Abstract

A sub-ppb-level nitrogen dioxide (NO2) QEPAS sensor is developed by use of a cost-effective wide stripe laser diode (LD) emitting at 450 nm and a novel background noise suppression method called scattered light modulation cancellation method (SL-MOCAM). The SL-MOCAM is a variant of modulation spectroscopy using two light sources: excitation and balance light sources. The background noise caused by the stray light of the excitation light sources can be eliminated by exposing the QEPAS spectrophone to the modulated balance light. The noise in the LD-excited QEPAS system is investigated in detail and the results shows that > ~90% background noise can be effectively eliminated by the SL-MOCAM. For NO2 detection, a 1σ detection limit of ~60 ppb is achieved for 1 s integration time and the detection limit can be improved to 0.6 ppb with an integration time of 360 s. Moreover, the SLMOCAM shows a remote working ability in the preliminary investigation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL

Yufei Ma, Rafał Lewicki, Manijeh Razeghi, and Frank K. Tittel
Opt. Express 21(1) 1008-1019 (2013)

Piezo-enhanced acoustic detection module for mid-infrared trace gas sensing using a grooved quartz tuning fork

Shangzhi Li, Hongpeng Wu, Ruyue Cui, Angelo Sampaolo, Pietro Patimisco, Vincenzo Spagnolo, Frank K. Tittel, and Lei Dong
Opt. Express 27(24) 35267-35278 (2019)

Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor

Lei Dong, Vincenzo Spagnolo, Rafał Lewicki, and Frank K. Tittel
Opt. Express 19(24) 24037-24045 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74(1), 486–490 (2003).
    [Crossref]
  2. A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937 (2001).
    [Crossref]
  3. A. Pogány, A. Mohácsi, A. Varga, Z. Bozóki, Z. Galbács, L. Horváth, and G. Szabó, “A compact ammonia detector with sub-ppb accuracy using near-infrared photoacoustic spectroscopy and preconcentration sampling,” Environ. Sci. Technol. 43(3), 826–830 (2009).
    [Crossref] [PubMed]
  4. Z. Bozóki, A. Szabó, Á. Mohácsi, and G. Szabó, “A fully opened photoacoustic resonator based system for fast response gas concentration measurements,” Sens. Actuators B Chem. 147(1), 206–212 (2010).
    [Crossref]
  5. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
    [Crossref] [PubMed]
  6. P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
    [Crossref] [PubMed]
  7. A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
    [Crossref]
  8. L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic micro-resonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
    [Crossref] [PubMed]
  9. V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
    [Crossref] [PubMed]
  10. H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
    [Crossref]
  11. S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
    [Crossref]
  12. H. P. Wu, L. Dong, W. Ren, W. B. Yin, W. G. Ma, L. Zhang, S. T. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators B Chem. 206, 364–370 (2015).
    [Crossref]
  13. H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators B Chem. 208, 173–179 (2015).
    [Crossref]
  14. M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH₄ and N₂O measurements near Greater Houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett. 39(4), 957–960 (2014).
    [Crossref] [PubMed]
  15. K. Liu, W. X. Zhao, L. Wang, T. Tan, G. S. Wang, W. J. Zhang, X. M. Gao, and W. D. Chen, “Quartz-enhanced photoacoustic spectroscopy of HCN from 6433 to 6613 cm−1,” Opt. Commun. 340, 126–130 (2015).
    [Crossref]
  16. H. M. Yi, R. Maamary, X. M. Gao, M. W. Sigrist, E. Fertein, and W. D. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
    [Crossref]
  17. Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
    [Crossref] [PubMed]
  18. Y. Cao, N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie, L. C. Hughes, C. E. Zah, and F. K. Tittel, “Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser,” Opt. Express 23(3), 2121–2132 (2015).
    [Crossref] [PubMed]
  19. W. Ren, W. Z. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
    [Crossref]
  20. L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
    [Crossref] [PubMed]
  21. T. N. Ba, M. Triki, G. Desbrosses, and A. Vicet, “Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode,” Rev. Sci. Instrum. 86(2), 02311 (2015).
  22. G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm,” Appl. Phys. B 85(2–3), 301–306 (2006).
    [Crossref]
  23. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: Design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
    [Crossref]
  24. K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
    [Crossref] [PubMed]
  25. K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
    [Crossref] [PubMed]
  26. H. Yi, W. Chen, S. Sun, K. Liu, T. Tan, and X. Gao, “T-shape microresonator-based high sensitivity quartz-enhanced photoacoustic spectroscopy sensor,” Opt. Express 20(8), 9187–9196 (2012).
    [Crossref] [PubMed]
  27. H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36(4), 481–483 (2011).
    [Crossref] [PubMed]
  28. S. Böttger, M. Köhring, U. Willer, and W. Schade, “Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs,” Appl. Phys. B 113(2), 227–232 (2013).
    [Crossref]
  29. M. Köhring, S. Böttger, U. Willer, and W. Schade, “LED-Absorption-QEPAS Sensor for Biogas Plants,” Sensors (Basel) 15(5), 12092–12102 (2015).
    [Crossref] [PubMed]
  30. J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
    [Crossref]
  31. A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
    [Crossref]
  32. S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
    [Crossref]
  33. P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
    [Crossref] [PubMed]
  34. V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method for measurements of small temperature differences in a gas,” Opt. Lett. 36(4), 460–462 (2011).
    [Crossref] [PubMed]
  35. V. Spagnolo, L. Dong, A. A. Kosterev, and F. K. Tittel, “Modulation cancellation method for isotope 18O/16O ratio measurements in water,” Opt. Express 20(4), 3401–3407 (2012).
    [Crossref] [PubMed]
  36. V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method in laser spectroscopy,” Appl. Phys. B 103(3), 735–742 (2011).
    [Crossref]
  37. R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, “Differential LED-excited resonant NO2 photoacoustic system,” Sens. Actuators B Chem. 150(2), 513–516 (2010).
    [Crossref]
  38. J. Saarela, T. Sorvajärvi, T. Laurila, and J. Toivonen, “Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs,” Opt. Express 19(S4Suppl 4), A725–A732 (2011).
    [Crossref] [PubMed]
  39. HITRAN database available at http://www.hitran.com .
  40. C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98(32), 7837–7843 (1994).
    [Crossref]
  41. A. Pohlkötter, U. Willer, C. Bauer, and W. Schade, “Resonant tuning fork detector for electromagnetic radiation,” Appl. Opt. 48(4), B119–B125 (2009).
    [Crossref] [PubMed]
  42. L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107(2), 459–467 (2012).
    [Crossref]
  43. H. P. Wu, L. Dong, H. D. Zheng, X. L. Liu, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser,” Sens. Actuators B Chem. 221, 666–672 (2015).
    [Crossref]
  44. C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
    [Crossref]
  45. F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
    [Crossref]
  46. W. Q. Liu, Z. C. Cui, J. G. Liu, P. H. Xie, F. Z. Dong, Y. J. Zhang, and Q. N. Wei, “Measurement of atmospheric trace gases by spectroscopic and chemical techniques,” Chinese J. Quantum Elect. 21, 202 (2004).
  47. J. G. Liu, W. Q. Liu, P. H. Xie, and W. Huang, “Regional Air Pollution Monitoring by Spectroscopic Techniques,” In Optical Instrumentation for Energy and Environmental Applications (2013) pp. EW1A–2. Optical Society of America.

