Abstract

We calculated the conversion-efficiency limit ηsc and the optimized subcell bandgap energies of 1 to 5 junction solar cells without and with intermediate reflectors under 1-sun AM1.5G and 1000-sun AM1.5D irradiations, particularly including the impact of internal radiative efficiency (ηint) below unity for realistic subcell materials on the basis of an extended detailed-balance theory. We found that the conversion-efficiency limit ηsc significantly drops when the geometric mean ηint* of all subcell ηint in the stack reduces from 1 to 0.1, and that ηsc degrades linearly to logηint* for ηint* below 0.1. For ηint*<0.1 differences in ηsc due to additional intermediate reflectors became very small if all subcells are optically thick for sun light. We obtained characteristic optimized bandgap energies, which reflect both ηint* decrease and AM1.5 spectral gaps. These results provide realistic efficiency targets and design principles.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical performance of multi-junction solar cells combining III-V and Si materials

Ian Mathews, Donagh O'Mahony, Brian Corbett, and Alan P. Morrison
Opt. Express 20(S5) A754-A764 (2012)

Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments

Taqiyyah S. Safi and Jeremy N. Munday
Opt. Express 23(19) A1120-A1128 (2015)

Optical coupling from InGaAs subcell to InGaP subcell in InGaP/InGaAs/Ge multi-junction solar cells

G. W. Shu, J. Y. Lin, H. T. Jian, J. L. Shen, S. C. Wang, C. L. Chou, W. C. Chou, C. H. Wu, C. H. Chiu, and H. C. Kuo
Opt. Express 21(S1) A123-A130 (2013)

References

  • View by:
  • |
  • |
  • |

  1. lW. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  2. A. D. Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D Appl. Phys. 13(5), 839–846 (1980).
    [Crossref]
  3. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
    [Crossref]
  4. A. S. Brown and M. A. Green, “Detailed balance limit for the series constrained two terminal tandem solar cell,” Physica E 14(1), 6–100 (2002).
  5. A. Martí and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
    [Crossref]
  6. I. Tobías and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Prog. Photovolt. Res. Appl. 10(5), 323–329 (2002).
    [Crossref]
  7. S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
    [Crossref]
  8. A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Prog. Photovolt. Res. Appl. 10(5), 299–307 (2002).
    [Crossref]
  9. V. Ganapati, C.-S. Ho, and E. Yablonovitch, “Air gaps as intermediate selective reflectors to reach theoretical efficiency limits of multibandgap solar cells,” IEEE J. Photovoltaics 5(1), 410–417 (2015).
    [Crossref]
  10. M. A. Green, “Radiative efficiency of state-of-the-art photovoltaic cells,” Prog. Photovolt. Res. Appl. 20(4), 472–476 (2012).
    [Crossref]
  11. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
    [Crossref]
  12. N. L. A. Chan, N. J. Ekins-Daukes, J. G. J. Adams, M. P. Lumb, M. Gonzalez, P. M. Jenkins, I. Vurgaftman, J. R. Meyer, and R. J. Walters, “Optimal bandgap combinations—does material quality matter?” IEEE J. Photovoltaics 2(2), 202–208 (2012).
    [Crossref]
  13. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
    [Crossref]
  14. O. D. Miller, “Photonic design: From fundamental solar cell physics to computational inverse design,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Univ. Calif., Berkeley, CA, USA, (2012).
  15. O. D. Miller and E. Yablonovitch, “Detailed balance solar cell efficiency limits for internal fluorescence yield slightly less than 100%,” Optics for Solar Energy (OSA, 2010).
  16. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
    [Crossref]
  17. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [Crossref]
  18. I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures,” Appl. Phys. Lett. 62(2), 131–133 (1993).
    [Crossref]
  19. L. Zhu, C. Kim, M. Yoshita, S. Chen, S. Sato, T. Mochizuki, H. Akiyama, and Y. Kanemitsu, “Impact of sub-cell internal luminescence yields on energy conversion efficiencies of tandem solar cells: A design principle,” Appl. Phys. Lett. 104(3), 031118 (2014).
    [Crossref]
  20. S. Chen, L. Zhu, M. Yoshita, T. Mochizuki, C. Kim, H. Akiyama, M. Imaizumi, and Y. Kanemitsu, “Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements,” Sci. Rep. 5, 7836 (2015).
    [Crossref] [PubMed]
  21. O. D. Miller, “Photonic design: From fundamental solar cell physics to computational inverse design.” arXiv preprint arXiv:1308.0212 (2013).
  22. M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
    [Crossref]
  23. The lower bounds of ηext and ηint exist, which stem from neglect of thermal emission against luminescence, or Eg >> -kTclnηext .
  24. Website of the National Renewable Energy Laboratory in the United States, “Best research-cell efficiencies” (2016). http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
  25. M. Yamaguchi, K. I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III-V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
    [Crossref]
  26. W. Guter, R. Kern, W. Köstler, T. Kubera, R. Löckenhoff, M. Meusel, M. Shirnow, and G. Strobl, “III-V multijunction solar cells–new lattice-matched products and development of upright metamorphic 3J cells,” AIP Conf. Proc. 1407(1), 3658282 (2011).
  27. M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency> 50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
    [Crossref]
  28. F. Dimroth, C. Baur, A. W. Bett, M. Meusel, and G. Strobl, “3-6 junction photovoltaic cells for space and terrestrial concentrator applications,” in Photovoltaic Specialists Conference (IEEE, 2005), pp. 525–529.
    [Crossref]
  29. T. N. Tibbits, P. Beutel, M. Grave, C. Karcher, E. Oliva, G. Siefer, A. Wekkeli, M. Schachtner, F. Dimroth, and A. W. Bett, “New efficiency frontiers with wafer-bonded multi-junction solar cells,” in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (2014), pp. 1-4.
  30. J. F. Geisz, M. A. Steiner, I. García, S. R. Kurtz, and D. J. Friedman, “Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells,” Appl. Phys. Lett. 103(4), 041118 (2013).
    [Crossref]
  31. M. Y. Feteha and G. M. Eldallal, “The effects of temperature and light concentration on the GaInP/GaAs multijunction solar cell’s performance,” Renew. Energy 28(7), 1097–1104 (2003).
    [Crossref]
  32. K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of temperature characteristics of high-efficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration,” Sol. Energy Mater. Sol. Cells 85(3), 429–436 (2005).
    [Crossref]
  33. K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90(1), 57–67 (2006).
    [Crossref]

