Abstract

In this work Al2O3–Er3Al5O12 eutectic composite was manufactured in planar geometry departing from eutectic particles both produced by directional solidification using a CO2 laser system at rates of 180 and 720 mm/h. Microstructure and mechanical properties were investigated as a function of the growth rate. Homogeneous and interpenetrated microstructure was found with phase size strongly dependent on the growth rate, decreasing when the processing rate was increased. Thermal emission of eutectic composites was studied in function of thermal excitation by using CO2 laser radiation as a heating source. An intense narrow emission band at 1.55 µm matching with the sensitive region of the InGaAs photoconverter and a low emission band at 1 µm were obtained. Features of thermal emission bands were correlated with collecting angle, microstructure and laser power, and compared to those obtained from departing eutectic particles.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoluminescence enhancement in Yb3+:Er3+ co-doped eutectic Al2O3: SiO2 thin films by 980nm excitation

Qi Song, Jingsong Gao, Xiaoyi Wang, Hong Chen, Tongtong Wang, Xuanming Zheng, Cheng-Ren Li, and Chang-Lie Song
Opt. Express 15(7) 3948-3954 (2007)

Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics

D. Sola, R. Balda, J.I. Peña, and J. Fernández
Opt. Express 20(10) 10701-10711 (2012)

Time-resolved fluorescence line-narrowing of Eu3+ in biocompatible eutectic glass-ceramics

D. Sola, R. Balda, M. Al-Saleh, J. I. Peña, and J. Fernández
Opt. Express 21(5) 6561-6571 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. C. White, B. D. Wedlock, and J. Blair, “Recent advances in thermal energy conversion,” in Proc. 15th Ann. Power Sources Conf. (1961), pp. 125–132.
  2. G. E. Guazzoni, “High-temperature spectral emittance of oxides of erbium, samarium, neodymium and ytterbium,” Appl. Spectrosc. 26(1), 60–65 (1972).
    [Crossref]
  3. C. R. Parent and R. E. Nelson, “Thermophotovoltaic energy conversion with a novel rare earth oxide emitter,” in Proc. 21st Intersoc. Energy Conv. Engg. Conf. (1986), pp. 1314–1317.
  4. D. L. Chubb, A. M. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19(13-14), 2551–2562 (1999).
    [Crossref]
  5. A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18(5), 174–183 (2003).
    [Crossref]
  6. V. M. Marchenko, “Selective visible and near-IR emission of Er2O3 excited by a 10.6-µm CO2 laser,” Quantum Electron. 36(8), 727–730 (2006).
    [Crossref]
  7. J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
    [Crossref]
  8. D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
    [Crossref]
  9. F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2(Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
    [Crossref]
  10. J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
    [Crossref]
  11. D. Sola, R. Balda, J. I. Peña, and J. Fernández, “Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics,” Opt. Express 20(10), 10701–10711 (2012).
    [Crossref] [PubMed]
  12. D. Sola, R. Balda, M. Al-Saleh, J. I. Peña, and J. Fernández, “Time-resolved fluorescence line-narrowing of Eu3+ in biocompatible eutectic glass-ceramics,” Opt. Express 21(5), 6561–6571 (2013).
    [Crossref] [PubMed]
  13. H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/E3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
    [Crossref]
  14. N. Nakagawa, H. Ohtsubo, Y. Waku, and H. Yugami, “Thermal emission properties of Al2O3/E3Al5O12 eutectic ceramics,” J. Eur. Ceram. Soc. 25(8), 1285–1291 (2005).
    [Crossref]
  15. M. C. Mesa, P. B. Oliete, R. I. Merino, and V. M. Orera, “Optical absorption and selective thermal emission in directionally solidified Al2O3–Er3Al5O12 and Al2O3–Er3Al5O12–ZrO2 eutectics,” J. Eur. Ceram. Soc. 33(13-14), 2587–2596 (2013).
    [Crossref]
  16. M. C. Mesa, P. B. Oliete, V. M. Orera, J. Y. Pastor, A. Martín, and J. Llorca, “Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method,” J. Eur. Ceram. Soc. 31(7), 1241–1250 (2011).
    [Crossref]
  17. M. C. Mesa, P. B. Oliete, and A. Larrea, “Microstructural stability at elevated temperatures of directionally solidified Al2O3/Er3Al5O12 eutectic ceramics,” J. Cryst. Growth 360, 119–122 (2012).
    [Crossref]
  18. P. Wu and A. D. Pelton, “Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems,” J. Alloys Compd. 179(1-2), 259–287 (1992).
    [Crossref]
  19. K. A. Jackson and J. D. Hunt, “Lamellar and rod eutectic growth,” Trans. Metall. Soc. AIME 236, 1129–1142 (1966).
  20. J. Y. Pastor, J. LLorca, A. Salazar, P. B. Oliete, I. de Francisco, and J. I. Pena, “Mechanical properties of melt-grown alumina–yttrium aluminum garnet eutectics up to 1900 K,” J. Am. Ceram. Soc. 88(6), 1488–1495 (2005).
    [Crossref]
  21. A. Larrea, V. M. Orera, R. I. Merino, and J. I. Peña, “Microstructure and mechanical properties of Al2O3-YSZ and Al2O3-YAG directionally solidified eutectic plates,” J. Eur. Ceram. Soc. 25(8), 1419–1429 (2005).
    [Crossref]
  22. V. V. Golovlev, C. H. Winston Chen, and W. R. Garrett, “Heat to light energy conversion by emitters doped with rare‐earth metal ions,” Appl. Phys. Lett. 69(2), 280–282 (1996).
    [Crossref]