2015 (11)

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref] [PubMed]

H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

H. P. Wu, L. Dong, W. Ren, W. B. Yin, W. G. Ma, L. Zhang, S. T. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators B Chem. 206, 364–370 (2015).
[Crossref]

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators B Chem. 208, 173–179 (2015).
[Crossref]

K. Liu, W. X. Zhao, L. Wang, T. Tan, G. S. Wang, W. J. Zhang, X. M. Gao, and W. D. Chen, “Quartz-enhanced photoacoustic spectroscopy of HCN from 6433 to 6613 cm−1,” Opt. Commun. 340, 126–130 (2015).
[Crossref]

H. M. Yi, R. Maamary, X. M. Gao, M. W. Sigrist, E. Fertein, and W. D. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

Y. Cao, N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie, L. C. Hughes, C. E. Zah, and F. K. Tittel, “Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser,” Opt. Express 23(3), 2121–2132 (2015).
[Crossref] [PubMed]

T. N. Ba, M. Triki, G. Desbrosses, and A. Vicet, “Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode,” Rev. Sci. Instrum. 86(2), 02311 (2015).

M. Köhring, S. Böttger, U. Willer, and W. Schade, “LED-Absorption-QEPAS Sensor for Biogas Plants,” Sensors (Basel) 15(5), 12092–12102 (2015).
[Crossref] [PubMed]

H. P. Wu, L. Dong, H. D. Zheng, X. L. Liu, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser,” Sens. Actuators B Chem. 221, 666–672 (2015).
[Crossref]

2014 (6)

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
[Crossref]

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

W. Ren, W. Z. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH₄ and N₂O measurements near Greater Houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett. 39(4), 957–960 (2014).
[Crossref] [PubMed]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic micro-resonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref] [PubMed]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

2013 (6)

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
[Crossref] [PubMed]

A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

S. Böttger, M. Köhring, U. Willer, and W. Schade, “Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs,” Appl. Phys. B 113(2), 227–232 (2013).
[Crossref]

F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
[Crossref]

2012 (3)

2011 (5)

2010 (4)

Z. Bozóki, A. Szabó, Á. Mohácsi, and G. Szabó, “A fully opened photoacoustic resonator based system for fast response gas concentration measurements,” Sens. Actuators B Chem. 147(1), 206–212 (2010).
[Crossref]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[Crossref] [PubMed]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: Design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, “Differential LED-excited resonant NO2 photoacoustic system,” Sens. Actuators B Chem. 150(2), 513–516 (2010).
[Crossref]

2009 (3)

K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
[Crossref] [PubMed]

A. Pogány, A. Mohácsi, A. Varga, Z. Bozóki, Z. Galbács, L. Horváth, and G. Szabó, “A compact ammonia detector with sub-ppb accuracy using near-infrared photoacoustic spectroscopy and preconcentration sampling,” Environ. Sci. Technol. 43(3), 826–830 (2009).
[Crossref] [PubMed]

A. Pohlkötter, U. Willer, C. Bauer, and W. Schade, “Resonant tuning fork detector for electromagnetic radiation,” Appl. Opt. 48(4), B119–B125 (2009).
[Crossref] [PubMed]

2008 (1)

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
[Crossref]

2006 (1)

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm,” Appl. Phys. B 85(2–3), 301–306 (2006).
[Crossref]

2004 (1)

W. Q. Liu, Z. C. Cui, J. G. Liu, P. H. Xie, F. Z. Dong, Y. J. Zhang, and Q. N. Wei, “Measurement of atmospheric trace gases by spectroscopic and chemical techniques,” Chinese J. Quantum Elect. 21, 202 (2004).