2015 (3)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

V. Ganapati, C.-S. Ho, and E. Yablonovitch, “Air gaps as intermediate selective reflectors to reach theoretical efficiency limits of multibandgap solar cells,” IEEE J. Photovoltaics 5(1), 410–417 (2015).
[Crossref]

S. Chen, L. Zhu, M. Yoshita, T. Mochizuki, C. Kim, H. Akiyama, M. Imaizumi, and Y. Kanemitsu, “Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements,” Sci. Rep. 5, 7836 (2015).
[Crossref] [PubMed]

2014 (1)

L. Zhu, C. Kim, M. Yoshita, S. Chen, S. Sato, T. Mochizuki, H. Akiyama, and Y. Kanemitsu, “Impact of sub-cell internal luminescence yields on energy conversion efficiencies of tandem solar cells: A design principle,” Appl. Phys. Lett. 104(3), 031118 (2014).
[Crossref]

2013 (3)

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency> 50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

J. F. Geisz, M. A. Steiner, I. García, S. R. Kurtz, and D. J. Friedman, “Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells,” Appl. Phys. Lett. 103(4), 041118 (2013).
[Crossref]

2012 (3)

M. A. Green, “Radiative efficiency of state-of-the-art photovoltaic cells,” Prog. Photovolt. Res. Appl. 20(4), 472–476 (2012).
[Crossref]

N. L. A. Chan, N. J. Ekins-Daukes, J. G. J. Adams, M. P. Lumb, M. Gonzalez, P. M. Jenkins, I. Vurgaftman, J. R. Meyer, and R. J. Walters, “Optimal bandgap combinations—does material quality matter?” IEEE J. Photovoltaics 2(2), 202–208 (2012).
[Crossref]

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

2011 (1)

W. Guter, R. Kern, W. Köstler, T. Kubera, R. Löckenhoff, M. Meusel, M. Shirnow, and G. Strobl, “III-V multijunction solar cells–new lattice-matched products and development of upright metamorphic 3J cells,” AIP Conf. Proc. 1407(1), 3658282 (2011).

2008 (2)

M. Yamaguchi, K. I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III-V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[Crossref]

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
[Crossref]

2006 (1)

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90(1), 57–67 (2006).
[Crossref]

2005 (1)

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of temperature characteristics of high-efficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration,” Sol. Energy Mater. Sol. Cells 85(3), 429–436 (2005).
[Crossref]

2003 (1)

M. Y. Feteha and G. M. Eldallal, “The effects of temperature and light concentration on the GaInP/GaAs multijunction solar cell’s performance,” Renew. Energy 28(7), 1097–1104 (2003).
[Crossref]

2002 (3)

A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Prog. Photovolt. Res. Appl. 10(5), 299–307 (2002).
[Crossref]

I. Tobías and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Prog. Photovolt. Res. Appl. 10(5), 323–329 (2002).
[Crossref]

A. S. Brown and M. A. Green, “Detailed balance limit for the series constrained two terminal tandem solar cell,” Physica E 14(1), 6–100 (2002).

1996 (1)

A. Martí and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
[Crossref]

1993 (1)

I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures,” Appl. Phys. Lett. 62(2), 131–133 (1993).
[Crossref]

1982 (2)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
[Crossref]

1980 (2)

A. D. Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D Appl. Phys. 13(5), 839–846 (1980).
[Crossref]

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
[Crossref]

1961 (1)

lW. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Adams, J. G. J.

