Abstract

We report the characterization and analyses of organic light-emitting devices (OLEDs) using microstructured composite transparent electrodes consisting of the high-index ITO (indium tin oxide) micromesh and the low-index conducting polymer PEDOT:PSS [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)], that are fabricated by the facile and convenient microsphere lithography and are useful for enhancing light extraction. The rigorous electromagnetic simulation based on the three-dimensional finite-difference time-domain (FDTD) method was conducted to study optical properties and mechanisms in such devices. It provides a different but consistent viewpoint/insight of how this microstructured electrode enhances optical out-coupling of OLEDs, compared to that provided by ray optics simulation in previous works. Both experimental and simulation studies indicate such a microstructured electrode effectively enhances coupling of internal radiation into the substrate, compared to devices with the typical planar ITO electrode. By combining this internal extraction structure and the external extraction scheme (e.g. by attaching extraction lens) to further extract radiation into the substrate, a rather high external quantum efficiency of 46.8% was achieved with green phosphorescent OLEDs, clearly manifesting its high potential.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stable angular emission spectra in white organic light-emitting diodes using graphene/PEDOT:PSS composite electrode

Hyunsu Cho, Hyunkoo Lee, Jonghee Lee, Woo Jin Sung, Byoung-Hwa Kwon, Chul-Woong Joo, Jin-Wook Shin, Jun-Han Han, Jaehyun Moon, Jeong-Ik Lee, Seungmin Cho, and Nam Sung Cho
Opt. Express 25(9) 9734-9742 (2017)

Enhanced light out-coupling of organic light-emitting diode using metallic nanomesh electrodes and microlens array

Yu-Hsuan Ho, Kuan-Yu Chen, Kai-Yu Peng, Ming-Chih Tsai, Wei-Cheng Tian, and Pei-Kuen Wei
Opt. Express 21(7) 8535-8543 (2013)

Improving the outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via rough internal interfaces

Boris Riedel, Inga Kaiser, Julian Hauss, Uli Lemmer, and Martina Gerken
Opt. Express 18(S4) A631-A639 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
    [Crossref] [PubMed]
  2. B. W. D’Andrade and S. R. Forrest, “White organic light-emitting devices for solid-state lighting,” Adv. Mater. 16(18), 61–65 (2004).
    [Crossref]
  3. Y.-J. Lu, C.-H. Chang, C.-L. Lin, C.-C. Wu, H.-L. Hsu, L.-J. Chen, Y.-T. Lin, and R. Nishikawa, “Achieving three-peak white organic light-emitting devices using wavelength-selective mirror electrodes,” Appl. Phys. Lett. 92(12), 123303 (2008).
    [Crossref]
  4. C.-H. Chang, H.-C. Cheng, Y.-J. Lu, K.-C. Tien, H.-W. Lin, C.-L. Lin, C.-J. Yang, and C.-C. Wu, “Enhancing color gamut of white OLED displays by using microcavity green pixels,” Org. Electron. 11(2), 247–254 (2010).
    [Crossref]
  5. H. Sasabe and J. Kido, “Recent progress in phosphorescent organic light-emitting devices,” Eur. J. Org. Chem. 2013(34), 7653–7663 (2013).
    [Crossref]
  6. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
    [Crossref] [PubMed]
  7. C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, “Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode,” Appl. Phys. Lett. 88(8), 081114 (2006).
    [Crossref]
  8. K. Neyts, “Microcavity effects and the outcoupling of light in displays and lighting applications based on thin emitting films,” Appl. Surf. Sci. 244(1), 517–523 (2005).
    [Crossref]
  9. Y. Sun and S. R. Forrest, “Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography,” J. Appl. Phys. 100(7), 073106 (2006).
    [Crossref]
  10. B. W. D’Andrade and J. J. Brown, “Organic light-emitting device luminaire for illumination applications,” Appl. Phys. Lett. 88(19), 192908 (2006).
    [Crossref]
  11. C.-Y. Chen, W.-K. Lee, Y.-J. Chen, C.-Y. Lu, H. Y. Lin, and C.-C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
    [Crossref] [PubMed]
  12. Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, and Y. H. Lee, “Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals,” Adv. Mater. 15(14), 1214–1218 (2003).
    [Crossref]
  13. J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
    [Crossref]
  14. S. M. Jeong, F. Araoka, Y. Machida, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Enhancement of light extraction from organic light-emitting diodes with two-dimensional hexagonally nanoimprinted periodic structures using sequential surface relief grating,” Jpn. J. Appl. Phys. 47(66R), 4566–4571 (2008).
    [Crossref]
  15. Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
    [Crossref]
  16. T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, “Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes,” Adv. Mater. 22(16), 1849–1853 (2010).
    [Crossref] [PubMed]
  17. Y.-H. Jhang, Y.-T. Tsai, C.-H. Tsai, S.-Y. Hsu, T.-W. Huang, C.-Y. Lu, M.-C. Chen, Y.-F. Chen, and C.-C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron. 13(10), 1865–1872 (2012).
    [Crossref]
  18. J.-G. Chen, H.-Y. Wei, and K.-C. Ho, “Using modified poly(3,4-ethylene dioxythiophene): Poly(styrene sulfonate) film as a counter electrode in dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 91(15–16), 1472–1477 (2007).
    [Crossref]
  19. Y.-L. Wu, C.-Y. Chen, Y.-H. Huang, Y.-J. Lu, C.-H. Chou, and C.-C. Wu, “Highly efficient tandem organic light-emitting devices utilizing the connecting structure based on n-doped electron-transport layer/HATCN/hole-transport layer,” Appl. Opt. 53(22), E1–E6 (2014).
    [Crossref] [PubMed]
  20. C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76(13), 1650–1652 (2000).
    [Crossref]
  21. K.-D. Chang, C.-Y. Li, J.-W. Pan, and K.-Y. Cheng, “A hybrid simulated method for analyzing the optical efficiency of a head-mounted display with a quasi-crystal OLED panel,” Opt. Express 22(S2Suppl 2), A567–A576 (2014).
    [Crossref] [PubMed]
  22. M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, and G. G. Gregory, “Optical simulations of organic light-emitting diodes through a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Proc. SPIE 2014, 919009 (2014).
  23. W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
    [Crossref]
  24. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, 2009).
  25. Y.-S. Park, S. Lee, K.-H. Kim, S.-Y. Kim, J.-H. Lee, and J.-J. Kim, “Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency,” Adv. Funct. Mater. 23(39), 4914–4920 (2013).
    [Crossref]