2013 (2)

M. C. Mesa, P. B. Oliete, R. I. Merino, and V. M. Orera, “Optical absorption and selective thermal emission in directionally solidified Al2O3–Er3Al5O12 and Al2O3–Er3Al5O12–ZrO2 eutectics,” J. Eur. Ceram. Soc. 33(13-14), 2587–2596 (2013).
[Crossref]

D. Sola, R. Balda, M. Al-Saleh, J. I. Peña, and J. Fernández, “Time-resolved fluorescence line-narrowing of Eu3+ in biocompatible eutectic glass-ceramics,” Opt. Express 21(5), 6561–6571 (2013).
[Crossref] [PubMed]

2012 (2)

D. Sola, R. Balda, J. I. Peña, and J. Fernández, “Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics,” Opt. Express 20(10), 10701–10711 (2012).
[Crossref] [PubMed]

M. C. Mesa, P. B. Oliete, and A. Larrea, “Microstructural stability at elevated temperatures of directionally solidified Al2O3/Er3Al5O12 eutectic ceramics,” J. Cryst. Growth 360, 119–122 (2012).
[Crossref]

2011 (2)

M. C. Mesa, P. B. Oliete, V. M. Orera, J. Y. Pastor, A. Martín, and J. Llorca, “Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method,” J. Eur. Ceram. Soc. 31(7), 1241–1250 (2011).
[Crossref]

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

2008 (1)

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2(Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
[Crossref]

2006 (2)

V. M. Marchenko, “Selective visible and near-IR emission of Er2O3 excited by a 10.6-µm CO2 laser,” Quantum Electron. 36(8), 727–730 (2006).
[Crossref]

J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[Crossref]

2005 (3)

J. Y. Pastor, J. LLorca, A. Salazar, P. B. Oliete, I. de Francisco, and J. I. Pena, “Mechanical properties of melt-grown alumina–yttrium aluminum garnet eutectics up to 1900 K,” J. Am. Ceram. Soc. 88(6), 1488–1495 (2005).
[Crossref]

A. Larrea, V. M. Orera, R. I. Merino, and J. I. Peña, “Microstructure and mechanical properties of Al2O3-YSZ and Al2O3-YAG directionally solidified eutectic plates,” J. Eur. Ceram. Soc. 25(8), 1419–1429 (2005).
[Crossref]