N. L. A. Chan, N. J. Ekins-Daukes, J. G. J. Adams, M. P. Lumb, M. Gonzalez, P. M. Jenkins, I. Vurgaftman, J. R. Meyer, and R. J. Walters, “Optimal bandgap combinations—does material quality matter?” IEEE J. Photovoltaics 2(2), 202–208 (2012).
[Crossref]

Agui, T.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90(1), 57–67 (2006).
[Crossref]

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of temperature characteristics of high-efficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration,” Sol. Energy Mater. Sol. Cells 85(3), 429–436 (2005).
[Crossref]

Akiyama, H.

S. Chen, L. Zhu, M. Yoshita, T. Mochizuki, C. Kim, H. Akiyama, M. Imaizumi, and Y. Kanemitsu, “Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements,” Sci. Rep. 5, 7836 (2015).
[Crossref] [PubMed]

L. Zhu, C. Kim, M. Yoshita, S. Chen, S. Sato, T. Mochizuki, H. Akiyama, and Y. Kanemitsu, “Impact of sub-cell internal luminescence yields on energy conversion efficiencies of tandem solar cells: A design principle,” Appl. Phys. Lett. 104(3), 031118 (2014).
[Crossref]

Arafune, K.

M. Yamaguchi, K. I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III-V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[Crossref]

Araki, K.

M. Yamaguchi, K. I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III-V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[Crossref]

Araujo, G. L.

A. Martí and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
[Crossref]

Atwater, H. A.

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency> 50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

Baur, C.

F. Dimroth, C. Baur, A. W. Bett, M. Meusel, and G. Strobl, “3-6 junction photovoltaic cells for space and terrestrial concentrator applications,” in Photovoltaic Specialists Conference (IEEE, 2005), pp. 525–529.
[Crossref]

Bett, A. W.

F. Dimroth, C. Baur, A. W. Bett, M. Meusel, and G. Strobl, “3-6 junction photovoltaic cells for space and terrestrial concentrator applications,” in Photovoltaic Specialists Conference (IEEE, 2005), pp. 525–529.
[Crossref]

T. N. Tibbits, P. Beutel, M. Grave, C. Karcher, E. Oliva, G. Siefer, A. Wekkeli, M. Schachtner, F. Dimroth, and A. W. Bett, “New efficiency frontiers with wafer-bonded multi-junction solar cells,” in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (2014), pp. 1-4.

Beutel, P.

T. N. Tibbits, P. Beutel, M. Grave, C. Karcher, E. Oliva, G. Siefer, A. Wekkeli, M. Schachtner, F. Dimroth, and A. W. Bett, “New efficiency frontiers with wafer-bonded multi-junction solar cells,” in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (2014), pp. 1-4.

Brown, A. S.

A. S. Brown and M. A. Green, “Detailed balance limit for the series constrained two terminal tandem solar cell,” Physica E 14(1), 6–100 (2002).

A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Prog. Photovolt. Res. Appl. 10(5), 299–307 (2002).
[Crossref]

Caneau, C.

I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures,” Appl. Phys. Lett. 62(2), 131–133 (1993).
[Crossref]

Chan, N. L. A.

N. L. A. Chan, N. J. Ekins-Daukes, J. G. J. Adams, M. P. Lumb, M. Gonzalez, P. M. Jenkins, I. Vurgaftman, J. R. Meyer, and R. J. Walters, “Optimal bandgap combinations—does material quality matter?” IEEE J. Photovoltaics 2(2), 202–208 (2012).
[Crossref]

Chen, S.

S. Chen, L. Zhu, M. Yoshita, T. Mochizuki, C. Kim, H. Akiyama, M. Imaizumi, and Y. Kanemitsu, “Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements,” Sci. Rep. 5, 7836 (2015).
[Crossref] [PubMed]

L. Zhu, C. Kim, M. Yoshita, S. Chen, S. Sato, T. Mochizuki, H. Akiyama, and Y. Kanemitsu, “Impact of sub-cell internal luminescence yields on energy conversion efficiencies of tandem solar cells: A design principle,” Appl. Phys. Lett. 104(3), 031118 (2014).
[Crossref]

Cody, G. D.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

Dimroth, F.

T. N. Tibbits, P. Beutel, M. Grave, C. Karcher, E. Oliva, G. Siefer, A. Wekkeli, M. Schachtner, F. Dimroth, and A. W. Bett, “New efficiency frontiers with wafer-bonded multi-junction solar cells,” in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (2014), pp. 1-4.

F. Dimroth, C. Baur, A. W. Bett, M. Meusel, and G. Strobl, “3-6 junction photovoltaic cells for space and terrestrial concentrator applications,” in Photovoltaic Specialists Conference (IEEE, 2005), pp. 525–529.
[Crossref]

Duda, A.

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Ekins-Daukes, N. J.

N. L. A. Chan, N. J. Ekins-Daukes, J. G. J. Adams, M. P. Lumb, M. Gonzalez, P. M. Jenkins, I. Vurgaftman, J. R. Meyer, and R. J. Walters, “Optimal bandgap combinations—does material quality matter?” IEEE J. Photovoltaics 2(2), 202–208 (2012).
[Crossref]

Eldallal, G. M.

M. Y. Feteha and G. M. Eldallal, “The effects of temperature and light concentration on the GaInP/GaAs multijunction solar cell’s performance,” Renew. Energy 28(7), 1097–1104 (2003).
[Crossref]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Feteha, M. Y.