2003 (1)

M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74(1), 486–490 (2003).
[Crossref]

2002 (1)

2001 (1)

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937 (2001).
[Crossref]

1994 (1)

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98(32), 7837–7843 (1994).
[Crossref]

Ba, T. N.

T. N. Ba, M. Triki, G. Desbrosses, and A. Vicet, “Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode,” Rev. Sci. Instrum. 86(2), 02311 (2015).

Bakhirkin, Y. A.

Bauer, C.

Beere, H. E.

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Bernhardt, R.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, “Differential LED-excited resonant NO2 photoacoustic system,” Sens. Actuators B Chem. 150(2), 513–516 (2010).
[Crossref]

Borri, S.

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Böttger, S.

M. Köhring, S. Böttger, U. Willer, and W. Schade, “LED-Absorption-QEPAS Sensor for Biogas Plants,” Sensors (Basel) 15(5), 12092–12102 (2015).
[Crossref] [PubMed]

S. Böttger, M. Köhring, U. Willer, and W. Schade, “Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs,” Appl. Phys. B 113(2), 227–232 (2013).
[Crossref]

Bozoki, Z.

A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
[Crossref]

Bozóki, Z.

Z. Bozóki, A. Szabó, Á. Mohácsi, and G. Szabó, “A fully opened photoacoustic resonator based system for fast response gas concentration measurements,” Sens. Actuators B Chem. 147(1), 206–212 (2010).
[Crossref]

A. Pogány, A. Mohácsi, A. Varga, Z. Bozóki, Z. Galbács, L. Horváth, and G. Szabó, “A compact ammonia detector with sub-ppb accuracy using near-infrared photoacoustic spectroscopy and preconcentration sampling,” Environ. Sci. Technol. 43(3), 826–830 (2009).
[Crossref] [PubMed]

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937 (2001).
[Crossref]

Brandstetter, M.

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
[Crossref]

Calvert, J. G.

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98(32), 7837–7843 (1994).
[Crossref]

Cantrell, C. A.

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98(32), 7837–7843 (1994).
[Crossref]

Cao, Y.

Chan, K. L.

F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
[Crossref]

Chen, W.

Chen, W. D.

H. M. Yi, R. Maamary, X. M. Gao, M. W. Sigrist, E. Fertein, and W. D. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

K. Liu, W. X. Zhao, L. Wang, T. Tan, G. S. Wang, W. J. Zhang, X. M. Gao, and W. D. Chen, “Quartz-enhanced photoacoustic spectroscopy of HCN from 6433 to 6613 cm−1,” Opt. Commun. 340, 126–130 (2015).
[Crossref]

Cui, Z. C.

W. Q. Liu, Z. C. Cui, J. G. Liu, P. H. Xie, F. Z. Dong, Y. J. Zhang, and Q. N. Wei, “Measurement of atmospheric trace gases by spectroscopic and chemical techniques,” Chinese J. Quantum Elect. 21, 202 (2004).

Curl, R. F.

Desbrosses, G.

T. N. Ba, M. Triki, G. Desbrosses, and A. Vicet, “Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode,” Rev. Sci. Instrum. 86(2), 02311 (2015).

Dong, F. Z.

W. Q. Liu, Z. C. Cui, J. G. Liu, P. H. Xie, F. Z. Dong, Y. J. Zhang, and Q. N. Wei, “Measurement of atmospheric trace gases by spectroscopic and chemical techniques,” Chinese J. Quantum Elect. 21, 202 (2004).

Dong, L.

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators B Chem. 208, 173–179 (2015).
[Crossref]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, X. L. Liu, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser,” Sens. Actuators B Chem. 221, 666–672 (2015).
[Crossref]

H. P. Wu, L. Dong, W. Ren, W. B. Yin, W. G. Ma, L. Zhang, S. T. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators B Chem. 206, 364–370 (2015).
[Crossref]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic micro-resonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref] [PubMed]

V. Spagnolo, L. Dong, A. A. Kosterev, and F. K. Tittel, “Modulation cancellation method for isotope 18O/16O ratio measurements in water,” Opt. Express 20(4), 3401–3407 (2012).
[Crossref] [PubMed]

L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107(2), 459–467 (2012).
[Crossref]

V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method for measurements of small temperature differences in a gas,” Opt. Lett. 36(4), 460–462 (2011).
[Crossref] [PubMed]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref] [PubMed]

V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method in laser spectroscopy,” Appl. Phys. B 103(3), 735–742 (2011).
[Crossref]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[Crossref] [PubMed]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: Design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

Doty, J. H.

V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method for measurements of small temperature differences in a gas,” Opt. Lett. 36(4), 460–462 (2011).
[Crossref] [PubMed]

V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method in laser spectroscopy,” Appl. Phys. B 103(3), 735–742 (2011).
[Crossref]

Ferguson, B. A.

L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107(2), 459–467 (2012).
[Crossref]

Fertein, E.

H. M. Yi, R. Maamary, X. M. Gao, M. W. Sigrist, E. Fertein, and W. D. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

Galbács, Z.

A. Pogány, A. Mohácsi, A. Varga, Z. Bozóki, Z. Galbács, L. Horváth, and G. Szabó, “A compact ammonia detector with sub-ppb accuracy using near-infrared photoacoustic spectroscopy and preconcentration sampling,” Environ. Sci. Technol. 43(3), 826–830 (2009).
[Crossref] [PubMed]

Gao, X.

Gao, X. M.