2015 (1)

C.-Y. Chen, W.-K. Lee, Y.-J. Chen, C.-Y. Lu, H. Y. Lin, and C.-C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (3)

W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
[Crossref]

Y.-S. Park, S. Lee, K.-H. Kim, S.-Y. Kim, J.-H. Lee, and J.-J. Kim, “Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency,” Adv. Funct. Mater. 23(39), 4914–4920 (2013).
[Crossref]

H. Sasabe and J. Kido, “Recent progress in phosphorescent organic light-emitting devices,” Eur. J. Org. Chem. 2013(34), 7653–7663 (2013).
[Crossref]

2012 (2)

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

Y.-H. Jhang, Y.-T. Tsai, C.-H. Tsai, S.-Y. Hsu, T.-W. Huang, C.-Y. Lu, M.-C. Chen, Y.-F. Chen, and C.-C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron. 13(10), 1865–1872 (2012).
[Crossref]

2010 (2)

C.-H. Chang, H.-C. Cheng, Y.-J. Lu, K.-C. Tien, H.-W. Lin, C.-L. Lin, C.-J. Yang, and C.-C. Wu, “Enhancing color gamut of white OLED displays by using microcavity green pixels,” Org. Electron. 11(2), 247–254 (2010).
[Crossref]

T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, “Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes,” Adv. Mater. 22(16), 1849–1853 (2010).
[Crossref] [PubMed]

2009 (1)

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

2008 (3)

Y.-J. Lu, C.-H. Chang, C.-L. Lin, C.-C. Wu, H.-L. Hsu, L.-J. Chen, Y.-T. Lin, and R. Nishikawa, “Achieving three-peak white organic light-emitting devices using wavelength-selective mirror electrodes,” Appl. Phys. Lett. 92(12), 123303 (2008).
[Crossref]

S. M. Jeong, F. Araoka, Y. Machida, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Enhancement of light extraction from organic light-emitting diodes with two-dimensional hexagonally nanoimprinted periodic structures using sequential surface relief grating,” Jpn. J. Appl. Phys. 47(66R), 4566–4571 (2008).
[Crossref]

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[Crossref]

2007 (1)

J.-G. Chen, H.-Y. Wei, and K.-C. Ho, “Using modified poly(3,4-ethylene dioxythiophene): Poly(styrene sulfonate) film as a counter electrode in dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 91(15–16), 1472–1477 (2007).
[Crossref]

2006 (3)

Y. Sun and S. R. Forrest, “Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography,” J. Appl. Phys. 100(7), 073106 (2006).
[Crossref]

B. W. D’Andrade and J. J. Brown, “Organic light-emitting device luminaire for illumination applications,” Appl. Phys. Lett. 88(19), 192908 (2006).
[Crossref]

C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, “Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode,” Appl. Phys. Lett. 88(8), 081114 (2006).
[Crossref]

2005 (2)

K. Neyts, “Microcavity effects and the outcoupling of light in displays and lighting applications based on thin emitting films,” Appl. Surf. Sci. 244(1), 517–523 (2005).
[Crossref]

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
[Crossref]

2004 (1)

B. W. D’Andrade and S. R. Forrest, “White organic light-emitting devices for solid-state lighting,” Adv. Mater. 16(18), 61–65 (2004).
[Crossref]

2003 (1)

Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, and Y. H. Lee, “Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals,” Adv. Mater. 15(14), 1214–1218 (2003).
[Crossref]

2000 (1)

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76(13), 1650–1652 (2000).
[Crossref]

Adachi, C.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

Araoka, F.