M. Y. Feteha and G. M. Eldallal, “The effects of temperature and light concentration on the GaInP/GaAs multijunction solar cell’s performance,” Renew. Energy 28(7), 1097–1104 (2003).
[Crossref]

Friedman, D. J.

J. F. Geisz, M. A. Steiner, I. García, S. R. Kurtz, and D. J. Friedman, “Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells,” Appl. Phys. Lett. 103(4), 041118 (2013).
[Crossref]

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

Fuyuki, T.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90(1), 57–67 (2006).
[Crossref]

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of temperature characteristics of high-efficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration,” Sol. Energy Mater. Sol. Cells 85(3), 429–436 (2005).
[Crossref]

Ganapati, V.

V. Ganapati, C.-S. Ho, and E. Yablonovitch, “Air gaps as intermediate selective reflectors to reach theoretical efficiency limits of multibandgap solar cells,” IEEE J. Photovoltaics 5(1), 410–417 (2015).
[Crossref]

Garcia, I.

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

García, I.

J. F. Geisz, M. A. Steiner, I. García, S. R. Kurtz, and D. J. Friedman, “Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells,” Appl. Phys. Lett. 103(4), 041118 (2013).
[Crossref]

Geisz, J.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
[Crossref]

Geisz, J. F.

J. F. Geisz, M. A. Steiner, I. García, S. R. Kurtz, and D. J. Friedman, “Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells,” Appl. Phys. Lett. 103(4), 041118 (2013).
[Crossref]

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

Gmitter, T. J.

I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures,” Appl. Phys. Lett. 62(2), 131–133 (1993).
[Crossref]

Gonzalez, M.

N. L. A. Chan, N. J. Ekins-Daukes, J. G. J. Adams, M. P. Lumb, M. Gonzalez, P. M. Jenkins, I. Vurgaftman, J. R. Meyer, and R. J. Walters, “Optimal bandgap combinations—does material quality matter?” IEEE J. Photovoltaics 2(2), 202–208 (2012).
[Crossref]

Grave, M.

T. N. Tibbits, P. Beutel, M. Grave, C. Karcher, E. Oliva, G. Siefer, A. Wekkeli, M. Schachtner, F. Dimroth, and A. W. Bett, “New efficiency frontiers with wafer-bonded multi-junction solar cells,” in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (2014), pp. 1-4.

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

M. A. Green, “Radiative efficiency of state-of-the-art photovoltaic cells,” Prog. Photovolt. Res. Appl. 20(4), 472–476 (2012).
[Crossref]

A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Prog. Photovolt. Res. Appl. 10(5), 299–307 (2002).
[Crossref]

A. S. Brown and M. A. Green, “Detailed balance limit for the series constrained two terminal tandem solar cell,” Physica E 14(1), 6–100 (2002).

Guter, W.

W. Guter, R. Kern, W. Köstler, T. Kubera, R. Löckenhoff, M. Meusel, M. Shirnow, and G. Strobl, “III-V multijunction solar cells–new lattice-matched products and development of upright metamorphic 3J cells,” AIP Conf. Proc. 1407(1), 3658282 (2011).

Henry, C. H.

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
[Crossref]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Ho, C.-S.

V. Ganapati, C.-S. Ho, and E. Yablonovitch, “Air gaps as intermediate selective reflectors to reach theoretical efficiency limits of multibandgap solar cells,” IEEE J. Photovoltaics 5(1), 410–417 (2015).
[Crossref]

Hong, W. D.

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency> 50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

Imaizumi, M.

S. Chen, L. Zhu, M. Yoshita, T. Mochizuki, C. Kim, H. Akiyama, M. Imaizumi, and Y. Kanemitsu, “Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements,” Sci. Rep. 5, 7836 (2015).
[Crossref] [PubMed]

Jenkins, P. M.

N. L. A. Chan, N. J. Ekins-Daukes, J. G. J. Adams, M. P. Lumb, M. Gonzalez, P. M. Jenkins, I. Vurgaftman, J. R. Meyer, and R. J. Walters, “Optimal bandgap combinations—does material quality matter?” IEEE J. Photovoltaics 2(2), 202–208 (2012).
[Crossref]

Kaneiwa, M.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90(1), 57–67 (2006).
[Crossref]

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of temperature characteristics of high-efficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration,” Sol. Energy Mater. Sol. Cells 85(3), 429–436 (2005).
[Crossref]

Kanemitsu, Y.

S. Chen, L. Zhu, M. Yoshita, T. Mochizuki, C. Kim, H. Akiyama, M. Imaizumi, and Y. Kanemitsu, “Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements,” Sci. Rep. 5, 7836 (2015).
[Crossref] [PubMed]

L. Zhu, C. Kim, M. Yoshita, S. Chen, S. Sato, T. Mochizuki, H. Akiyama, and Y. Kanemitsu, “Impact of sub-cell internal luminescence yields on energy conversion efficiencies of tandem solar cells: A design principle,” Appl. Phys. Lett. 104(3), 031118 (2014).
[Crossref]

Karcher, C.

