IEEE Trans. Antennas Propagation 53, 2282–2289 (2005).
    [Crossref]
  27. H. Höfler, H. Paul, W. Ruppel, and P. Würfel, “Interference filters for thermophotovoltaic solar energy conversion,” Solar Cells 10, 273–286 (1983).
    [Crossref]
  28. G. Liu, Y. Xuan, Y. Han, and Q. Li, “Investigation of one-dimensional si/sio2 hotonic crystals for thermophotovoltaic filter,” Science in China Series E: Technological Sciences 51, 2031–2039 (2008).
    [Crossref]
  29. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [Crossref] [PubMed]
  30. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
    [Crossref]
  31. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
    [Crossref] [PubMed]
  32. D. Woolf, J. Hensley, J. Cederberg, D. Bethke, A. Grine, and E. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
    [Crossref]
  33. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
    [Crossref]
  34. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. DAguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
    [Crossref]
  35. C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20, 10376–10381 (2012).
    [Crossref] [PubMed]
  36. C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2014).
    [Crossref] [PubMed]
  37. P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing fabry-pérot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
    [Crossref]
  38. B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
    [Crossref]
  39. M. Francoeur, S. Basu, and S. J. Petersen, “Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles,” Opt. Express 19, 18774–18788 (2011).
    [Crossref] [PubMed]
  40. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Materials Today 12, 60–69 (2009).
    [Crossref]
  41. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
    [Crossref]
  42. A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23, A1129–A1139 (2015).
    [Crossref] [PubMed]
  43. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE press, 1995).
  44. L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of sio2 layer in the uv/vis/nir range: spectrophotometric reverse engineering on single and bi-layer designs,” Journal of the European Optical Society-Rapid publications 8 (2013).
    [Crossref]
  45. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  46. E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic Press, 1998).
  47. P. Timans, Advances in Rapid Thermal and Integrated Processing, ed. F. Roozeboom, (Dordrecht, The Netherlands: Kluwer Academic Publishers, The Netherlands, 1996).
  48. C. Xu, S. Wang, G. Wang, J. Liang, S. Wang, L. Bai, J. Yang, and X. Chen, “Temperature dependence of refractive indices for 4h-and 6h-sic,” Journal of Applied Physics 115, 113501 (2014).
    [Crossref]
  49. Y.-B. Chen, Z. Zhang, and P. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79–90 (2007).
    [Crossref]
  50. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
    [Crossref] [PubMed]
  51. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol. 25 (SpringerBerlin, 1995).
    [Crossref]
  52. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852 (1989).
    [Crossref]
  53. M. S. Wheeler, “A scattering-based approach to the design, analysis, and experimental verification of magnetic metamaterials made from dielectrics,” Ph.D. thesis (2010).
  54. M. G. M., Y. B. B., O. V. Sulima, A. W. Bett, and P. S. Dutta, “Proc. 5th TPV Conf., Rome, Italy, September 2002 (AIP, New York, 1999),” p. p 402.
  55. Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. E. Naciri, “Extended maxwell-garnett-mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).
    [Crossref]
  56. S. Roberts, “Optical properties of nickel and tungsten and their interpretation according to drude’s formula,” Phys. Rev. 114, 104 (1959).
    [Crossref]
  57. P. Timans, “The thermal radiative properties of semiconductors,” in “Advances in Rapid Thermal and Integrated Processing,” (Springer, 1996), pp. 35–101.
    [Crossref]
  58. M. Planck, The Theory of Heat Radiation (Dover Publications, 2011).

2015 (3)

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film’thermal well’emitters and absorbers for high-efficiency thermophotovoltaics,” arXiv preprint arXiv:1502.02061 (2015).

Y. Zheng and A. Ghanekar, “Radiative energy and momentum transfer for various spherical shapes: a single sphere, a bubble, a spherical shell and a coated sphere,” J. Appl. Phys. 117, 064314 (2015).
[Crossref]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23, A1129–A1139 (2015).
[Crossref] [PubMed]

2014 (5)

C. Xu, S. Wang, G. Wang, J. Liang, S. Wang, L. Bai, J. Yang, and X. Chen, “Temperature dependence of refractive indices for 4h-and 6h-sic,” Journal of Applied Physics 115, 113501 (2014).
[Crossref]

Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. E. Naciri, “Extended maxwell-garnett-mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

D. Woolf, J. Hensley, J. Cederberg, D. Bethke, A. Grine, and E. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

2013 (7)

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[Crossref]

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. DAguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, and G. S. Girolami, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U. S. A. 110, 5309–5314 (2013).
[Crossref] [PubMed]

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref] [PubMed]

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of sio2 layer in the uv/vis/nir range: spectrophotometric reverse engineering on single and bi-layer designs,” Journal of the European Optical Society-Rapid publications 8 (2013).
[Crossref]

2012 (3)

L. Wang and Z. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 063902 (2012).
[Crossref]

C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20, 10376–10381 (2012).
[Crossref] [PubMed]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