S. M. Jeong, F. Araoka, Y. Machida, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Enhancement of light extraction from organic light-emitting diodes with two-dimensional hexagonally nanoimprinted periodic structures using sequential surface relief grating,” Jpn. J. Appl. Phys. 47(66R), 4566–4571 (2008).
[Crossref]

Bahl, M.

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, and G. G. Gregory, “Optical simulations of organic light-emitting diodes through a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Proc. SPIE 2014, 919009 (2014).

Brown, J. J.

B. W. D’Andrade and J. J. Brown, “Organic light-emitting device luminaire for illumination applications,” Appl. Phys. Lett. 88(19), 192908 (2006).
[Crossref]

Brütting, W.

W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
[Crossref]

Cassarly, W.

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, and G. G. Gregory, “Optical simulations of organic light-emitting diodes through a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Proc. SPIE 2014, 919009 (2014).

Chang, C.-H.

C.-H. Chang, H.-C. Cheng, Y.-J. Lu, K.-C. Tien, H.-W. Lin, C.-L. Lin, C.-J. Yang, and C.-C. Wu, “Enhancing color gamut of white OLED displays by using microcavity green pixels,” Org. Electron. 11(2), 247–254 (2010).
[Crossref]

Y.-J. Lu, C.-H. Chang, C.-L. Lin, C.-C. Wu, H.-L. Hsu, L.-J. Chen, Y.-T. Lin, and R. Nishikawa, “Achieving three-peak white organic light-emitting devices using wavelength-selective mirror electrodes,” Appl. Phys. Lett. 92(12), 123303 (2008).
[Crossref]

C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, “Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode,” Appl. Phys. Lett. 88(8), 081114 (2006).
[Crossref]

Chang, K.-D.

Chen, C.-Y.

C.-Y. Chen, W.-K. Lee, Y.-J. Chen, C.-Y. Lu, H. Y. Lin, and C.-C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

Y.-L. Wu, C.-Y. Chen, Y.-H. Huang, Y.-J. Lu, C.-H. Chou, and C.-C. Wu, “Highly efficient tandem organic light-emitting devices utilizing the connecting structure based on n-doped electron-transport layer/HATCN/hole-transport layer,” Appl. Opt. 53(22), E1–E6 (2014).
[Crossref] [PubMed]

Chen, J.-G.

J.-G. Chen, H.-Y. Wei, and K.-C. Ho, “Using modified poly(3,4-ethylene dioxythiophene): Poly(styrene sulfonate) film as a counter electrode in dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 91(15–16), 1472–1477 (2007).
[Crossref]

Chen, L.-J.

Y.-J. Lu, C.-H. Chang, C.-L. Lin, C.-C. Wu, H.-L. Hsu, L.-J. Chen, Y.-T. Lin, and R. Nishikawa, “Achieving three-peak white organic light-emitting devices using wavelength-selective mirror electrodes,” Appl. Phys. Lett. 92(12), 123303 (2008).
[Crossref]

Chen, M.-C.

Y.-H. Jhang, Y.-T. Tsai, C.-H. Tsai, S.-Y. Hsu, T.-W. Huang, C.-Y. Lu, M.-C. Chen, Y.-F. Chen, and C.-C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron. 13(10), 1865–1872 (2012).
[Crossref]

Chen, Y.-F.

Y.-H. Jhang, Y.-T. Tsai, C.-H. Tsai, S.-Y. Hsu, T.-W. Huang, C.-Y. Lu, M.-C. Chen, Y.-F. Chen, and C.-C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron. 13(10), 1865–1872 (2012).
[Crossref]

Chen, Y.-J.

C.-Y. Chen, W.-K. Lee, Y.-J. Chen, C.-Y. Lu, H. Y. Lin, and C.-C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

Cheng, H.-C.

C.-H. Chang, H.-C. Cheng, Y.-J. Lu, K.-C. Tien, H.-W. Lin, C.-L. Lin, C.-J. Yang, and C.-C. Wu, “Enhancing color gamut of white OLED displays by using microcavity green pixels,” Org. Electron. 11(2), 247–254 (2010).
[Crossref]

Cheng, K.-Y.

Cho, C. O.

Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, and Y. H. Lee, “Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals,” Adv. Mater. 15(14), 1214–1218 (2003).
[Crossref]

Cho, T.-Y.

C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, “Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode,” Appl. Phys. Lett. 88(8), 081114 (2006).
[Crossref]

Choi, J.-M.

T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, “Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes,” Adv. Mater. 22(16), 1849–1853 (2010).
[Crossref] [PubMed]

Chou, C.-H.

D’Andrade, B. W.