T. N. Tibbits, P. Beutel, M. Grave, C. Karcher, E. Oliva, G. Siefer, A. Wekkeli, M. Schachtner, F. Dimroth, and A. W. Bett, “New efficiency frontiers with wafer-bonded multi-junction solar cells,” in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (2014), pp. 1-4.

Kern, R.

W. Guter, R. Kern, W. Köstler, T. Kubera, R. Löckenhoff, M. Meusel, M. Shirnow, and G. Strobl, “III-V multijunction solar cells–new lattice-matched products and development of upright metamorphic 3J cells,” AIP Conf. Proc. 1407(1), 3658282 (2011).

Kim, C.

S. Chen, L. Zhu, M. Yoshita, T. Mochizuki, C. Kim, H. Akiyama, M. Imaizumi, and Y. Kanemitsu, “Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements,” Sci. Rep. 5, 7836 (2015).
[Crossref] [PubMed]

L. Zhu, C. Kim, M. Yoshita, S. Chen, S. Sato, T. Mochizuki, H. Akiyama, and Y. Kanemitsu, “Impact of sub-cell internal luminescence yields on energy conversion efficiencies of tandem solar cells: A design principle,” Appl. Phys. Lett. 104(3), 031118 (2014).
[Crossref]

Kojima, N.

M. Yamaguchi, K. I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III-V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[Crossref]

Köstler, W.

W. Guter, R. Kern, W. Köstler, T. Kubera, R. Löckenhoff, M. Meusel, M. Shirnow, and G. Strobl, “III-V multijunction solar cells–new lattice-matched products and development of upright metamorphic 3J cells,” AIP Conf. Proc. 1407(1), 3658282 (2011).

Kubera, T.

W. Guter, R. Kern, W. Köstler, T. Kubera, R. Löckenhoff, M. Meusel, M. Shirnow, and G. Strobl, “III-V multijunction solar cells–new lattice-matched products and development of upright metamorphic 3J cells,” AIP Conf. Proc. 1407(1), 3658282 (2011).

Kurtz, S.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
[Crossref]

Kurtz, S. R.

J. F. Geisz, M. A. Steiner, I. García, S. R. Kurtz, and D. J. Friedman, “Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells,” Appl. Phys. Lett. 103(4), 041118 (2013).
[Crossref]

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

Law, D. C.

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency> 50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

Leite, M. S.

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency> 50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

Löckenhoff, R.

W. Guter, R. Kern, W. Köstler, T. Kubera, R. Löckenhoff, M. Meusel, M. Shirnow, and G. Strobl, “III-V multijunction solar cells–new lattice-matched products and development of upright metamorphic 3J cells,” AIP Conf. Proc. 1407(1), 3658282 (2011).

Lumb, M. P.

N. L. A. Chan, N. J. Ekins-Daukes, J. G. J. Adams, M. P. Lumb, M. Gonzalez, P. M. Jenkins, I. Vurgaftman, J. R. Meyer, and R. J. Walters, “Optimal bandgap combinations—does material quality matter?” IEEE J. Photovoltaics 2(2), 202–208 (2012).
[Crossref]

Luque, A.

I. Tobías and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Prog. Photovolt. Res. Appl. 10(5), 323–329 (2002).
[Crossref]

Martí, A.

A. Martí and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
[Crossref]

McMahon, W. E.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
[Crossref]

Mesropian, S.

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency> 50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

Meusel, M.

W. Guter, R. Kern, W. Köstler, T. Kubera, R. Löckenhoff, M. Meusel, M. Shirnow, and G. Strobl, “III-V multijunction solar cells–new lattice-matched products and development of upright metamorphic 3J cells,” AIP Conf. Proc. 1407(1), 3658282 (2011).

F. Dimroth, C. Baur, A. W. Bett, M. Meusel, and G. Strobl, “3-6 junction photovoltaic cells for space and terrestrial concentrator applications,” in Photovoltaic Specialists Conference (IEEE, 2005), pp. 525–529.
[Crossref]

Meyer, J. R.

N. L. A. Chan, N. J. Ekins-Daukes, J. G. J. Adams, M. P. Lumb, M. Gonzalez, P. M. Jenkins, I. Vurgaftman, J. R. Meyer, and R. J. Walters, “Optimal bandgap combinations—does material quality matter?” IEEE J. Photovoltaics 2(2), 202–208 (2012).
[Crossref]

Miller, O. D.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

Mochizuki, T.

S. Chen, L. Zhu, M. Yoshita, T. Mochizuki, C. Kim, H. Akiyama, M. Imaizumi, and Y. Kanemitsu, “Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements,” Sci. Rep. 5, 7836 (2015).
[Crossref] [PubMed]

L. Zhu, C. Kim, M. Yoshita, S. Chen, S. Sato, T. Mochizuki, H. Akiyama, and Y. Kanemitsu, “Impact of sub-cell internal luminescence yields on energy conversion efficiencies of tandem solar cells: A design principle,” Appl. Phys. Lett. 104(3), 031118 (2014).
[Crossref]

Munday, J. N.