2011 (3)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing fabry-pérot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

M. Francoeur, S. Basu, and S. J. Petersen, “Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles,” Opt. Express 19, 18774–18788 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (2)

2008 (3)

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref] [PubMed]

G. Liu, Y. Xuan, Y. Han, and Q. Li, “Investigation of one-dimensional si/sio2 hotonic crystals for thermophotovoltaic filter,” Science in China Series E: Technological Sciences 51, 2031–2039 (2008).
[Crossref]

2007 (2)

S. Basu, Y. Chen, and Z. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31, 689–716 (2007).
[Crossref]

Y.-B. Chen, Z. Zhang, and P. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79–90 (2007).
[Crossref]

2006 (2)

G. Colangelo, A. De Risi, and D. Laforgia, “Experimental study of a burner with high temperature heat recovery system for tpv applications,” Energy Convers. Manage. 47, 1192–1206 (2006).
[Crossref]

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

2005 (3)

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15, S243 (2005).
[Crossref]

G. Kiziltas, J. L. Volakis, and N. Kikuchi, “Design of a frequency selective structure with inhomogeneous substrates as a thermophotovoltaic filter,” IEEE Trans. Antennas Propagation 53, 2282–2289 (2005).
[Crossref]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
[Crossref]

2004 (1)

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, and C. S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

2003 (2)

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151 (2003).
[Crossref]

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18, S174 (2003).
[Crossref]

2002 (2)

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

L. Ferguson and F. Dogan, “Spectral analysis of transition metal-doped mgo ‘matched emitters’ for thermophotovoltaic energy conversion,” J. Mater. Sci. 37, 1301–1308 (2002).
[Crossref]

2000 (1)

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the nir based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[Crossref]

1999 (1)

T. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renewable Sustainable Energy Rev. 3, 77–184 (1999).
[Crossref]

1998 (1)

1989 (1)

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852 (1989).
[Crossref]

1983 (1)

H. Höfler, H. Paul, W. Ruppel, and P. Würfel, “Interference filters for thermophotovoltaic solar energy conversion,” Solar Cells 10, 273–286 (1983).
[Crossref]

1980 (1)

P. Wurfel and W. Ruppel, “Upper limit of thermophotovoltaic solar-energy conversion,” IEEE Trans. Electron. Dev. 27, 745–750 (1980).
[Crossref]

1959 (1)

S. Roberts, “Optical properties of nickel and tungsten and their interpretation according to drude’s formula,” Phys. Rev. 114, 104 (1959).
[Crossref]

Abbas, M. N.

Aitchison, J. S.

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
[Crossref]

Alu, A.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. DAguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

Araghchini, M.

Argyropoulos, C.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. DAguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

Arju, N.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Arpin, K. A.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, and G. S. Girolami, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

B., Y. B.

M. G. M., Y. B. B., O. V. Sulima, A. W. Bett, and P. S. Dutta, “Proc. 5th TPV Conf., Rome, Italy, September 2002 (AIP, New York, 1999),” p. p 402.

Bai, L.

C. Xu, S. Wang, G. Wang, J. Liang, S. Wang, L. Bai, J. Yang, and X. Chen, “Temperature dependence of refractive indices for 4h-and 6h-sic,” Journal of Applied Physics 115, 113501 (2014).
[Crossref]

Basu, S.

Battie, Y.

Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. E. Naciri, “Extended maxwell-garnett-mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).
[Crossref]

Bermel, P.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U. S. A. 110, 5309–5314 (2013).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref] [PubMed]

Bethke, D.

D. Woolf, J. Hensley, J. Cederberg, D. Bethke, A. Grine, and E. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

Bett, A. W.

M. G. M., Y. B. B., O. V. Sulima, A. W. Bett, and P. S. Dutta, “Proc. 5th TPV Conf., Rome, Italy, September 2002 (AIP, New York, 1999),” p. p 402.

Biswas, R.

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Blair, J.

D. C. White, B. D. Wedlock, and J. Blair, “Recent advances in thermal energy conversion,” in “15th Annual Proceedings, Power Sources Conference,” (1961), pp. 125–132.

Bläsi, B.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the nir based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[Crossref]

Boerner, V.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the nir based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[Crossref]

Boriskina, S. V.

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film’thermal well’emitters and absorbers for high-efficiency thermophotovoltaics,” arXiv preprint arXiv:1502.02061 (2015).

Bosi, M.

M. Bosi, C. Ferrari, F. Melino, M. Pinelli, P. Spina, and M. Venturini, “Thermophotovoltaic generation: a state of the art review,” Proceedings ECOS (2012).

Brener, I.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Cederberg, J.

D. Woolf, J. Hensley, J. Cederberg, D. Bethke, A. Grine, and E. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

Celanovic, I.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U. S. A. 110, 5309–5314 (2013).
[Crossref] [PubMed]

I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. G. Kassakian, “1d and 2d photonic crystals for thermophotovoltaic applications,” in “Photonics Europe,” (International Society for Optics and Photonics, 2004), pp. 416–422.