H. M. Yi, R. Maamary, X. M. Gao, M. W. Sigrist, E. Fertein, and W. D. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

K. Liu, W. X. Zhao, L. Wang, T. Tan, G. S. Wang, W. J. Zhang, X. M. Gao, and W. D. Chen, “Quartz-enhanced photoacoustic spectroscopy of HCN from 6433 to 6613 cm−1,” Opt. Commun. 340, 126–130 (2015).
[Crossref]

Geras, A.

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

González, M. G.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, “Differential LED-excited resonant NO2 photoacoustic system,” Sens. Actuators B Chem. 150(2), 513–516 (2010).
[Crossref]

Griffin, R. J.

Gulyas, G.

A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
[Crossref]

Guo, X.

Hartl, A.

F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
[Crossref]

Herndon, S. C.

Hess, P.

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937 (2001).
[Crossref]

Horváth, L.

A. Pogány, A. Mohácsi, A. Varga, Z. Bozóki, Z. Galbács, L. Horváth, and G. Szabó, “A compact ammonia detector with sub-ppb accuracy using near-infrared photoacoustic spectroscopy and preconcentration sampling,” Environ. Sci. Technol. 43(3), 826–830 (2009).
[Crossref] [PubMed]

Hughes, L. C.

Y. Cao, N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie, L. C. Hughes, C. E. Zah, and F. K. Tittel, “Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser,” Opt. Express 23(3), 2121–2132 (2015).
[Crossref] [PubMed]

W. Ren, W. Z. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

Jahjah, M.

Jia, S.

Jia, S. T.

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators B Chem. 208, 173–179 (2015).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, X. L. Liu, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser,” Sens. Actuators B Chem. 221, 666–672 (2015).
[Crossref]

H. P. Wu, L. Dong, W. Ren, W. B. Yin, W. G. Ma, L. Zhang, S. T. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators B Chem. 206, 364–370 (2015).
[Crossref]

H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

Jiang, W.

Jiang, W. Z.

W. Ren, W. Z. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

Köhring, M.

M. Köhring, S. Böttger, U. Willer, and W. Schade, “LED-Absorption-QEPAS Sensor for Biogas Plants,” Sensors (Basel) 15(5), 12092–12102 (2015).
[Crossref] [PubMed]

S. Böttger, M. Köhring, U. Willer, and W. Schade, “Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs,” Appl. Phys. B 113(2), 227–232 (2013).
[Crossref]

Kosterev, A. A.

V. Spagnolo, L. Dong, A. A. Kosterev, and F. K. Tittel, “Modulation cancellation method for isotope 18O/16O ratio measurements in water,” Opt. Express 20(4), 3401–3407 (2012).
[Crossref] [PubMed]

V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method in laser spectroscopy,” Appl. Phys. B 103(3), 735–742 (2011).
[Crossref]

V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method for measurements of small temperature differences in a gas,” Opt. Lett. 36(4), 460–462 (2011).
[Crossref] [PubMed]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[Crossref] [PubMed]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: Design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm,” Appl. Phys. B 85(2–3), 301–306 (2006).
[Crossref]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
[Crossref] [PubMed]

Laurila, T.

Lendl, B.

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
[Crossref]

Lewicki, R.

Li, A.

F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
[Crossref]

Liu, J. G.

F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
[Crossref]

W. Q. Liu, Z. C. Cui, J. G. Liu, P. H. Xie, F. Z. Dong, Y. J. Zhang, and Q. N. Wei, “Measurement of atmospheric trace gases by spectroscopic and chemical techniques,” Chinese J. Quantum Elect. 21, 202 (2004).

Liu, K.

K. Liu, W. X. Zhao, L. Wang, T. Tan, G. S. Wang, W. J. Zhang, X. M. Gao, and W. D. Chen, “Quartz-enhanced photoacoustic spectroscopy of HCN from 6433 to 6613 cm−1,” Opt. Commun. 340, 126–130 (2015).
[Crossref]

H. Yi, W. Chen, S. Sun, K. Liu, T. Tan, and X. Gao, “T-shape microresonator-based high sensitivity quartz-enhanced photoacoustic spectroscopy sensor,” Opt. Express 20(8), 9187–9196 (2012).
[Crossref] [PubMed]

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36(4), 481–483 (2011).
[Crossref] [PubMed]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[Crossref] [PubMed]

K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
[Crossref] [PubMed]

Liu, W. Q.

F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
[Crossref]

W. Q. Liu, Z. C. Cui, J. G. Liu, P. H. Xie, F. Z. Dong, Y. J. Zhang, and Q. N. Wei, “Measurement of atmospheric trace gases by spectroscopic and chemical techniques,” Chinese J. Quantum Elect. 21, 202 (2004).

Liu, X.

Liu, X. L.

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators B Chem. 208, 173–179 (2015).
[Crossref]

H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, X. L. Liu, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser,” Sens. Actuators B Chem. 221, 666–672 (2015).
[Crossref]

Liu, Y.

Ma, W.

Ma, W. G.

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators B Chem. 208, 173–179 (2015).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, X. L. Liu, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser,” Sens. Actuators B Chem. 221, 666–672 (2015).
[Crossref]

H. P. Wu, L. Dong, W. Ren, W. B. Yin, W. G. Ma, L. Zhang, S. T. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators B Chem. 206, 364–370 (2015).
[Crossref]

H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

Ma, Y.

Maamary, R.

H. M. Yi, R. Maamary, X. M. Gao, M. W. Sigrist, E. Fertein, and W. D. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

McWhorter, S.

L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107(2), 459–467 (2012).
[Crossref]

Miklós, A.

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937 (2001).
[Crossref]

Mohacsi, A.

A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
[Crossref]

Mohácsi, A.