N. Nakagawa, H. Ohtsubo, Y. Waku, and H. Yugami, “Thermal emission properties of Al2O3/E3Al5O12 eutectic ceramics,” J. Eur. Ceram. Soc. 25(8), 1285–1291 (2005).
[Crossref]

2003 (1)

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18(5), 174–183 (2003).
[Crossref]

2002 (1)

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[Crossref]

2000 (1)

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/E3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[Crossref]

1999 (1)

D. L. Chubb, A. M. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19(13-14), 2551–2562 (1999).
[Crossref]

1996 (1)

V. V. Golovlev, C. H. Winston Chen, and W. R. Garrett, “Heat to light energy conversion by emitters doped with rare‐earth metal ions,” Appl. Phys. Lett. 69(2), 280–282 (1996).
[Crossref]

1992 (1)

P. Wu and A. D. Pelton, “Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems,” J. Alloys Compd. 179(1-2), 259–287 (1992).
[Crossref]

1972 (1)

1966 (1)

K. A. Jackson and J. D. Hunt, “Lamellar and rod eutectic growth,” Trans. Metall. Soc. AIME 236, 1129–1142 (1966).

Al-Saleh, M.

Balda, R.

Blair, J.

D. C. White, B. D. Wedlock, and J. Blair, “Recent advances in thermal energy conversion,” in Proc. 15th Ann. Power Sources Conf. (1961), pp. 125–132.

Cases, R.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[Crossref]

Chubb, D. L.

D. L. Chubb, A. M. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19(13-14), 2551–2562 (1999).
[Crossref]

de Francisco, I.

J. Y. Pastor, J. LLorca, A. Salazar, P. B. Oliete, I. de Francisco, and J. I. Pena, “Mechanical properties of melt-grown alumina–yttrium aluminum garnet eutectics up to 1900 K,” J. Am. Ceram. Soc. 88(6), 1488–1495 (2005).
[Crossref]

Diso, D.

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18(5), 174–183 (2003).
[Crossref]

Ester, F. J.

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2(Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
[Crossref]

Fernández, J.

Garrett, W. R.

V. V. Golovlev, C. H. Winston Chen, and W. R. Garrett, “Heat to light energy conversion by emitters doped with rare‐earth metal ions,” Appl. Phys. Lett. 69(2), 280–282 (1996).
[Crossref]

Golovlev, V. V.

V. V. Golovlev, C. H. Winston Chen, and W. R. Garrett, “Heat to light energy conversion by emitters doped with rare‐earth metal ions,” Appl. Phys. Lett. 69(2), 280–282 (1996).
[Crossref]

Guazzoni, G. E.

Hunt, J. D.

K. A. Jackson and J. D. Hunt, “Lamellar and rod eutectic growth,” Trans. Metall. Soc. AIME 236, 1129–1142 (1966).

Jackson, K. A.

K. A. Jackson and J. D. Hunt, “Lamellar and rod eutectic growth,” Trans. Metall. Soc. AIME 236, 1129–1142 (1966).

Jenkins, P. P.

D. L. Chubb, A. M. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19(13-14), 2551–2562 (1999).
[Crossref]

Larrea, A.

M. C. Mesa, P. B. Oliete, and A. Larrea, “Microstructural stability at elevated temperatures of directionally solidified Al2O3/Er3Al5O12 eutectic ceramics,” J. Cryst. Growth 360, 119–122 (2012).
[Crossref]

A. Larrea, V. M. Orera, R. I. Merino, and J. I. Peña, “Microstructure and mechanical properties of Al2O3-YSZ and Al2O3-YAG directionally solidified eutectic plates,” J. Eur. Ceram. Soc. 25(8), 1419–1429 (2005).
[Crossref]

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[Crossref]

Licciulli, A.

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18(5), 174–183 (2003).
[Crossref]

Llorca, J.