Chan, W.

Chan, W. R.

W. R. Chan, P. Bermel, R. C. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U. S. A. 110, 5309–5314 (2013).
[Crossref] [PubMed]

Chang, P.-E.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing fabry-pérot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

Chang, Y.-C.

Chang, Y.-T.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing fabry-pérot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Chaoui, N.

Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. E. Naciri, “Extended maxwell-garnett-mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).
[Crossref]

Chen, G.

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film’thermal well’emitters and absorbers for high-efficiency thermophotovoltaics,” arXiv preprint arXiv:1502.02061 (2015).

Chen, H.-H.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing fabry-pérot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

Chen, X.

C. Xu, S. Wang, G. Wang, J. Liang, S. Wang, L. Bai, J. Yang, and X. Chen, “Temperature dependence of refractive indices for 4h-and 6h-sic,” Journal of Applied Physics 115, 113501 (2014).
[Crossref]

Chen, Y.

S. Basu, Y. Chen, and Z. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31, 689–716 (2007).
[Crossref]

Chen, Y.-B.

Y.-B. Chen, Z. Zhang, and P. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79–90 (2007).
[Crossref]

Cheng, C.-W.

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE press, 1995).

Chiu, C.-W.

Chuang, T.-H.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Cloud, A. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, and G. S. Girolami, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Colangelo, G.

G. Colangelo, A. De Risi, and D. Laforgia, “Experimental study of a burner with high temperature heat recovery system for tpv applications,” Energy Convers. Manage. 47, 1192–1206 (2006).
[Crossref]

Coutts, T.

T. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renewable Sustainable Energy Rev. 3, 77–184 (1999).
[Crossref]

DAguanno, G.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. DAguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

de Abajo, F. J. G.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

De Risi, A.

G. Colangelo, A. De Risi, and D. Laforgia, “Experimental study of a burner with high temperature heat recovery system for tpv applications,” Energy Convers. Manage. 47, 1192–1206 (2006).
[Crossref]

Dewalt, C. J.

Diso, D.

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18, S174 (2003).
[Crossref]

Djurišic, A. B.

Dogan, F.

L. Ferguson and F. Dogan, “Spectral analysis of transition metal-doped mgo ‘matched emitters’ for thermophotovoltaic energy conversion,” J. Mater. Sci. 37, 1301–1308 (2002).
[Crossref]

Dominguez, J.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Doyle, W. T.

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852 (1989).
[Crossref]

Dutta, P. S.

M. G. M., Y. B. B., O. V. Sulima, A. W. Bett, and P. S. Dutta, “Proc. 5th TPV Conf., Rome, Italy, September 2002 (AIP, New York, 1999),” p. p 402.

Elazar, J. M.

El-Kady, I.

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Fan, J. A.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Fan, S.

Feng, Y.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Ferguson, L.

L. Ferguson and F. Dogan, “Spectral analysis of transition metal-doped mgo ‘matched emitters’ for thermophotovoltaic energy conversion,” J. Mater. Sci. 37, 1301–1308 (2002).
[Crossref]

Ferrari, C.

M. Bosi, C. Ferrari, F. Melino, M. Pinelli, P. Spina, and M. Venturini, “Thermophotovoltaic generation: a state of the art review,” Proceedings ECOS (2012).

Fleming, J.

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Francoeur, M.

Funston, A. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

Gao, L.

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of sio2 layer in the uv/vis/nir range: spectrophotometric reverse engineering on single and bi-layer designs,” Journal of the European Optical Society-Rapid publications 8 (2013).
[Crossref]

Ghanekar, A.

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23, A1129–A1139 (2015).
[Crossref] [PubMed]

Y. Zheng and A. Ghanekar, “Radiative energy and momentum transfer for various spherical shapes: a single sphere, a bubble, a spherical shell and a coated sphere,” J. Appl. Phys. 117, 064314 (2015).
[Crossref]

Ghebrebrhan, M.

Girolami, G. S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, and G. S. Girolami, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Gombert, A.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the nir based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[Crossref]

Gonzales, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Grine, A.

D. Woolf, J. Hensley, J. Cederberg, D. Bethke, A. Grine, and E. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

Hamam, R.

Han, S. E.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref] [PubMed]

Han, Y.

G. Liu, Y. Xuan, Y. Han, and Q. Li, “Investigation of one-dimensional si/sio2 hotonic crystals for thermophotovoltaic filter,” Science in China Series E: Technological Sciences 51, 2031–2039 (2008).
[Crossref]

Harder, N.-P.

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151 (2003).
[Crossref]

Heinzel, A.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the nir based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[Crossref]

Hensley, J.

D. Woolf, J. Hensley, J. Cederberg, D. Bethke, A. Grine, and E. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

Ho, K.