A. Pogány, A. Mohácsi, A. Varga, Z. Bozóki, Z. Galbács, L. Horváth, and G. Szabó, “A compact ammonia detector with sub-ppb accuracy using near-infrared photoacoustic spectroscopy and preconcentration sampling,” Environ. Sci. Technol. 43(3), 826–830 (2009).
[Crossref] [PubMed]

Mohácsi, Á.

Z. Bozóki, A. Szabó, Á. Mohácsi, and G. Szabó, “A fully opened photoacoustic resonator based system for fast response gas concentration measurements,” Sens. Actuators B Chem. 147(1), 206–212 (2010).
[Crossref]

Moser, H.

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
[Crossref]

Orlando, J. J.

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98(32), 7837–7843 (1994).
[Crossref]

Patimisco, P.

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref] [PubMed]

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

W. Ren, W. Z. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH₄ and N₂O measurements near Greater Houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett. 39(4), 957–960 (2014).
[Crossref] [PubMed]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Pennetta, R.

Peters, B.

L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107(2), 459–467 (2012).
[Crossref]

Peuriot, A.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, “Differential LED-excited resonant NO2 photoacoustic system,” Sens. Actuators B Chem. 150(2), 513–516 (2010).
[Crossref]

Pogány, A.

A. Pogány, A. Mohácsi, A. Varga, Z. Bozóki, Z. Galbács, L. Horváth, and G. Szabó, “A compact ammonia detector with sub-ppb accuracy using near-infrared photoacoustic spectroscopy and preconcentration sampling,” Environ. Sci. Technol. 43(3), 826–830 (2009).
[Crossref] [PubMed]

Pohlkötter, A.

Qin, M.

F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
[Crossref]

Razeghi, M.

Ren, W.

H. P. Wu, L. Dong, W. Ren, W. B. Yin, W. G. Ma, L. Zhang, S. T. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators B Chem. 206, 364–370 (2015).
[Crossref]

W. Ren, W. Z. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH₄ and N₂O measurements near Greater Houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett. 39(4), 957–960 (2014).
[Crossref] [PubMed]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic micro-resonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref] [PubMed]

Ritchie, D. A.

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Roehl, C. M.

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98(32), 7837–7843 (1994).
[Crossref]

Saarela, J.

Sampaolo, A.

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref] [PubMed]

H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Sanchez, N. P.

Santiago, G. D.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, “Differential LED-excited resonant NO2 photoacoustic system,” Sens. Actuators B Chem. 150(2), 513–516 (2010).
[Crossref]

Scamarcio, G.

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref] [PubMed]

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Schade, W.

M. Köhring, S. Böttger, U. Willer, and W. Schade, “LED-Absorption-QEPAS Sensor for Biogas Plants,” Sensors (Basel) 15(5), 12092–12102 (2015).
[Crossref] [PubMed]

S. Böttger, M. Köhring, U. Willer, and W. Schade, “Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs,” Appl. Phys. B 113(2), 227–232 (2013).
[Crossref]

A. Pohlkötter, U. Willer, C. Bauer, and W. Schade, “Resonant tuning fork detector for electromagnetic radiation,” Appl. Opt. 48(4), B119–B125 (2009).
[Crossref] [PubMed]

Senesac, L. R.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
[Crossref]

Shetter, R. E.

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98(32), 7837–7843 (1994).
[Crossref]

Si, F. Q.

F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
[Crossref]

Sigrist, M. W.

H. M. Yi, R. Maamary, X. M. Gao, M. W. Sigrist, E. Fertein, and W. D. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74(1), 486–490 (2003).
[Crossref]

Slezak, V. B.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, “Differential LED-excited resonant NO2 photoacoustic system,” Sens. Actuators B Chem. 150(2), 513–516 (2010).
[Crossref]

Sorvajärvi, T.

Spagnolo, V.

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref] [PubMed]

H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

W. Ren, W. Z. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH₄ and N₂O measurements near Greater Houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett. 39(4), 957–960 (2014).
[Crossref] [PubMed]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

V. Spagnolo, L. Dong, A. A. Kosterev, and F. K. Tittel, “Modulation cancellation method for isotope 18O/16O ratio measurements in water,” Opt. Express 20(4), 3401–3407 (2012).
[Crossref] [PubMed]

V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method in laser spectroscopy,” Appl. Phys. B 103(3), 735–742 (2011).
[Crossref]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref] [PubMed]

V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method for measurements of small temperature differences in a gas,” Opt. Lett. 36(4), 460–462 (2011).
[Crossref] [PubMed]

Starecki, T.

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

Sun, S.

Szabo, G.

A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
[Crossref]

Szabó, A.

A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
[Crossref]

Z. Bozóki, A. Szabó, Á. Mohácsi, and G. Szabó, “A fully opened photoacoustic resonator based system for fast response gas concentration measurements,” Sens. Actuators B Chem. 147(1), 206–212 (2010).
[Crossref]

Szabó, G.

Z. Bozóki, A. Szabó, Á. Mohácsi, and G. Szabó, “A fully opened photoacoustic resonator based system for fast response gas concentration measurements,” Sens. Actuators B Chem. 147(1), 206–212 (2010).
[Crossref]

A. Pogány, A. Mohácsi, A. Varga, Z. Bozóki, Z. Galbács, L. Horváth, and G. Szabó, “A compact ammonia detector with sub-ppb accuracy using near-infrared photoacoustic spectroscopy and preconcentration sampling,” Environ. Sci. Technol. 43(3), 826–830 (2009).
[Crossref] [PubMed]

Tan, T.