M. C. Mesa, P. B. Oliete, V. M. Orera, J. Y. Pastor, A. Martín, and J. Llorca, “Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method,” J. Eur. Ceram. Soc. 31(7), 1241–1250 (2011).
[Crossref]

J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[Crossref]

J. Y. Pastor, J. LLorca, A. Salazar, P. B. Oliete, I. de Francisco, and J. I. Pena, “Mechanical properties of melt-grown alumina–yttrium aluminum garnet eutectics up to 1900 K,” J. Am. Ceram. Soc. 88(6), 1488–1495 (2005).
[Crossref]

Lomascolo, M.

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18(5), 174–183 (2003).
[Crossref]

Maffezzoli, A.

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18(5), 174–183 (2003).
[Crossref]

Marchenko, V. M.

V. M. Marchenko, “Selective visible and near-IR emission of Er2O3 excited by a 10.6-µm CO2 laser,” Quantum Electron. 36(8), 727–730 (2006).
[Crossref]

Martín, A.

M. C. Mesa, P. B. Oliete, V. M. Orera, J. Y. Pastor, A. Martín, and J. Llorca, “Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method,” J. Eur. Ceram. Soc. 31(7), 1241–1250 (2011).
[Crossref]

Maruyama, S.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/E3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[Crossref]

Mazzer, M.

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18(5), 174–183 (2003).
[Crossref]

Merino, R. I.

M. C. Mesa, P. B. Oliete, R. I. Merino, and V. M. Orera, “Optical absorption and selective thermal emission in directionally solidified Al2O3–Er3Al5O12 and Al2O3–Er3Al5O12–ZrO2 eutectics,” J. Eur. Ceram. Soc. 33(13-14), 2587–2596 (2013).
[Crossref]

A. Larrea, V. M. Orera, R. I. Merino, and J. I. Peña, “Microstructure and mechanical properties of Al2O3-YSZ and Al2O3-YAG directionally solidified eutectic plates,” J. Eur. Ceram. Soc. 25(8), 1419–1429 (2005).
[Crossref]

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[Crossref]

Mesa, M. C.

M. C. Mesa, P. B. Oliete, R. I. Merino, and V. M. Orera, “Optical absorption and selective thermal emission in directionally solidified Al2O3–Er3Al5O12 and Al2O3–Er3Al5O12–ZrO2 eutectics,” J. Eur. Ceram. Soc. 33(13-14), 2587–2596 (2013).
[Crossref]

M. C. Mesa, P. B. Oliete, and A. Larrea, “Microstructural stability at elevated temperatures of directionally solidified Al2O3/Er3Al5O12 eutectic ceramics,” J. Cryst. Growth 360, 119–122 (2012).
[Crossref]

M. C. Mesa, P. B. Oliete, V. M. Orera, J. Y. Pastor, A. Martín, and J. Llorca, “Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method,” J. Eur. Ceram. Soc. 31(7), 1241–1250 (2011).
[Crossref]

Nakagawa, N.

N. Nakagawa, H. Ohtsubo, Y. Waku, and H. Yugami, “Thermal emission properties of Al2O3/E3Al5O12 eutectic ceramics,” J. Eur. Ceram. Soc. 25(8), 1285–1291 (2005).
[Crossref]

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/E3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[Crossref]

Nakamura, K.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/E3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[Crossref]

Nelson, R. E.

C. R. Parent and R. E. Nelson, “Thermophotovoltaic energy conversion with a novel rare earth oxide emitter,” in Proc. 21st Intersoc. Energy Conv. Engg. Conf. (1986), pp. 1314–1317.

Ohtsubo, H.

N. Nakagawa, H. Ohtsubo, Y. Waku, and H. Yugami, “Thermal emission properties of Al2O3/E3Al5O12 eutectic ceramics,” J. Eur. Ceram. Soc. 25(8), 1285–1291 (2005).
[Crossref]

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/E3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[Crossref]

Oliete, P. B.