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Höfler, H.

H. Höfler, H. Paul, W. Ruppel, and P. Würfel, “Interference filters for thermophotovoltaic solar energy conversion,” Solar Cells 10, 273–286 (1983).
[Crossref]

Hsu, W.-C.

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film’thermal well’emitters and absorbers for high-efficiency thermophotovoltaics,” arXiv preprint arXiv:1502.02061 (2015).

Huang, C.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Huang, Y.

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film’thermal well’emitters and absorbers for high-efficiency thermophotovoltaics,” arXiv preprint arXiv:1502.02061 (2015).

Jacob, Z.

Jensen, K. F.

W. R. Chan, P. Bermel, R. C. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U. S. A. 110, 5309–5314 (2013).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref] [PubMed]

Jiang, T.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Jiang, Y.-W.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing fabry-pérot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

Joannopoulos, J. D.

W. R. Chan, P. Bermel, R. C. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U. S. A. 110, 5309–5314 (2013).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref] [PubMed]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Johnson, S. G.

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Jovanovic, N.

I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. G. Kassakian, “1d and 2d photonic crystals for thermophotovoltaic applications,” in “Photonics Europe,” (International Society for Optics and Photonics, 2004), pp. 416–422.

Kalanyan, B.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, and G. S. Girolami, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15, S243 (2005).
[Crossref]

Kassakian, J. G.

I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. G. Kassakian, “1d and 2d photonic crystals for thermophotovoltaic applications,” in “Photonics Europe,” (International Society for Optics and Photonics, 2004), pp. 416–422.

Kelp, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Kikuchi, N.

G. Kiziltas, J. L. Volakis, and N. Kikuchi, “Design of a frequency selective structure with inhomogeneous substrates as a thermophotovoltaic filter,” IEEE Trans. Antennas Propagation 53, 2282–2289 (2005).
[Crossref]

Kiziltas, G.

G. Kiziltas, J. L. Volakis, and N. Kikuchi, “Design of a frequency selective structure with inhomogeneous substrates as a thermophotovoltaic filter,” IEEE Trans. Antennas Propagation 53, 2282–2289 (2005).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol. 25 (SpringerBerlin, 1995).
[Crossref]

Laforgia, D.

G. Colangelo, A. De Risi, and D. Laforgia, “Experimental study of a burner with high temperature heat recovery system for tpv applications,” Energy Convers. Manage. 47, 1192–1206 (2006).
[Crossref]

Lai, K.-T.

Le, K. Q.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. DAguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

Lee, S.-C.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing fabry-pérot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Lemarchand, F.

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of sio2 layer in the uv/vis/nir range: spectrophotometric reverse engineering on single and bi-layer designs,” Journal of the European Optical Society-Rapid publications 8 (2013).
[Crossref]

Lenert, A.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Lequime, M.

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of sio2 layer in the uv/vis/nir range: spectrophotometric reverse engineering on single and bi-layer designs,” Journal of the European Optical Society-Rapid publications 8 (2013).
[Crossref]

Li, Q.

G. Liu, Y. Xuan, Y. Han, and Q. Li, “Investigation of one-dimensional si/sio2 hotonic crystals for thermophotovoltaic filter,” Science in China Series E: Technological Sciences 51, 2031–2039 (2008).
[Crossref]

Liang, J.

C. Xu, S. Wang, G. Wang, J. Liang, S. Wang, L. Bai, J. Yang, and X. Chen, “Temperature dependence of refractive indices for 4h-and 6h-sic,” Journal of Applied Physics 115, 113501 (2014).
[Crossref]

Licciulli, A.

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18, S174 (2003).
[Crossref]

Lin, L.

Lin, S.

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Link, S. D.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, and C. S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Materials Today 12, 60–69 (2009).
[Crossref]

Liu, G.

G. Liu, Y. Xuan, Y. Han, and Q. Li, “Investigation of one-dimensional si/sio2 hotonic crystals for thermophotovoltaic filter,” Science in China Series E: Technological Sciences 51, 2031–2039 (2008).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Liz-Marzán, L. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

Lomascolo, M.

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18, S174 (2003).
[Crossref]

Losego, M. D.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, and G. S. Girolami, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Luther, J.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the nir based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[Crossref]

M., M. G.

M. G. M., Y. B. B., O. V. Sulima, A. W. Bett, and P. S. Dutta, “Proc. 5th TPV Conf., Rome, Italy, September 2002 (AIP, New York, 1999),” p. p 402.

Maffezzoli, A.

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18, S174 (2003).
[Crossref]

Mahorter, R. G.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, and C. S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Majewski, M. L.

Mallek, J.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, and G. S. Girolami, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Marton, C. H.

W. R. Chan, P. Bermel, R. C. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U. S. A. 110, 5309–5314 (2013).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref] [PubMed]

Mattiucci, N.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. DAguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

Mazzer, M.

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18, S174 (2003).
[Crossref]

Melino, F.