K. Liu, W. X. Zhao, L. Wang, T. Tan, G. S. Wang, W. J. Zhang, X. M. Gao, and W. D. Chen, “Quartz-enhanced photoacoustic spectroscopy of HCN from 6433 to 6613 cm−1,” Opt. Commun. 340, 126–130 (2015).
[Crossref]

H. Yi, W. Chen, S. Sun, K. Liu, T. Tan, and X. Gao, “T-shape microresonator-based high sensitivity quartz-enhanced photoacoustic spectroscopy sensor,” Opt. Express 20(8), 9187–9196 (2012).
[Crossref] [PubMed]

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36(4), 481–483 (2011).
[Crossref] [PubMed]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[Crossref] [PubMed]

Thomazy, D.

V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method for measurements of small temperature differences in a gas,” Opt. Lett. 36(4), 460–462 (2011).
[Crossref] [PubMed]

V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method in laser spectroscopy,” Appl. Phys. B 103(3), 735–742 (2011).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: Design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

Thundat, T.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
[Crossref]

Tittel, F. K.

H. P. Wu, L. Dong, W. Ren, W. B. Yin, W. G. Ma, L. Zhang, S. T. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators B Chem. 206, 364–370 (2015).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, X. L. Liu, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser,” Sens. Actuators B Chem. 221, 666–672 (2015).
[Crossref]

Y. Cao, N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie, L. C. Hughes, C. E. Zah, and F. K. Tittel, “Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser,” Opt. Express 23(3), 2121–2132 (2015).
[Crossref] [PubMed]

H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic micro-resonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref] [PubMed]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
[Crossref]

M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH₄ and N₂O measurements near Greater Houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett. 39(4), 957–960 (2014).
[Crossref] [PubMed]

W. Ren, W. Z. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
[Crossref] [PubMed]

L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107(2), 459–467 (2012).
[Crossref]

V. Spagnolo, L. Dong, A. A. Kosterev, and F. K. Tittel, “Modulation cancellation method for isotope 18O/16O ratio measurements in water,” Opt. Express 20(4), 3401–3407 (2012).
[Crossref] [PubMed]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref] [PubMed]

V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method in laser spectroscopy,” Appl. Phys. B 103(3), 735–742 (2011).
[Crossref]

V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method for measurements of small temperature differences in a gas,” Opt. Lett. 36(4), 460–462 (2011).
[Crossref] [PubMed]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[Crossref] [PubMed]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: Design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm,” Appl. Phys. B 85(2–3), 301–306 (2006).
[Crossref]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
[Crossref] [PubMed]

Toivonen, J.

Triki, M.

T. N. Ba, M. Triki, G. Desbrosses, and A. Vicet, “Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode,” Rev. Sci. Instrum. 86(2), 02311 (2015).

Tyndall, G. S.

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98(32), 7837–7843 (1994).
[Crossref]

Van Neste, C. W.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
[Crossref]

Varga, A.

A. Pogány, A. Mohácsi, A. Varga, Z. Bozóki, Z. Galbács, L. Horváth, and G. Szabó, “A compact ammonia detector with sub-ppb accuracy using near-infrared photoacoustic spectroscopy and preconcentration sampling,” Environ. Sci. Technol. 43(3), 826–830 (2009).
[Crossref] [PubMed]

Vazquez, G. J.

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98(32), 7837–7843 (1994).
[Crossref]

Vicet, A.

T. N. Ba, M. Triki, G. Desbrosses, and A. Vicet, “Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode,” Rev. Sci. Instrum. 86(2), 02311 (2015).

Vitiello, M. S.

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref] [PubMed]

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Waclawek, J. P.

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
[Crossref]

Wang, G. S.

K. Liu, W. X. Zhao, L. Wang, T. Tan, G. S. Wang, W. J. Zhang, X. M. Gao, and W. D. Chen, “Quartz-enhanced photoacoustic spectroscopy of HCN from 6433 to 6613 cm−1,” Opt. Commun. 340, 126–130 (2015).
[Crossref]

Wang, L.

K. Liu, W. X. Zhao, L. Wang, T. Tan, G. S. Wang, W. J. Zhang, X. M. Gao, and W. D. Chen, “Quartz-enhanced photoacoustic spectroscopy of HCN from 6433 to 6613 cm−1,” Opt. Commun. 340, 126–130 (2015).
[Crossref]

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36(4), 481–483 (2011).
[Crossref] [PubMed]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[Crossref] [PubMed]

Wang, Y.

F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
[Crossref]

Wei, Q. N.

W. Q. Liu, Z. C. Cui, J. G. Liu, P. H. Xie, F. Z. Dong, Y. J. Zhang, and Q. N. Wei, “Measurement of atmospheric trace gases by spectroscopic and chemical techniques,” Chinese J. Quantum Elect. 21, 202 (2004).

Wenig, M.

F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
[Crossref]

Willer, U.

M. Köhring, S. Böttger, U. Willer, and W. Schade, “LED-Absorption-QEPAS Sensor for Biogas Plants,” Sensors (Basel) 15(5), 12092–12102 (2015).
[Crossref] [PubMed]

S. Böttger, M. Köhring, U. Willer, and W. Schade, “Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs,” Appl. Phys. B 113(2), 227–232 (2013).
[Crossref]

A. Pohlkötter, U. Willer, C. Bauer, and W. Schade, “Resonant tuning fork detector for electromagnetic radiation,” Appl. Opt. 48(4), B119–B125 (2009).
[Crossref] [PubMed]

Wright, J.