B. W. D’Andrade and J. J. Brown, “Organic light-emitting device luminaire for illumination applications,” Appl. Phys. Lett. 88(19), 192908 (2006).
[Crossref]

B. W. D’Andrade and S. R. Forrest, “White organic light-emitting devices for solid-state lighting,” Adv. Mater. 16(18), 61–65 (2004).
[Crossref]

Do, Y. R.

Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, and Y. H. Lee, “Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals,” Adv. Mater. 15(14), 1214–1218 (2003).
[Crossref]

Feng, J.

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
[Crossref]

Forrest, S. R.

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[Crossref]

Y. Sun and S. R. Forrest, “Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography,” J. Appl. Phys. 100(7), 073106 (2006).
[Crossref]

B. W. D’Andrade and S. R. Forrest, “White organic light-emitting devices for solid-state lighting,” Adv. Mater. 16(18), 61–65 (2004).
[Crossref]

Frischeisen, J.

W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
[Crossref]

Goushi, K.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

Gregory, G. G.

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, and G. G. Gregory, “Optical simulations of organic light-emitting diodes through a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Proc. SPIE 2014, 919009 (2014).

Heller, E.

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, and G. G. Gregory, “Optical simulations of organic light-emitting diodes through a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Proc. SPIE 2014, 919009 (2014).

Ho, K.-C.

J.-G. Chen, H.-Y. Wei, and K.-C. Ho, “Using modified poly(3,4-ethylene dioxythiophene): Poly(styrene sulfonate) film as a counter electrode in dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 91(15–16), 1472–1477 (2007).
[Crossref]

Hsu, H.-L.

Y.-J. Lu, C.-H. Chang, C.-L. Lin, C.-C. Wu, H.-L. Hsu, L.-J. Chen, Y.-T. Lin, and R. Nishikawa, “Achieving three-peak white organic light-emitting devices using wavelength-selective mirror electrodes,” Appl. Phys. Lett. 92(12), 123303 (2008).
[Crossref]

Hsu, S.-Y.

Y.-H. Jhang, Y.-T. Tsai, C.-H. Tsai, S.-Y. Hsu, T.-W. Huang, C.-Y. Lu, M.-C. Chen, Y.-F. Chen, and C.-C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron. 13(10), 1865–1872 (2012).
[Crossref]

Huang, T.-W.

Y.-H. Jhang, Y.-T. Tsai, C.-H. Tsai, S.-Y. Hsu, T.-W. Huang, C.-Y. Lu, M.-C. Chen, Y.-F. Chen, and C.-C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron. 13(10), 1865–1872 (2012).
[Crossref]

Huang, Y.-H.

Ishikawa, K.

S. M. Jeong, F. Araoka, Y. Machida, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Enhancement of light extraction from organic light-emitting diodes with two-dimensional hexagonally nanoimprinted periodic structures using sequential surface relief grating,” Jpn. J. Appl. Phys. 47(66R), 4566–4571 (2008).
[Crossref]

Jeon, H.

Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, and Y. H. Lee, “Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals,” Adv. Mater. 15(14), 1214–1218 (2003).
[Crossref]

Jeong, S. M.

S. M. Jeong, F. Araoka, Y. Machida, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Enhancement of light extraction from organic light-emitting diodes with two-dimensional hexagonally nanoimprinted periodic structures using sequential surface relief grating,” Jpn. J. Appl. Phys. 47(66R), 4566–4571 (2008).
[Crossref]

Jhang, Y.-H.

Y.-H. Jhang, Y.-T. Tsai, C.-H. Tsai, S.-Y. Hsu, T.-W. Huang, C.-Y. Lu, M.-C. Chen, Y.-F. Chen, and C.-C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron. 13(10), 1865–1872 (2012).
[Crossref]

Jiang, M.

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, and G. G. Gregory, “Optical simulations of organic light-emitting diodes through a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Proc. SPIE 2014, 919009 (2014).

Kawata, S.

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
[Crossref]

Kido, J.

H. Sasabe and J. Kido, “Recent progress in phosphorescent organic light-emitting devices,” Eur. J. Org. Chem. 2013(34), 7653–7663 (2013).
[Crossref]

Kim, J.-J.

Y.-S. Park, S. Lee, K.-H. Kim, S.-Y. Kim, J.-H. Lee, and J.-J. Kim, “Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency,” Adv. Funct. Mater. 23(39), 4914–4920 (2013).
[Crossref]

Kim, K.-H.

Y.-S. Park, S. Lee, K.-H. Kim, S.-Y. Kim, J.-H. Lee, and J.-J. Kim, “Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency,” Adv. Funct. Mater. 23(39), 4914–4920 (2013).
[Crossref]

Kim, S. H.

Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, and Y. H. Lee, “Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals,” Adv. Mater. 15(14), 1214–1218 (2003).
[Crossref]

Kim, S.-Y.

Y.-S. Park, S. Lee, K.-H. Kim, S.-Y. Kim, J.-H. Lee, and J.-J. Kim, “Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency,” Adv. Funct. Mater. 23(39), 4914–4920 (2013).
[Crossref]

Kim, Y. C.

Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, and Y. H. Lee, “Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals,” Adv. Mater. 15(14), 1214–1218 (2003).
[Crossref]

Koh, T.-W.

T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, “Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes,” Adv. Mater. 22(16), 1849–1853 (2010).
[Crossref] [PubMed]

Lee, J.-H.

Y.-S. Park, S. Lee, K.-H. Kim, S.-Y. Kim, J.-H. Lee, and J.-J. Kim, “Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency,” Adv. Funct. Mater. 23(39), 4914–4920 (2013).
[Crossref]

Lee, S.

Y.-S. Park, S. Lee, K.-H. Kim, S.-Y. Kim, J.-H. Lee, and J.-J. Kim, “Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency,” Adv. Funct. Mater. 23(39), 4914–4920 (2013).
[Crossref]

T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, “Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes,” Adv. Mater. 22(16), 1849–1853 (2010).
[Crossref] [PubMed]

Lee, W.-K.

C.-Y. Chen, W.-K. Lee, Y.-J. Chen, C.-Y. Lu, H. Y. Lin, and C.-C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

Lee, Y. H.

Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, and Y. H. Lee, “Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals,” Adv. Mater. 15(14), 1214–1218 (2003).
[Crossref]

Lee, Y. J.

Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, and Y. H. Lee, “Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals,” Adv. Mater. 15(14), 1214–1218 (2003).
[Crossref]

Leo, K.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Li, C.-Y.

Lin, C.-L.

C.-H. Chang, H.-C. Cheng, Y.-J. Lu, K.-C. Tien, H.-W. Lin, C.-L. Lin, C.-J. Yang, and C.-C. Wu, “Enhancing color gamut of white OLED displays by using microcavity green pixels,” Org. Electron. 11(2), 247–254 (2010).
[Crossref]

Y.-J. Lu, C.-H. Chang, C.-L. Lin, C.-C. Wu, H.-L. Hsu, L.-J. Chen, Y.-T. Lin, and R. Nishikawa, “Achieving three-peak white organic light-emitting devices using wavelength-selective mirror electrodes,” Appl. Phys. Lett. 92(12), 123303 (2008).
[Crossref]

C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, “Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode,” Appl. Phys. Lett. 88(8), 081114 (2006).
[Crossref]

Lin, H. Y.

C.-Y. Chen, W.-K. Lee, Y.-J. Chen, C.-Y. Lu, H. Y. Lin, and C.-C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

Lin, H.-W.

C.-H. Chang, H.-C. Cheng, Y.-J. Lu, K.-C. Tien, H.-W. Lin, C.-L. Lin, C.-J. Yang, and C.-C. Wu, “Enhancing color gamut of white OLED displays by using microcavity green pixels,” Org. Electron. 11(2), 247–254 (2010).
[Crossref]

Lin, Y.-T.

Y.-J. Lu, C.-H. Chang, C.-L. Lin, C.-C. Wu, H.-L. Hsu, L.-J. Chen, Y.-T. Lin, and R. Nishikawa, “Achieving three-peak white organic light-emitting devices using wavelength-selective mirror electrodes,” Appl. Phys. Lett. 92(12), 123303 (2008).
[Crossref]

Lindner, F.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Lu, C.-Y.

C.-Y. Chen, W.-K. Lee, Y.-J. Chen, C.-Y. Lu, H. Y. Lin, and C.-C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

Y.-H. Jhang, Y.-T. Tsai, C.-H. Tsai, S.-Y. Hsu, T.-W. Huang, C.-Y. Lu, M.-C. Chen, Y.-F. Chen, and C.-C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron. 13(10), 1865–1872 (2012).
[Crossref]

Lu, M.-H.

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76(13), 1650–1652 (2000).
[Crossref]

Lu, Y.-J.

Y.-L. Wu, C.-Y. Chen, Y.-H. Huang, Y.-J. Lu, C.-H. Chou, and C.-C. Wu, “Highly efficient tandem organic light-emitting devices utilizing the connecting structure based on n-doped electron-transport layer/HATCN/hole-transport layer,” Appl. Opt. 53(22), E1–E6 (2014).
[Crossref] [PubMed]

C.-H. Chang, H.-C. Cheng, Y.-J. Lu, K.-C. Tien, H.-W. Lin, C.-L. Lin, C.-J. Yang, and C.-C. Wu, “Enhancing color gamut of white OLED displays by using microcavity green pixels,” Org. Electron. 11(2), 247–254 (2010).
[Crossref]

Y.-J. Lu, C.-H. Chang, C.-L. Lin, C.-C. Wu, H.-L. Hsu, L.-J. Chen, Y.-T. Lin, and R. Nishikawa, “Achieving three-peak white organic light-emitting devices using wavelength-selective mirror electrodes,” Appl. Phys. Lett. 92(12), 123303 (2008).
[Crossref]

Lüssem, B.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Machida, Y.