M. Bosi, C. Ferrari, F. Melino, M. Pinelli, P. Spina, and M. Venturini, “Thermophotovoltaic generation: a state of the art review,” Proceedings ECOS (2012).

Meng, C.-Y.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Messham, R. L.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, and C. S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Mojahedi, M.

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
[Crossref]

Molesky, S.

Mulvaney, P.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

Murray, C. S.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, and C. S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Murray, S.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, and C. S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

Naciri, A. E.

Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. E. Naciri, “Extended maxwell-garnett-mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).
[Crossref]

Nagpal, P.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref] [PubMed]

Nam, Y.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Ning, H.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, and G. S. Girolami, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Norris, D. J.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref] [PubMed]

Novo, C.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

O’Sullivan, F.

I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. G. Kassakian, “1d and 2d photonic crystals for thermophotovoltaic applications,” in “Photonics Europe,” (International Society for Optics and Photonics, 2004), pp. 416–422.

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic Press, 1998).

Palmisiano, M. N.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, and C. S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Parsons, G. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, and G. S. Girolami, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Pastoriza-Santos, I.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

Paul, H.

H. Höfler, H. Paul, W. Ruppel, and P. Würfel, “Interference filters for thermophotovoltaic solar energy conversion,” Solar Cells 10, 273–286 (1983).
[Crossref]

Petersen, S. J.

Pilawa-Podgurski, R. C.

W. R. Chan, P. Bermel, R. C. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U. S. A. 110, 5309–5314 (2013).
[Crossref] [PubMed]

Pinelli, M.

M. Bosi, C. Ferrari, F. Melino, M. Pinelli, P. Spina, and M. Venturini, “Thermophotovoltaic generation: a state of the art review,” Proceedings ECOS (2012).

Planck, M.

M. Planck, The Theory of Heat Radiation (Dover Publications, 2011).

Qi, M.

I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. G. Kassakian, “1d and 2d photonic crystals for thermophotovoltaic applications,” in “Photonics Europe,” (International Society for Optics and Photonics, 2004), pp. 416–422.

Rakic, A. D.

Rephaeli, E.

Resano-Garcia, A.

Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. E. Naciri, “Extended maxwell-garnett-mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).
[Crossref]

Roberts, S.

S. Roberts, “Optical properties of nickel and tungsten and their interpretation according to drude’s formula,” Phys. Rev. 114, 104 (1959).
[Crossref]

Rodríguez-Fernández, J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

Ruppel, W.

H. Höfler, H. Paul, W. Ruppel, and P. Würfel, “Interference filters for thermophotovoltaic solar energy conversion,” Solar Cells 10, 273–286 (1983).
[Crossref]

P. Wurfel and W. Ruppel, “Upper limit of thermophotovoltaic solar-energy conversion,” IEEE Trans. Electron. Dev. 27, 745–750 (1980).
[Crossref]

Sai, H.

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15, S243 (2005).
[Crossref]

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Schmuck, G. P.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, and C. S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Schultz, R. W.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, and C. S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Senkevich, J. J.

W. R. Chan, P. Bermel, R. C. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U. S. A. 110, 5309–5314 (2013).
[Crossref] [PubMed]

Sergeant, N. P.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, and G. S. Girolami, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Shaner, E.

D. Woolf, J. Hensley, J. Cederberg, D. Bethke, A. Grine, and E. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

Shih, M.-H.

Shuai, Y.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Shvets, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Siergiej, R. R.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, and C. S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Soljacic, M.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U. S. A. 110, 5309–5314 (2013).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref] [PubMed]

Spina, P.

M. Bosi, C. Ferrari, F. Melino, M. Pinelli, P. Spina, and M. Venturini, “Thermophotovoltaic generation: a state of the art review,” Proceedings ECOS (2012).

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Stein, A.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref] [PubMed]

Su, J.

Sulima, O. V.

M. G. M., Y. B. B., O. V. Sulima, A. W. Bett, and P. S. Dutta, “Proc. 5th TPV Conf., Rome, Italy, September 2002 (AIP, New York, 1999),” p. p 402.

Sun, H.

Timans, P.

Y.-B. Chen, Z. Zhang, and P. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79–90 (2007).
[Crossref]

P. Timans, Advances in Rapid Thermal and Integrated Processing, ed. F. Roozeboom, (Dordrecht, The Netherlands: Kluwer Academic Publishers, The Netherlands, 1996).

P. Timans, “The thermal radiative properties of semiconductors,” in “Advances in Rapid Thermal and Integrated Processing,” (Springer, 1996), pp. 35–101.
[Crossref]

Tong, J. K.

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film’thermal well’emitters and absorbers for high-efficiency thermophotovoltaics,” arXiv preprint arXiv:1502.02061 (2015).

Torsello, G.

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18, S174 (2003).
[Crossref]

Tsai, M.-W.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Tundo, S.