L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107(2), 459–467 (2012).
[Crossref]

Wu, F. C.

F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
[Crossref]

Wu, H.

Wu, H. P.

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators B Chem. 208, 173–179 (2015).
[Crossref]

H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

H. P. Wu, L. Dong, W. Ren, W. B. Yin, W. G. Ma, L. Zhang, S. T. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators B Chem. 206, 364–370 (2015).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, X. L. Liu, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser,” Sens. Actuators B Chem. 221, 666–672 (2015).
[Crossref]

Wysocki, G.

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm,” Appl. Phys. B 85(2–3), 301–306 (2006).
[Crossref]

Xie, F.

Y. Cao, N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie, L. C. Hughes, C. E. Zah, and F. K. Tittel, “Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser,” Opt. Express 23(3), 2121–2132 (2015).
[Crossref] [PubMed]

W. Ren, W. Z. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

Xie, P. H.

F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
[Crossref]

W. Q. Liu, Z. C. Cui, J. G. Liu, P. H. Xie, F. Z. Dong, Y. J. Zhang, and Q. N. Wei, “Measurement of atmospheric trace gases by spectroscopic and chemical techniques,” Chinese J. Quantum Elect. 21, 202 (2004).

Xu, J.

F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
[Crossref]

Yi, H.

Yi, H. M.

H. M. Yi, R. Maamary, X. M. Gao, M. W. Sigrist, E. Fertein, and W. D. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

Yin, W.

Yin, W. B.

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators B Chem. 208, 173–179 (2015).
[Crossref]

H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, X. L. Liu, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser,” Sens. Actuators B Chem. 221, 666–672 (2015).
[Crossref]

H. P. Wu, L. Dong, W. Ren, W. B. Yin, W. G. Ma, L. Zhang, S. T. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators B Chem. 206, 364–370 (2015).
[Crossref]

Yin, X. K.

H. P. Wu, L. Dong, H. D. Zheng, X. L. Liu, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser,” Sens. Actuators B Chem. 221, 666–672 (2015).
[Crossref]

H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators B Chem. 208, 173–179 (2015).
[Crossref]

Zah, C.

W. Ren, W. Z. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

Zah, C. E.

Zeng, Y.

F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
[Crossref]

Zhang, L.

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators B Chem. 208, 173–179 (2015).
[Crossref]

H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, X. L. Liu, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser,” Sens. Actuators B Chem. 221, 666–672 (2015).
[Crossref]

H. P. Wu, L. Dong, W. Ren, W. B. Yin, W. G. Ma, L. Zhang, S. T. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators B Chem. 206, 364–370 (2015).
[Crossref]

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic micro-resonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 39(8), 2479–2482 (2014).
[Crossref] [PubMed]

Zhang, W.

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[Crossref] [PubMed]

K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
[Crossref] [PubMed]

Zhang, W. J.

K. Liu, W. X. Zhao, L. Wang, T. Tan, G. S. Wang, W. J. Zhang, X. M. Gao, and W. D. Chen, “Quartz-enhanced photoacoustic spectroscopy of HCN from 6433 to 6613 cm−1,” Opt. Commun. 340, 126–130 (2015).
[Crossref]

Zhang, Y. J.

W. Q. Liu, Z. C. Cui, J. G. Liu, P. H. Xie, F. Z. Dong, Y. J. Zhang, and Q. N. Wei, “Measurement of atmospheric trace gases by spectroscopic and chemical techniques,” Chinese J. Quantum Elect. 21, 202 (2004).

Zhao, W. X.

K. Liu, W. X. Zhao, L. Wang, T. Tan, G. S. Wang, W. J. Zhang, X. M. Gao, and W. D. Chen, “Quartz-enhanced photoacoustic spectroscopy of HCN from 6433 to 6613 cm−1,” Opt. Commun. 340, 126–130 (2015).
[Crossref]

Zheng, H.

Zheng, H. D.

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators B Chem. 208, 173–179 (2015).
[Crossref]

H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, X. L. Liu, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser,” Sens. Actuators B Chem. 221, 666–672 (2015).
[Crossref]

Analyst (Lond.) (1)

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (6)

V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method in laser spectroscopy,” Appl. Phys. B 103(3), 735–742 (2011).
[Crossref]

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
[Crossref]

L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. McWhorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Appl. Phys. B 107(2), 459–467 (2012).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm,” Appl. Phys. B 85(2–3), 301–306 (2006).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: Design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

S. Böttger, M. Köhring, U. Willer, and W. Schade, “Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs,” Appl. Phys. B 113(2), 227–232 (2013).
[Crossref]

Appl. Phys. Lett. (7)

H. M. Yi, R. Maamary, X. M. Gao, M. W. Sigrist, E. Fertein, and W. D. Chen, “Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,” Appl. Phys. Lett. 106(10), 101109 (2015).
[Crossref]

W. Ren, W. Z. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 104(4), 041117 (2014).
[Crossref]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

H. P. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, V. Spagnolo, S. T. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Atmos. Meas. Tech. (1)

F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig, “Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,” Atmos. Meas. Tech. 6(9), 2277–2292 (2013).
[Crossref]

Chinese J. Quantum Elect. (1)

W. Q. Liu, Z. C. Cui, J. G. Liu, P. H. Xie, F. Z. Dong, Y. J. Zhang, and Q. N. Wei, “Measurement of atmospheric trace gases by spectroscopic and chemical techniques,” Chinese J. Quantum Elect. 21, 202 (2004).