S. M. Jeong, F. Araoka, Y. Machida, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Enhancement of light extraction from organic light-emitting diodes with two-dimensional hexagonally nanoimprinted periodic structures using sequential surface relief grating,” Jpn. J. Appl. Phys. 47(66R), 4566–4571 (2008).
[Crossref]

Madigan, C. F.

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76(13), 1650–1652 (2000).
[Crossref]

Mayr, C.

W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
[Crossref]

Neyts, K.

K. Neyts, “Microcavity effects and the outcoupling of light in displays and lighting applications based on thin emitting films,” Appl. Surf. Sci. 244(1), 517–523 (2005).
[Crossref]

Nishikawa, R.

Y.-J. Lu, C.-H. Chang, C.-L. Lin, C.-C. Wu, H.-L. Hsu, L.-J. Chen, Y.-T. Lin, and R. Nishikawa, “Achieving three-peak white organic light-emitting devices using wavelength-selective mirror electrodes,” Appl. Phys. Lett. 92(12), 123303 (2008).
[Crossref]

Nishimura, S.

S. M. Jeong, F. Araoka, Y. Machida, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Enhancement of light extraction from organic light-emitting diodes with two-dimensional hexagonally nanoimprinted periodic structures using sequential surface relief grating,” Jpn. J. Appl. Phys. 47(66R), 4566–4571 (2008).
[Crossref]

Nomura, H.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

Okamoto, T.

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
[Crossref]

Pan, J.-W.

Park, Y.-S.

Y.-S. Park, S. Lee, K.-H. Kim, S.-Y. Kim, J.-H. Lee, and J.-J. Kim, “Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency,” Adv. Funct. Mater. 23(39), 4914–4920 (2013).
[Crossref]

Reineke, S.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Sasabe, H.

H. Sasabe and J. Kido, “Recent progress in phosphorescent organic light-emitting devices,” Eur. J. Org. Chem. 2013(34), 7653–7663 (2013).
[Crossref]

Scarmozzino, R.

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, and G. G. Gregory, “Optical simulations of organic light-emitting diodes through a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Proc. SPIE 2014, 919009 (2014).

Schmidt, T. D.

W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
[Crossref]

Scholz, B. J.

W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
[Crossref]

Schwartz, G.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Seidler, N.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Shizu, K.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

Song, Y. W.

Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, and Y. H. Lee, “Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals,” Adv. Mater. 15(14), 1214–1218 (2003).
[Crossref]

Sturm, J. C.

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76(13), 1650–1652 (2000).
[Crossref]

Sun, Y.

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[Crossref]

Y. Sun and S. R. Forrest, “Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography,” J. Appl. Phys. 100(7), 073106 (2006).
[Crossref]

Suzaki, G.

S. M. Jeong, F. Araoka, Y. Machida, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Enhancement of light extraction from organic light-emitting diodes with two-dimensional hexagonally nanoimprinted periodic structures using sequential surface relief grating,” Jpn. J. Appl. Phys. 47(66R), 4566–4571 (2008).
[Crossref]

Takanishi, Y.

S. M. Jeong, F. Araoka, Y. Machida, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Enhancement of light extraction from organic light-emitting diodes with two-dimensional hexagonally nanoimprinted periodic structures using sequential surface relief grating,” Jpn. J. Appl. Phys. 47(66R), 4566–4571 (2008).
[Crossref]

Takezoe, H.

S. M. Jeong, F. Araoka, Y. Machida, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Enhancement of light extraction from organic light-emitting diodes with two-dimensional hexagonally nanoimprinted periodic structures using sequential surface relief grating,” Jpn. J. Appl. Phys. 47(66R), 4566–4571 (2008).
[Crossref]

Tien, K.-C.

C.-H. Chang, H.-C. Cheng, Y.-J. Lu, K.-C. Tien, H.-W. Lin, C.-L. Lin, C.-J. Yang, and C.-C. Wu, “Enhancing color gamut of white OLED displays by using microcavity green pixels,” Org. Electron. 11(2), 247–254 (2010).
[Crossref]

Tsai, C.-H.

Y.-H. Jhang, Y.-T. Tsai, C.-H. Tsai, S.-Y. Hsu, T.-W. Huang, C.-Y. Lu, M.-C. Chen, Y.-F. Chen, and C.-C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron. 13(10), 1865–1872 (2012).
[Crossref]

Tsai, Y.-T.

Y.-H. Jhang, Y.-T. Tsai, C.-H. Tsai, S.-Y. Hsu, T.-W. Huang, C.-Y. Lu, M.-C. Chen, Y.-F. Chen, and C.-C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron. 13(10), 1865–1872 (2012).
[Crossref]

Uoyama, H.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

Walzer, K.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Wei, H.-Y.