M. C. Mesa, P. B. Oliete, R. I. Merino, and V. M. Orera, “Optical absorption and selective thermal emission in directionally solidified Al2O3–Er3Al5O12 and Al2O3–Er3Al5O12–ZrO2 eutectics,” J. Eur. Ceram. Soc. 33(13-14), 2587–2596 (2013).
[Crossref]

M. C. Mesa, P. B. Oliete, and A. Larrea, “Microstructural stability at elevated temperatures of directionally solidified Al2O3/Er3Al5O12 eutectic ceramics,” J. Cryst. Growth 360, 119–122 (2012).
[Crossref]

M. C. Mesa, P. B. Oliete, V. M. Orera, J. Y. Pastor, A. Martín, and J. Llorca, “Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method,” J. Eur. Ceram. Soc. 31(7), 1241–1250 (2011).
[Crossref]

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

J. Y. Pastor, J. LLorca, A. Salazar, P. B. Oliete, I. de Francisco, and J. I. Pena, “Mechanical properties of melt-grown alumina–yttrium aluminum garnet eutectics up to 1900 K,” J. Am. Ceram. Soc. 88(6), 1488–1495 (2005).
[Crossref]

Orera, V. M.

M. C. Mesa, P. B. Oliete, R. I. Merino, and V. M. Orera, “Optical absorption and selective thermal emission in directionally solidified Al2O3–Er3Al5O12 and Al2O3–Er3Al5O12–ZrO2 eutectics,” J. Eur. Ceram. Soc. 33(13-14), 2587–2596 (2013).
[Crossref]

M. C. Mesa, P. B. Oliete, V. M. Orera, J. Y. Pastor, A. Martín, and J. Llorca, “Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method,” J. Eur. Ceram. Soc. 31(7), 1241–1250 (2011).
[Crossref]

J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[Crossref]

A. Larrea, V. M. Orera, R. I. Merino, and J. I. Peña, “Microstructure and mechanical properties of Al2O3-YSZ and Al2O3-YAG directionally solidified eutectic plates,” J. Eur. Ceram. Soc. 25(8), 1419–1429 (2005).
[Crossref]

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[Crossref]

Pal, A. M. T.

D. L. Chubb, A. M. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19(13-14), 2551–2562 (1999).
[Crossref]

Pardo, J. A.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[Crossref]

Parent, C. R.

C. R. Parent and R. E. Nelson, “Thermophotovoltaic energy conversion with a novel rare earth oxide emitter,” in Proc. 21st Intersoc. Energy Conv. Engg. Conf. (1986), pp. 1314–1317.

Pastor, J. Y.

M. C. Mesa, P. B. Oliete, V. M. Orera, J. Y. Pastor, A. Martín, and J. Llorca, “Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method,” J. Eur. Ceram. Soc. 31(7), 1241–1250 (2011).
[Crossref]

J. Y. Pastor, J. LLorca, A. Salazar, P. B. Oliete, I. de Francisco, and J. I. Pena, “Mechanical properties of melt-grown alumina–yttrium aluminum garnet eutectics up to 1900 K,” J. Am. Ceram. Soc. 88(6), 1488–1495 (2005).
[Crossref]

Patton, M. O.

D. L. Chubb, A. M. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19(13-14), 2551–2562 (1999).
[Crossref]

Pelton, A. D.

P. Wu and A. D. Pelton, “Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems,” J. Alloys Compd. 179(1-2), 259–287 (1992).
[Crossref]

Pena, J. I.

J. Y. Pastor, J. LLorca, A. Salazar, P. B. Oliete, I. de Francisco, and J. I. Pena, “Mechanical properties of melt-grown alumina–yttrium aluminum garnet eutectics up to 1900 K,” J. Am. Ceram. Soc. 88(6), 1488–1495 (2005).
[Crossref]

Peña, J. I.

D. Sola, R. Balda, M. Al-Saleh, J. I. Peña, and J. Fernández, “Time-resolved fluorescence line-narrowing of Eu3+ in biocompatible eutectic glass-ceramics,” Opt. Express 21(5), 6561–6571 (2013).
[Crossref] [PubMed]

D. Sola, R. Balda, J. I. Peña, and J. Fernández, “Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics,” Opt. Express 20(10), 10701–10711 (2012).
[Crossref] [PubMed]

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2(Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
[Crossref]

A. Larrea, V. M. Orera, R. I. Merino, and J. I. Peña, “Microstructure and mechanical properties of Al2O3-YSZ and Al2O3-YAG directionally solidified eutectic plates,” J. Eur. Ceram. Soc. 25(8), 1419–1429 (2005).
[Crossref]

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[Crossref]

Sai, H.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/E3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[Crossref]

Salazar, A.