Environ. Sci. Technol. (1)

A. Pogány, A. Mohácsi, A. Varga, Z. Bozóki, Z. Galbács, L. Horváth, and G. Szabó, “A compact ammonia detector with sub-ppb accuracy using near-infrared photoacoustic spectroscopy and preconcentration sampling,” Environ. Sci. Technol. 43(3), 826–830 (2009).
[Crossref] [PubMed]

J. Chem. Phys. (1)

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98(32), 7837–7843 (1994).
[Crossref]

Meas. Sci. Technol. (1)

A. Szabó, A. Mohacsi, G. Gulyas, Z. Bozoki, and G. Szabo, “In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy,” Meas. Sci. Technol. 24(6), 065501 (2013).
[Crossref]

Opt. Commun. (1)

K. Liu, W. X. Zhao, L. Wang, T. Tan, G. S. Wang, W. J. Zhang, X. M. Gao, and W. D. Chen, “Quartz-enhanced photoacoustic spectroscopy of HCN from 6433 to 6613 cm−1,” Opt. Commun. 340, 126–130 (2015).
[Crossref]

Opt. Express (7)

J. Saarela, T. Sorvajärvi, T. Laurila, and J. Toivonen, “Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs,” Opt. Express 19(S4Suppl 4), A725–A732 (2011).
[Crossref] [PubMed]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref] [PubMed]

V. Spagnolo, L. Dong, A. A. Kosterev, and F. K. Tittel, “Modulation cancellation method for isotope 18O/16O ratio measurements in water,” Opt. Express 20(4), 3401–3407 (2012).
[Crossref] [PubMed]

H. Yi, W. Chen, S. Sun, K. Liu, T. Tan, and X. Gao, “T-shape microresonator-based high sensitivity quartz-enhanced photoacoustic spectroscopy sensor,” Opt. Express 20(8), 9187–9196 (2012).
[Crossref] [PubMed]

Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
[Crossref] [PubMed]

Y. Cao, N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie, L. C. Hughes, C. E. Zah, and F. K. Tittel, “Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser,” Opt. Express 23(3), 2121–2132 (2015).
[Crossref] [PubMed]

V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. S. Vitiello, and F. K. Tittel, “THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection,” Opt. Express 23(6), 7574–7582 (2015).
[Crossref] [PubMed]

Opt. Lett. (6)

Rev. Sci. Instrum. (4)

M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74(1), 486–490 (2003).
[Crossref]

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937 (2001).
[Crossref]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[Crossref] [PubMed]

T. N. Ba, M. Triki, G. Desbrosses, and A. Vicet, “Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode,” Rev. Sci. Instrum. 86(2), 02311 (2015).

Sens. Actuators B Chem. (5)

Z. Bozóki, A. Szabó, Á. Mohácsi, and G. Szabó, “A fully opened photoacoustic resonator based system for fast response gas concentration measurements,” Sens. Actuators B Chem. 147(1), 206–212 (2010).
[Crossref]

H. P. Wu, L. Dong, W. Ren, W. B. Yin, W. G. Ma, L. Zhang, S. T. Jia, and F. K. Tittel, “Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy,” Sens. Actuators B Chem. 206, 364–370 (2015).
[Crossref]

H. D. Zheng, L. Dong, X. K. Yin, X. L. Liu, H. P. Wu, L. Zhang, W. G. Ma, W. B. Yin, and S. T. Jia, “Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED,” Sens. Actuators B Chem. 208, 173–179 (2015).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, X. L. Liu, X. K. Yin, W. G. Ma, L. Zhang, W. B. Yin, S. T. Jia, and F. K. Tittel, “Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser,” Sens. Actuators B Chem. 221, 666–672 (2015).
[Crossref]

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. González, “Differential LED-excited resonant NO2 photoacoustic system,” Sens. Actuators B Chem. 150(2), 513–516 (2010).
[Crossref]

Sensors (Basel) (2)

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

M. Köhring, S. Böttger, U. Willer, and W. Schade, “LED-Absorption-QEPAS Sensor for Biogas Plants,” Sensors (Basel) 15(5), 12092–12102 (2015).
[Crossref] [PubMed]

Other (2)

HITRAN database available at http://www.hitran.com .

J. G. Liu, W. Q. Liu, P. H. Xie, and W. Huang, “Regional Air Pollution Monitoring by Spectroscopic Techniques,” In Optical Instrumentation for Energy and Environmental Applications (2013) pp. EW1A–2. Optical Society of America.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 NO2 absorption cross sections and the two LDs’ emitting wavelengths.
Fig. 2
Fig. 2 (a) Schematic of scattered light modulation cancellation method. QTF: quartz tuning fork, AmR: acoustic micro resonator. (b) Photo of the SL-MOCAM QEPAS set up.
Fig. 3
Fig. 3 The schematic diagram of the experimental setup. DAQ: data acquisition card, ADM: acoustic detection module.
Fig. 4
Fig. 4 The background noise before and after SL-MOCAM. Black squares: QTF thermal noise, red rounds: background noise, blue triangles: SL-MOCAM noise.
Fig. 5
Fig. 5 Remote working ability evaluation of the SL-MOCAM.
Fig. 6
Fig. 6 (a) QEPAS signal acquired repetitively while the NO2 concentration was varied by changing of the carrier gas flow using a gas dilution system. (b) Same data averaged and plotted as a function of the calibration of the gas dilution system.
Fig. 7
Fig. 7 Allan deviation analysis of the QEPAS sensor based on SL-MOCAM.

Tables (1)

Tables Icon

Table 1 Intercomparison of Three Kinds of NO2 QEPAS Sensor

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F = Φ c P ,

Metrics