J.-G. Chen, H.-Y. Wei, and K.-C. Ho, “Using modified poly(3,4-ethylene dioxythiophene): Poly(styrene sulfonate) film as a counter electrode in dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 91(15–16), 1472–1477 (2007).
[Crossref]

Wu, C.-C.

C.-Y. Chen, W.-K. Lee, Y.-J. Chen, C.-Y. Lu, H. Y. Lin, and C.-C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

Y.-L. Wu, C.-Y. Chen, Y.-H. Huang, Y.-J. Lu, C.-H. Chou, and C.-C. Wu, “Highly efficient tandem organic light-emitting devices utilizing the connecting structure based on n-doped electron-transport layer/HATCN/hole-transport layer,” Appl. Opt. 53(22), E1–E6 (2014).
[Crossref] [PubMed]

Y.-H. Jhang, Y.-T. Tsai, C.-H. Tsai, S.-Y. Hsu, T.-W. Huang, C.-Y. Lu, M.-C. Chen, Y.-F. Chen, and C.-C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron. 13(10), 1865–1872 (2012).
[Crossref]

C.-H. Chang, H.-C. Cheng, Y.-J. Lu, K.-C. Tien, H.-W. Lin, C.-L. Lin, C.-J. Yang, and C.-C. Wu, “Enhancing color gamut of white OLED displays by using microcavity green pixels,” Org. Electron. 11(2), 247–254 (2010).
[Crossref]

Y.-J. Lu, C.-H. Chang, C.-L. Lin, C.-C. Wu, H.-L. Hsu, L.-J. Chen, Y.-T. Lin, and R. Nishikawa, “Achieving three-peak white organic light-emitting devices using wavelength-selective mirror electrodes,” Appl. Phys. Lett. 92(12), 123303 (2008).
[Crossref]

C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, “Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode,” Appl. Phys. Lett. 88(8), 081114 (2006).
[Crossref]

Wu, Y.-L.

Yang, C.-J.

C.-H. Chang, H.-C. Cheng, Y.-J. Lu, K.-C. Tien, H.-W. Lin, C.-L. Lin, C.-J. Yang, and C.-C. Wu, “Enhancing color gamut of white OLED displays by using microcavity green pixels,” Org. Electron. 11(2), 247–254 (2010).
[Crossref]

Yoo, S.

T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, “Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes,” Adv. Mater. 22(16), 1849–1853 (2010).
[Crossref] [PubMed]

Zhou, G.-R.

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, and G. G. Gregory, “Optical simulations of organic light-emitting diodes through a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Proc. SPIE 2014, 919009 (2014).

Adv. Funct. Mater. (1)

Y.-S. Park, S. Lee, K.-H. Kim, S.-Y. Kim, J.-H. Lee, and J.-J. Kim, “Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency,” Adv. Funct. Mater. 23(39), 4914–4920 (2013).
[Crossref]

Adv. Mater. (4)

T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, “Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes,” Adv. Mater. 22(16), 1849–1853 (2010).
[Crossref] [PubMed]

B. W. D’Andrade and S. R. Forrest, “White organic light-emitting devices for solid-state lighting,” Adv. Mater. 16(18), 61–65 (2004).
[Crossref]

C.-Y. Chen, W.-K. Lee, Y.-J. Chen, C.-Y. Lu, H. Y. Lin, and C.-C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, and Y. H. Lee, “Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals,” Adv. Mater. 15(14), 1214–1218 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76(13), 1650–1652 (2000).
[Crossref]

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
[Crossref]

Y.-J. Lu, C.-H. Chang, C.-L. Lin, C.-C. Wu, H.-L. Hsu, L.-J. Chen, Y.-T. Lin, and R. Nishikawa, “Achieving three-peak white organic light-emitting devices using wavelength-selective mirror electrodes,” Appl. Phys. Lett. 92(12), 123303 (2008).
[Crossref]

C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, “Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode,” Appl. Phys. Lett. 88(8), 081114 (2006).
[Crossref]

B. W. D’Andrade and J. J. Brown, “Organic light-emitting device luminaire for illumination applications,” Appl. Phys. Lett. 88(19), 192908 (2006).
[Crossref]

Appl. Surf. Sci. (1)

K. Neyts, “Microcavity effects and the outcoupling of light in displays and lighting applications based on thin emitting films,” Appl. Surf. Sci. 244(1), 517–523 (2005).
[Crossref]

Eur. J. Org. Chem. (1)

H. Sasabe and J. Kido, “Recent progress in phosphorescent organic light-emitting devices,” Eur. J. Org. Chem. 2013(34), 7653–7663 (2013).
[Crossref]

J. Appl. Phys. (1)

Y. Sun and S. R. Forrest, “Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography,” J. Appl. Phys. 100(7), 073106 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. M. Jeong, F. Araoka, Y. Machida, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Enhancement of light extraction from organic light-emitting diodes with two-dimensional hexagonally nanoimprinted periodic structures using sequential surface relief grating,” Jpn. J. Appl. Phys. 47(66R), 4566–4571 (2008).
[Crossref]