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18, S174 (2003).
[Crossref]

Tutuc, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Tzuang, L. D.-C.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing fabry-pérot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

Venturini, M.

M. Bosi, C. Ferrari, F. Melino, M. Pinelli, P. Spina, and M. Venturini, “Thermophotovoltaic generation: a state of the art review,” Proceedings ECOS (2012).

Volakis, J. L.

G. Kiziltas, J. L. Volakis, and N. Kikuchi, “Design of a frequency selective structure with inhomogeneous substrates as a thermophotovoltaic filter,” IEEE Trans. Antennas Propagation 53, 2282–2289 (2005).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol. 25 (SpringerBerlin, 1995).
[Crossref]

Wang, E. N.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Wang, G.

C. Xu, S. Wang, G. Wang, J. Liang, S. Wang, L. Bai, J. Yang, and X. Chen, “Temperature dependence of refractive indices for 4h-and 6h-sic,” Journal of Applied Physics 115, 113501 (2014).
[Crossref]

Wang, H.

Wang, L.

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[Crossref]

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

L. Wang and Z. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 063902 (2012).
[Crossref]

Wang, S.

C. Xu, S. Wang, G. Wang, J. Liang, S. Wang, L. Bai, J. Yang, and X. Chen, “Temperature dependence of refractive indices for 4h-and 6h-sic,” Journal of Applied Physics 115, 113501 (2014).
[Crossref]

C. Xu, S. Wang, G. Wang, J. Liang, S. Wang, L. Bai, J. Yang, and X. Chen, “Temperature dependence of refractive indices for 4h-and 6h-sic,” Journal of Applied Physics 115, 113501 (2014).
[Crossref]

Wang, Z.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Wedlock, B. D.

D. C. White, B. D. Wedlock, and J. Blair, “Recent advances in thermal energy conversion,” in “15th Annual Proceedings, Power Sources Conference,” (1961), pp. 125–132.

Wehrer, R. J.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, and C. S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Wernsman, B.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, and C. S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Wheeler, M. S.

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
[Crossref]

M. S. Wheeler, “A scattering-based approach to the design, analysis, and experimental verification of magnetic metamaterials made from dielectrics,” Ph.D. thesis (2010).

White, D. C.

D. C. White, B. D. Wedlock, and J. Blair, “Recent advances in thermal energy conversion,” in “15th Annual Proceedings, Power Sources Conference,” (1961), pp. 125–132.

Wittwer, V.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the nir based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[Crossref]

Woolf, D.

D. Woolf, J. Hensley, J. Cederberg, D. Bethke, A. Grine, and E. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

Wu, C.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Wu, Y.-T.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing fabry-pérot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

Wurfel, P.

P. Wurfel and W. Ruppel, “Upper limit of thermophotovoltaic solar-energy conversion,” IEEE Trans. Electron. Dev. 27, 745–750 (1980).
[Crossref]

Würfel, P.

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151 (2003).
[Crossref]

H. Höfler, H. Paul, W. Ruppel, and P. Würfel, “Interference filters for thermophotovoltaic solar energy conversion,” Solar Cells 10, 273–286 (1983).
[Crossref]

Xu, C.

C. Xu, S. Wang, G. Wang, J. Liang, S. Wang, L. Bai, J. Yang, and X. Chen, “Temperature dependence of refractive indices for 4h-and 6h-sic,” Journal of Applied Physics 115, 113501 (2014).
[Crossref]

Xuan, Y.

G. Liu, Y. Xuan, Y. Han, and Q. Li, “Investigation of one-dimensional si/sio2 hotonic crystals for thermophotovoltaic filter,” Science in China Series E: Technological Sciences 51, 2031–2039 (2008).
[Crossref]

Yang, J.

C. Xu, S. Wang, G. Wang, J. Liang, S. Wang, L. Bai, J. Yang, and X. Chen, “Temperature dependence of refractive indices for 4h-and 6h-sic,” Journal of Applied Physics 115, 113501 (2014).
[Crossref]

Ye, Y.-H.

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing fabry-pérot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

Yeng, Y. X.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref] [PubMed]

Yu, Z.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, and G. S. Girolami, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Yugami, H.

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15, S243 (2005).
[Crossref]

Zhang, F.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Materials Today 12, 60–69 (2009).
[Crossref]

Zhang, Y.

Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. E. Naciri, “Extended maxwell-garnett-mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).
[Crossref]

Zhang, Z.

L. Wang and Z. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 063902 (2012).
[Crossref]

S. Basu, Y. Chen, and Z. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31, 689–716 (2007).
[Crossref]

Y.-B. Chen, Z. Zhang, and P. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79–90 (2007).
[Crossref]

Zhang, Z. M.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Zhao, B.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Zhao, J.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Zhao, Q.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Materials Today 12, 60–69 (2009).
[Crossref]

Zheng, Y.