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency> 50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

Myers, D.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
[Crossref]

Nishimura, K. I.

M. Yamaguchi, K. I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III-V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[Crossref]

Nishioka, K.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90(1), 57–67 (2006).
[Crossref]

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of temperature characteristics of high-efficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration,” Sol. Energy Mater. Sol. Cells 85(3), 429–436 (2005).
[Crossref]

Ohsita, Y.

M. Yamaguchi, K. I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III-V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[Crossref]

Okada, Y.

M. Yamaguchi, K. I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III-V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[Crossref]

Oliva, E.

T. N. Tibbits, P. Beutel, M. Grave, C. Karcher, E. Oliva, G. Siefer, A. Wekkeli, M. Schachtner, F. Dimroth, and A. W. Bett, “New efficiency frontiers with wafer-bonded multi-junction solar cells,” in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (2014), pp. 1-4.

Queisser, H. J.

lW. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Sasaki, T.

M. Yamaguchi, K. I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III-V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[Crossref]

Sato, S.

L. Zhu, C. Kim, M. Yoshita, S. Chen, S. Sato, T. Mochizuki, H. Akiyama, and Y. Kanemitsu, “Impact of sub-cell internal luminescence yields on energy conversion efficiencies of tandem solar cells: A design principle,” Appl. Phys. Lett. 104(3), 031118 (2014).
[Crossref]

Schachtner, M.

T. N. Tibbits, P. Beutel, M. Grave, C. Karcher, E. Oliva, G. Siefer, A. Wekkeli, M. Schachtner, F. Dimroth, and A. W. Bett, “New efficiency frontiers with wafer-bonded multi-junction solar cells,” in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (2014), pp. 1-4.

Schnitzer, I.

I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures,” Appl. Phys. Lett. 62(2), 131–133 (1993).
[Crossref]

Shirnow, M.

W. Guter, R. Kern, W. Köstler, T. Kubera, R. Löckenhoff, M. Meusel, M. Shirnow, and G. Strobl, “III-V multijunction solar cells–new lattice-matched products and development of upright metamorphic 3J cells,” AIP Conf. Proc. 1407(1), 3658282 (2011).

Shockley, W.

lW. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Siefer, G.

T. N. Tibbits, P. Beutel, M. Grave, C. Karcher, E. Oliva, G. Siefer, A. Wekkeli, M. Schachtner, F. Dimroth, and A. W. Bett, “New efficiency frontiers with wafer-bonded multi-junction solar cells,” in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (2014), pp. 1-4.

Steiner, M.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
[Crossref]

Steiner, M. A.

J. F. Geisz, M. A. Steiner, I. García, S. R. Kurtz, and D. J. Friedman, “Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells,” Appl. Phys. Lett. 103(4), 041118 (2013).
[Crossref]

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

Strobl, G.

W. Guter, R. Kern, W. Köstler, T. Kubera, R. Löckenhoff, M. Meusel, M. Shirnow, and G. Strobl, “III-V multijunction solar cells–new lattice-matched products and development of upright metamorphic 3J cells,” AIP Conf. Proc. 1407(1), 3658282 (2011).

F. Dimroth, C. Baur, A. W. Bett, M. Meusel, and G. Strobl, “3-6 junction photovoltaic cells for space and terrestrial concentrator applications,” in Photovoltaic Specialists Conference (IEEE, 2005), pp. 525–529.
[Crossref]

Suzuki, H.

M. Yamaguchi, K. I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III-V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[Crossref]

Takamoto, T.

M. Yamaguchi, K. I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III-V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[Crossref]

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90(1), 57–67 (2006).
[Crossref]

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of temperature characteristics of high-efficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration,” Sol. Energy Mater. Sol. Cells 85(3), 429–436 (2005).
[Crossref]

Tibbits, T. N.

T. N. Tibbits, P. Beutel, M. Grave, C. Karcher, E. Oliva, G. Siefer, A. Wekkeli, M. Schachtner, F. Dimroth, and A. W. Bett, “New efficiency frontiers with wafer-bonded multi-junction solar cells,” in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (2014), pp. 1-4.

Tobías, I.

I. Tobías and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Prog. Photovolt. Res. Appl. 10(5), 323–329 (2002).
[Crossref]

Uraoka, Y.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90(1), 57–67 (2006).
[Crossref]

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of temperature characteristics of high-efficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration,” Sol. Energy Mater. Sol. Cells 85(3), 429–436 (2005).
[Crossref]

Vos, A. D.

A. D. Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D Appl. Phys. 13(5), 839–846 (1980).
[Crossref]

Vurgaftman, I.

N. L. A. Chan, N. J. Ekins-Daukes, J. G. J. Adams, M. P. Lumb, M. Gonzalez, P. M. Jenkins, I. Vurgaftman, J. R. Meyer, and R. J. Walters, “Optimal bandgap combinations—does material quality matter?” IEEE J. Photovoltaics 2(2), 202–208 (2012).
[Crossref]

Walters, R. J.