J. Y. Pastor, J. LLorca, A. Salazar, P. B. Oliete, I. de Francisco, and J. I. Pena, “Mechanical properties of melt-grown alumina–yttrium aluminum garnet eutectics up to 1900 K,” J. Am. Ceram. Soc. 88(6), 1488–1495 (2005).
[Crossref]

Sola, D.

D. Sola, R. Balda, M. Al-Saleh, J. I. Peña, and J. Fernández, “Time-resolved fluorescence line-narrowing of Eu3+ in biocompatible eutectic glass-ceramics,” Opt. Express 21(5), 6561–6571 (2013).
[Crossref] [PubMed]

D. Sola, R. Balda, J. I. Peña, and J. Fernández, “Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics,” Opt. Express 20(10), 10701–10711 (2012).
[Crossref] [PubMed]

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2(Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
[Crossref]

Torsello, G.

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18(5), 174–183 (2003).
[Crossref]

Tundo, S.

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18(5), 174–183 (2003).
[Crossref]

Waku, Y.

N. Nakagawa, H. Ohtsubo, Y. Waku, and H. Yugami, “Thermal emission properties of Al2O3/E3Al5O12 eutectic ceramics,” J. Eur. Ceram. Soc. 25(8), 1285–1291 (2005).
[Crossref]

Wedlock, B. D.

D. C. White, B. D. Wedlock, and J. Blair, “Recent advances in thermal energy conversion,” in Proc. 15th Ann. Power Sources Conf. (1961), pp. 125–132.

White, D. C.

D. C. White, B. D. Wedlock, and J. Blair, “Recent advances in thermal energy conversion,” in Proc. 15th Ann. Power Sources Conf. (1961), pp. 125–132.

Winston Chen, C. H.

V. V. Golovlev, C. H. Winston Chen, and W. R. Garrett, “Heat to light energy conversion by emitters doped with rare‐earth metal ions,” Appl. Phys. Lett. 69(2), 280–282 (1996).
[Crossref]

Wu, P.

P. Wu and A. D. Pelton, “Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems,” J. Alloys Compd. 179(1-2), 259–287 (1992).
[Crossref]

Yugami, H.

N. Nakagawa, H. Ohtsubo, Y. Waku, and H. Yugami, “Thermal emission properties of Al2O3/E3Al5O12 eutectic ceramics,” J. Eur. Ceram. Soc. 25(8), 1285–1291 (2005).
[Crossref]

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/E3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[Crossref]

Appl. Phys. Lett. (1)

V. V. Golovlev, C. H. Winston Chen, and W. R. Garrett, “Heat to light energy conversion by emitters doped with rare‐earth metal ions,” Appl. Phys. Lett. 69(2), 280–282 (1996).
[Crossref]

Appl. Spectrosc. (1)

Bol. Soc. Esp. Ceram. (1)

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2(Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
[Crossref]

J. Alloys Compd. (1)

P. Wu and A. D. Pelton, “Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems,” J. Alloys Compd. 179(1-2), 259–287 (1992).
[Crossref]

J. Am. Ceram. Soc. (1)

J. Y. Pastor, J. LLorca, A. Salazar, P. B. Oliete, I. de Francisco, and J. I. Pena, “Mechanical properties of melt-grown alumina–yttrium aluminum garnet eutectics up to 1900 K,” J. Am. Ceram. Soc. 88(6), 1488–1495 (2005).
[Crossref]

J. Cryst. Growth (1)

M. C. Mesa, P. B. Oliete, and A. Larrea, “Microstructural stability at elevated temperatures of directionally solidified Al2O3/Er3Al5O12 eutectic ceramics,” J. Cryst. Growth 360, 119–122 (2012).
[Crossref]