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23, A1129–A1139 (2015).
[Crossref] [PubMed]

Y. Zheng and A. Ghanekar, “Radiative energy and momentum transfer for various spherical shapes: a single sphere, a bubble, a spherical shell and a coated sphere,” J. Appl. Phys. 117, 064314 (2015).
[Crossref]

Zhou, J.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Materials Today 12, 60–69 (2009).
[Crossref]

Zhu, B.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Zhu, L.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, and G. S. Girolami, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing fabry-pérot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

L. Wang and Z. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 063902 (2012).
[Crossref]

D. Woolf, J. Hensley, J. Cederberg, D. Bethke, A. Grine, and E. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105, 081110 (2014).
[Crossref]

Chem. Soc. Rev. (1)

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

Energy Convers. Manage. (1)

G. Colangelo, A. De Risi, and D. Laforgia, “Experimental study of a burner with high temperature heat recovery system for tpv applications,” Energy Convers. Manage. 47, 1192–1206 (2006).
[Crossref]

IEEE Trans. Antennas Propagation (1)

G. Kiziltas, J. L. Volakis, and N. Kikuchi, “Design of a frequency selective structure with inhomogeneous substrates as a thermophotovoltaic filter,” IEEE Trans. Antennas Propagation 53, 2282–2289 (2005).
[Crossref]

IEEE Trans. Electron. Dev. (2)

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, and C. S. Murray, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

P. Wurfel and W. Ruppel, “Upper limit of thermophotovoltaic solar-energy conversion,” IEEE Trans. Electron. Dev. 27, 745–750 (1980).
[Crossref]

Int. J. Energy Res. (1)

S. Basu, Y. Chen, and Z. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31, 689–716 (2007).
[Crossref]

Int. J. Heat Mass Transfer (1)

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

J. Appl. Phys. (1)

Y. Zheng and A. Ghanekar, “Radiative energy and momentum transfer for various spherical shapes: a single sphere, a bubble, a spherical shell and a coated sphere,” J. Appl. Phys. 117, 064314 (2015).
[Crossref]

J. Chem. Phys. (1)

Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. E. Naciri, “Extended maxwell-garnett-mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).
[Crossref]

J. Heat Transfer (1)

Y.-B. Chen, Z. Zhang, and P. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79–90 (2007).
[Crossref]

J. Mater. Sci. (1)

L. Ferguson and F. Dogan, “Spectral analysis of transition metal-doped mgo ‘matched emitters’ for thermophotovoltaic energy conversion,” J. Mater. Sci. 37, 1301–1308 (2002).
[Crossref]

J. Micromech. Microeng. (1)

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15, S243 (2005).
[Crossref]

J. Mod. Opt. (1)

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the nir based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[Crossref]

J. Opt. (1)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Journal of Applied Physics (1)

C. Xu, S. Wang, G. Wang, J. Liang, S. Wang, L. Bai, J. Yang, and X. Chen, “Temperature dependence of refractive indices for 4h-and 6h-sic,” Journal of Applied Physics 115, 113501 (2014).
[Crossref]

Journal of the European Optical Society-Rapid publications (1)

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of sio2 layer in the uv/vis/nir range: spectrophotometric reverse engineering on single and bi-layer designs,” Journal of the European Optical Society-Rapid publications 8 (2013).
[Crossref]

Materials Today (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Materials Today 12, 60–69 (2009).
[Crossref]

Nano Lett. (1)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref] [PubMed]

Nat. Commun. (2)

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, and G. S. Girolami, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Nature (1)

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Opt. Express (7)

C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20, 10376–10381 (2012).
[Crossref] [PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[Crossref]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref] [PubMed]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the shockley-queisser limit,” Opt. Express 17, 15145–15159 (2009).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref] [PubMed]

M. Francoeur, S. Basu, and S. J. Petersen, “Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles,” Opt. Express 19, 18774–18788 (2011).
[Crossref] [PubMed]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23, A1129–A1139 (2015).
[Crossref] [PubMed]

Phys. Rev. (1)

S. Roberts, “Optical properties of nickel and tungsten and their interpretation according to drude’s formula,” Phys. Rev. 114, 104 (1959).
[Crossref]

Phys. Rev. B (3)

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
[Crossref]

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852 (1989).
[Crossref]

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. DAguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (1)

W. R. Chan, P. Bermel, R. C. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U. S. A. 110, 5309–5314 (2013).
[Crossref] [PubMed]

Prog. Electromagn. Res. (1)

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Renewable Sustainable Energy Rev. (1)

T. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renewable Sustainable Energy Rev. 3, 77–184 (1999).
[Crossref]

Science in China Series E: Technological Sciences (1)

G. Liu, Y. Xuan, Y. Han, and Q. Li, “Investigation of one-dimensional si/sio2 hotonic crystals for thermophotovoltaic filter,” Science in China Series E: Technological Sciences 51, 2031–2039 (2008).
[Crossref]

Semicond. Sci. Technol. (2)

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151 (2003).
[Crossref]

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18, S174 (2003).
[Crossref]

Solar Cells (1)

H. Höfler, H. Paul, W. Ruppel, and P. Würfel, “Interference filters for thermophotovoltaic solar energy conversion,” Solar Cells 10, 273–286 (1983).
[Crossref]

Solar Sol. Energy Mater. Sol. Cells (1)

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Solar Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Other (12)

M. Bosi, C. Ferrari, F. Melino, M. Pinelli, P. Spina, and M. Venturini, “Thermophotovoltaic generation: a state of the art review,” Proceedings ECOS (2012).