Nat. Photonics (1)

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[Crossref]

Nature (2)

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Org. Electron. (2)

C.-H. Chang, H.-C. Cheng, Y.-J. Lu, K.-C. Tien, H.-W. Lin, C.-L. Lin, C.-J. Yang, and C.-C. Wu, “Enhancing color gamut of white OLED displays by using microcavity green pixels,” Org. Electron. 11(2), 247–254 (2010).
[Crossref]

Y.-H. Jhang, Y.-T. Tsai, C.-H. Tsai, S.-Y. Hsu, T.-W. Huang, C.-Y. Lu, M.-C. Chen, Y.-F. Chen, and C.-C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron. 13(10), 1865–1872 (2012).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
[Crossref]

Proc. SPIE (1)

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, and G. G. Gregory, “Optical simulations of organic light-emitting diodes through a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Proc. SPIE 2014, 919009 (2014).

Sol. Energy Mater. Sol. Cells (1)

J.-G. Chen, H.-Y. Wei, and K.-C. Ho, “Using modified poly(3,4-ethylene dioxythiophene): Poly(styrene sulfonate) film as a counter electrode in dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 91(15–16), 1472–1477 (2007).
[Crossref]

Other (1)

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The schematic structure of the ITO micromesh OLED.
Fig. 2
Fig. 2 AFM topographic surface images taken during sequential deposition of layers onto the ITO micromesh: (a) with the ITO micromesh only, (b) after the PEDOT:PSS coating, (c) after deposition of all OLED organic layers, and (d) after deposition of the metal cathode.
Fig. 3
Fig. 3 Cross-section surface profiles taken along the x direction for each of Figs. 2(a)-2(d).
Fig. 4
Fig. 4 (a) J-V-L characteristics (measured without lens attachment), (b) external quantum efficiencies (measured without and with lens attachment), (c) luminous efficiencies (measured without and with lens attachment) of ITO micromesh, planar ITO, and planar ITO/PEDOT devices.
Fig. 5
Fig. 5 Measured EL spectra with relative intensities at different viewing angles for the (a) lens-attached planar ITO device and (b) the lens-attached ITO micromesh device. (c) Measured (symbols) and calculated (lines) angular distributions of the EL intensity (spectrally integrated) for devices in (a) and (b). All the intensities shown are normalized to their intensities at 0°.
Fig. 6
Fig. 6 (a) The configuration of the ITO micromesh device for simulation (cross-section configuration along the x direction). (b) Three-dimensional representation of the ITO micromesh. P represents the period along the x direction (3.2 μm), D the width of the ITO top along the x direction (~1 μm), and W the diameter of ITO mesh holes (openings, ~1 μm).
Fig. 7
Fig. 7 The x-z-plane cross section of the power density flux (i.e., the Poynting vector magnitude) from a single-frequency (at the wavelength 525 nm) y-direction (horizontal) dipole located (a) in the conventional planar ITO device, (b) at X1 in the ITO micromesh device, (c) at X2 in the ITO micromesh device, (d) at X3 in the ITO micromesh device, (e) at X4 in the ITO micromesh device, (f) at X5 in the ITO micromesh device (moving from the center of the ITO top to the center of the mesh hole, as defined in Fig. 6(a).
Fig. 8
Fig. 8 The x-z-plane cross section of the power density flux (i.e., the Poynting vector magnitude) from a single-frequency (at the wavelength 525 nm) z-direction (vertical) dipole located (a) in the conventional planar ITO device, (b) at X1 in the ITO micromesh device, (c) at X2 in the ITO micromesh device, (d) at X3 in the ITO micromesh device, (e) at X4 in the ITO micromesh device, (f) at X5 in the ITO micromesh device (moving from the center of the ITO top to the center of the mesh hole, as defined in Fig. 6(a).
Fig. 9
Fig. 9 Calculated far-fied emission patterns in the substrate for emitters located at X1, X2, X3, X4, and X5 in the ITO micromesh device, compared with that of an emitter in the planar ITO device. All emission patterns are normalized to their 0° intensity.
Fig. 10
Fig. 10 The spatial distributions (along the z axis) of the field intensities (transverse electric field Ey) of the waveguided modes (transverse electric modes) for the planar glass/ITO/PEDOT:PSS/organic layers/metal structure (top panel) and the planar glass/PEDOT:PSS/organic layers/metal structure (bottom panel), at the wavelength of 525 nm.
Fig. 11
Fig. 11 The transmittance spectra collected only along the normal direction and collected over all angles by an integrating sphere, for both the planar ITO electrode and the ITO micromesh/PEDOT:PSS composite electrode.

Tables (2)

Tables Icon

Table 1 Summary of Efficiencies of OLED Devices.

Tables Icon

Table 2 Calculated coupling efficiencies of internally generated radiation into air (with extraction lens) for emitters in the planar ITO device and for emitters at different locations in the ITO micromesh device.

Metrics