J. Eur. Ceram. Soc. (6)

A. Larrea, V. M. Orera, R. I. Merino, and J. I. Peña, “Microstructure and mechanical properties of Al2O3-YSZ and Al2O3-YAG directionally solidified eutectic plates,” J. Eur. Ceram. Soc. 25(8), 1419–1429 (2005).
[Crossref]

N. Nakagawa, H. Ohtsubo, Y. Waku, and H. Yugami, “Thermal emission properties of Al2O3/E3Al5O12 eutectic ceramics,” J. Eur. Ceram. Soc. 25(8), 1285–1291 (2005).
[Crossref]

M. C. Mesa, P. B. Oliete, R. I. Merino, and V. M. Orera, “Optical absorption and selective thermal emission in directionally solidified Al2O3–Er3Al5O12 and Al2O3–Er3Al5O12–ZrO2 eutectics,” J. Eur. Ceram. Soc. 33(13-14), 2587–2596 (2013).
[Crossref]

M. C. Mesa, P. B. Oliete, V. M. Orera, J. Y. Pastor, A. Martín, and J. Llorca, “Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method,” J. Eur. Ceram. Soc. 31(7), 1241–1250 (2011).
[Crossref]

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

D. L. Chubb, A. M. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19(13-14), 2551–2562 (1999).
[Crossref]

J. Non-Cryst. Solids (1)

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/E3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[Crossref]

Opt. Express (2)

Prog. Mater. Sci. (1)

J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[Crossref]

Quantum Electron. (1)

V. M. Marchenko, “Selective visible and near-IR emission of Er2O3 excited by a 10.6-µm CO2 laser,” Quantum Electron. 36(8), 727–730 (2006).
[Crossref]

Semicond. Sci. Technol. (1)

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, and M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applications,” Semicond. Sci. Technol. 18(5), 174–183 (2003).
[Crossref]

Trans. Metall. Soc. AIME (1)

K. A. Jackson and J. D. Hunt, “Lamellar and rod eutectic growth,” Trans. Metall. Soc. AIME 236, 1129–1142 (1966).

Other (2)

D. C. White, B. D. Wedlock, and J. Blair, “Recent advances in thermal energy conversion,” in Proc. 15th Ann. Power Sources Conf. (1961), pp. 125–132.

C. R. Parent and R. E. Nelson, “Thermophotovoltaic energy conversion with a novel rare earth oxide emitter,” in Proc. 21st Intersoc. Energy Conv. Engg. Conf. (1986), pp. 1314–1317.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Laser processing sketch used to manufacture eutectic samples in planar geometry.
Fig. 2
Fig. 2 Transverse cross-section micrograph of sample processed at 720 mm/h from eutectic particles produced at 180 mm/h (a). Details of directionally solidified layer (b), eutectic particles in non-molten zone (c), and interphase between molten layer and eutectic particles (d).
Fig. 3
Fig. 3 Transverse micrograph of eutectic microstructure in particles obtained at 180 mm/h, EP1, and 720 mm/h, EP2, (a) and (b) respectively.
Fig. 4
Fig. 4 Transverse micrograph of directionally solidified eutectic layers produced processing at 180 mm/h departing from EP1, (a), and at 720 mm/h departing from EP2, (b).
Fig. 5
Fig. 5 Thermal emission spectra for the eutectic sample processed at 180 mm/h from EP2 at 56 W in function of the collecting angle, (a), and the corresponding normalized spectra, (b).
Fig. 6
Fig. 6 Thermal emission spectra for samples processed at 720 mm/h departing from eutectic particles EP2 at 716 °C (46 W), 797 °C (56 W) and 947 °C (83 W), (a), (b), and (c) respectively.
Fig. 7
Fig. 7 Thermal emission spectra of eutectic particles EP1, and DSE layers processed at 180 mm/h departing from EP1, both at 83 W. Thermal emission spectra of DSE manufactured in cylindrical geometry at a rate of 25 mm/h, AE25 [15], and InGaAs PV cell photoemission.

Metrics