N. L. A. Chan, N. J. Ekins-Daukes, J. G. J. Adams, M. P. Lumb, M. Gonzalez, P. M. Jenkins, I. Vurgaftman, J. R. Meyer, and R. J. Walters, “Optimal bandgap combinations—does material quality matter?” IEEE J. Photovoltaics 2(2), 202–208 (2012).
[Crossref]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Wekkeli, A.

T. N. Tibbits, P. Beutel, M. Grave, C. Karcher, E. Oliva, G. Siefer, A. Wekkeli, M. Schachtner, F. Dimroth, and A. W. Bett, “New efficiency frontiers with wafer-bonded multi-junction solar cells,” in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (2014), pp. 1-4.

Woo, R. L.

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency> 50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

Yablonovitch, E.

V. Ganapati, C.-S. Ho, and E. Yablonovitch, “Air gaps as intermediate selective reflectors to reach theoretical efficiency limits of multibandgap solar cells,” IEEE J. Photovoltaics 5(1), 410–417 (2015).
[Crossref]

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures,” Appl. Phys. Lett. 62(2), 131–133 (1993).
[Crossref]

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
[Crossref]

Yamaguchi, M.

M. Yamaguchi, K. I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III-V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[Crossref]

Yamamoto, A.

M. Yamaguchi, K. I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III-V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[Crossref]

Yoshita, M.

S. Chen, L. Zhu, M. Yoshita, T. Mochizuki, C. Kim, H. Akiyama, M. Imaizumi, and Y. Kanemitsu, “Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements,” Sci. Rep. 5, 7836 (2015).
[Crossref] [PubMed]

L. Zhu, C. Kim, M. Yoshita, S. Chen, S. Sato, T. Mochizuki, H. Akiyama, and Y. Kanemitsu, “Impact of sub-cell internal luminescence yields on energy conversion efficiencies of tandem solar cells: A design principle,” Appl. Phys. Lett. 104(3), 031118 (2014).
[Crossref]

Zhu, L.

S. Chen, L. Zhu, M. Yoshita, T. Mochizuki, C. Kim, H. Akiyama, M. Imaizumi, and Y. Kanemitsu, “Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements,” Sci. Rep. 5, 7836 (2015).
[Crossref] [PubMed]

L. Zhu, C. Kim, M. Yoshita, S. Chen, S. Sato, T. Mochizuki, H. Akiyama, and Y. Kanemitsu, “Impact of sub-cell internal luminescence yields on energy conversion efficiencies of tandem solar cells: A design principle,” Appl. Phys. Lett. 104(3), 031118 (2014).
[Crossref]

AIP Conf. Proc. (1)

W. Guter, R. Kern, W. Köstler, T. Kubera, R. Löckenhoff, M. Meusel, M. Shirnow, and G. Strobl, “III-V multijunction solar cells–new lattice-matched products and development of upright metamorphic 3J cells,” AIP Conf. Proc. 1407(1), 3658282 (2011).

Appl. Phys. Lett. (4)

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency> 50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]

J. F. Geisz, M. A. Steiner, I. García, S. R. Kurtz, and D. J. Friedman, “Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells,” Appl. Phys. Lett. 103(4), 041118 (2013).
[Crossref]

I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures,” Appl. Phys. Lett. 62(2), 131–133 (1993).
[Crossref]

L. Zhu, C. Kim, M. Yoshita, S. Chen, S. Sato, T. Mochizuki, H. Akiyama, and Y. Kanemitsu, “Impact of sub-cell internal luminescence yields on energy conversion efficiencies of tandem solar cells: A design principle,” Appl. Phys. Lett. 104(3), 031118 (2014).
[Crossref]

IEEE J. Photovoltaics (3)

N. L. A. Chan, N. J. Ekins-Daukes, J. G. J. Adams, M. P. Lumb, M. Gonzalez, P. M. Jenkins, I. Vurgaftman, J. R. Meyer, and R. J. Walters, “Optimal bandgap combinations—does material quality matter?” IEEE J. Photovoltaics 2(2), 202–208 (2012).
[Crossref]

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

V. Ganapati, C.-S. Ho, and E. Yablonovitch, “Air gaps as intermediate selective reflectors to reach theoretical efficiency limits of multibandgap solar cells,” IEEE J. Photovoltaics 5(1), 410–417 (2015).
[Crossref]

IEEE Trans. Electron Dev. (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

J. Appl. Phys. (3)

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

lW. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. D Appl. Phys. (1)

A. D. Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D Appl. Phys. 13(5), 839–846 (1980).
[Crossref]

Physica E (1)

A. S. Brown and M. A. Green, “Detailed balance limit for the series constrained two terminal tandem solar cell,” Physica E 14(1), 6–100 (2002).