D. C. White, B. D. Wedlock, and J. Blair, “Recent advances in thermal energy conversion,” in “15th Annual Proceedings, Power Sources Conference,” (1961), pp. 125–132.

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film’thermal well’emitters and absorbers for high-efficiency thermophotovoltaics,” arXiv preprint arXiv:1502.02061 (2015).

I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. G. Kassakian, “1d and 2d photonic crystals for thermophotovoltaic applications,” in “Photonics Europe,” (International Society for Optics and Photonics, 2004), pp. 416–422.

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE press, 1995).

M. S. Wheeler, “A scattering-based approach to the design, analysis, and experimental verification of magnetic metamaterials made from dielectrics,” Ph.D. thesis (2010).

M. G. M., Y. B. B., O. V. Sulima, A. W. Bett, and P. S. Dutta, “Proc. 5th TPV Conf., Rome, Italy, September 2002 (AIP, New York, 1999),” p. p 402.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol. 25 (SpringerBerlin, 1995).
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic Press, 1998).

P. Timans, Advances in Rapid Thermal and Integrated Processing, ed. F. Roozeboom, (Dordrecht, The Netherlands: Kluwer Academic Publishers, The Netherlands, 1996).

P. Timans, “The thermal radiative properties of semiconductors,” in “Advances in Rapid Thermal and Integrated Processing,” (Springer, 1996), pp. 35–101.
[Crossref]

M. Planck, The Theory of Heat Radiation (Dover Publications, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Schematic of a typical TPV system with a thermal emitter/absorber and a PV cell. (b) An example of a thermal emitter based on 1-D grating structure of SiC and W on the top of W base. The grating thickness and period Λ=50 nm, filling ratio ϕ=0.55. (c) A proposed design of thermal emitter consists of 0.4 μm thick SiO2 layer on the top of 1 μm thick W layer deposited on the substrate. SiO2 layer is doped with W nanoparticles of 20 nm radius with a volume fraction of 30%.
Fig. 2
Fig. 2 Refractive indices of W, SiO2 and SiO2 doped with W nanoparticles of volume fraction 30% and 20 nm radius. (a) Real part of refractive index. (b) Imaginary part of refractive index. Imaginary part of refractive index for SiO2 is negligible for the range of wavelengths considered here [46].
Fig. 3
Fig. 3 Emission spectra of different configurations. (a) Hemispherical emissivity of W, SiO2 film of 0.4 μm deposited on W base and SiO2 doped with W nanoparticles of 20 nm radius and different volume fractions. (b) Emission spectrum (left y-axis) of the final design is compared to the result presented by Zhao et al [13] and 1-D surface grating discussed in this study. The EQE plots (right y-axis) of PV cells are shown for comparison [54].

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

e ( ω ) = c 2 ω 2 0 ω / c d k ρ k ρ μ = s , p ( 1 | R ˜ h ( μ ) | 2 | T ˜ h ( μ ) | 2 )
ε TE , 2 = ε TE , 0 [ 1 + π 2 3 ( Λ λ ) 2 ϕ 2 ( 1 ϕ ) 2 ( ε A ε B ) 2 ε TE , 0 ]
ε TM , 2 = ε TM , 0 [ 1 + π 2 3 ( Λ λ ) 2 ϕ 2 ( 1 ϕ ) 2 ( ε A ε B ) 2 ε TE , 0 ( ε TM , 0 ε A ε B ) 2 ]
ε TE , 0 = ϕ ε A + ( 1 ϕ ) ε B
ε TM , 0 = ( ϕ ε A + 1 ϕ ε B ) 1
ε eff = ε m ( r 3 + 2 α r f r 3 α r f )
a 1 , r = ε np ψ 1 ( x np ) ψ 1 ( x m ) ε m ψ 1 ( x m ) ψ 1 ( x np ) ε np ψ 1 ( x np ) ξ 1 ( x m ) ε m ξ 1 ( x m ) ψ 1 ( x np )
η = P out P rad
P rad = 0 ω 2 4 π 2 c 2 ω ( e ω / k B T 1 ) e ( ω ) d ω
P out = q V OC F F 0 n ¯ ( ω , T ) e ( ω ) η EQE ( ω ) d ω
n ¯ ( ω , T ) = ω 2 4 π 2 c 2 1 ( e ω / k B T 1 )
β emitter = ( P out P rad ) Real × ( P rad P out ) Ideal

Metrics