Prog. Photovolt. Res. Appl. (5)

M. A. Green, “Radiative efficiency of state-of-the-art photovoltaic cells,” Prog. Photovolt. Res. Appl. 20(4), 472–476 (2012).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

I. Tobías and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Prog. Photovolt. Res. Appl. 10(5), 323–329 (2002).
[Crossref]

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
[Crossref]

A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Prog. Photovolt. Res. Appl. 10(5), 299–307 (2002).
[Crossref]

Renew. Energy (1)

M. Y. Feteha and G. M. Eldallal, “The effects of temperature and light concentration on the GaInP/GaAs multijunction solar cell’s performance,” Renew. Energy 28(7), 1097–1104 (2003).
[Crossref]

Sci. Rep. (1)

S. Chen, L. Zhu, M. Yoshita, T. Mochizuki, C. Kim, H. Akiyama, M. Imaizumi, and Y. Kanemitsu, “Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements,” Sci. Rep. 5, 7836 (2015).
[Crossref] [PubMed]

Sol. Energy (1)

M. Yamaguchi, K. I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III-V multi-junction solar cells,” Sol. Energy 82(2), 173–180 (2008).
[Crossref]

Sol. Energy Mater. Sol. Cells (3)

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of temperature characteristics of high-efficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration,” Sol. Energy Mater. Sol. Cells 85(3), 429–436 (2005).
[Crossref]

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90(1), 57–67 (2006).
[Crossref]

A. Martí and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
[Crossref]

Other (7)

O. D. Miller, “Photonic design: From fundamental solar cell physics to computational inverse design.” arXiv preprint arXiv:1308.0212 (2013).

O. D. Miller, “Photonic design: From fundamental solar cell physics to computational inverse design,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Univ. Calif., Berkeley, CA, USA, (2012).

O. D. Miller and E. Yablonovitch, “Detailed balance solar cell efficiency limits for internal fluorescence yield slightly less than 100%,” Optics for Solar Energy (OSA, 2010).

The lower bounds of ηext and ηint exist, which stem from neglect of thermal emission against luminescence, or Eg >> -kTclnηext .

Website of the National Renewable Energy Laboratory in the United States, “Best research-cell efficiencies” (2016). http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

F. Dimroth, C. Baur, A. W. Bett, M. Meusel, and G. Strobl, “3-6 junction photovoltaic cells for space and terrestrial concentrator applications,” in Photovoltaic Specialists Conference (IEEE, 2005), pp. 525–529.
[Crossref]

T. N. Tibbits, P. Beutel, M. Grave, C. Karcher, E. Oliva, G. Siefer, A. Wekkeli, M. Schachtner, F. Dimroth, and A. W. Bett, “New efficiency frontiers with wafer-bonded multi-junction solar cells,” in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (2014), pp. 1-4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Structures of the multi-junction solar cells considered in this work (a) no intermediate reflectors, (b) with perfect intermediate reflectors (PIR) and (c) with air-gap intermediate reflectors. All of three versions of solar cells have planar surfaces, perfect front-surface AR coating on topmost cell and perfect rear mirror in bottommost cell.
Fig. 2
Fig. 2 (a) The efficiency ηsc and (b) optimized Eg set of 3-junction solar cells without intermediate reflectors as function of ηint* under various combinations of (ηint1, ηint2, ηint3). Black, red, blue, and green curves in (a) respectively represent the values of η sc at the case of ηint1 = ηint2 = ηint3, ηint2 = ηint3 = 0.3, ηint1 = ηint3 = 0.3, and ηint1 = ηint2 = 0.3. Circles, triangles, inverted triangles and squares represent more than 15 random combinations of (ηint1, ηint2, ηint3) that independently vary between 0.3 and 10−10 but their geometric means ηint* are fixed as 0.1, 0.01, 0.001, and 0.0001, which were amplified in (c)-(f).
Fig. 3
Fig. 3 The optimized efficiency ηsc [%] of multi-junction solar cells with no (dashed curves), air-gap (dotted curves) and perfect intermedium reflectors (solid curves) as function of junction number at various values of ηint* = 10−5, 10−3, 0.1, and 1 for (a) α sun ¯ l = 5 and α lumi ¯ l = 1 (1-sun), (b) α sun ¯ l = 5 and α lumi ¯ l = 1 (1000-sun), (c) α sun ¯ l = 5 and α lumi ¯ l = 2 (1-sun) and (d) α sun ¯ l = 2 and α lumi ¯ l = 1 (1-sun).
Fig. 4
Fig. 4 The efficiency η sc of 3-junction solar cells with no (dashed curves), air-gap (dotted curves) and perfect intermedium reflectors (solid curves) at η int * fixed as 1, 0.1, and 0.001 as function of a lumi ¯ l for (a) a sun ¯ l = 5 and (b) a sun ¯ l = 2.
Fig. 5
Fig. 5 The optimized set of bandgaps E gi [eV] as function of junction number at various values of η int * = 0.00001~1, for α sun ¯ l = 5 and α lumi ¯ l = 1 under (a) AM1.5G (1-sun) and (b) AM1.5D (1000-sun).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α suni ¯ = E gi E gi1 or α(E) ϕ sun (E)dE E gi E gi1 or ϕ sun (E)dE and α lumii ¯ = E gi α(E) ϕ lumi (E)dE E gi ϕ lumi (E)dE ,
{ J/q = R sun ( E g1 ,) R ext1 ( E g1 ,, V 1 )[( 1 η int1 1) 4 α lumi1 ¯ l 1 n 1 2 a lumi1 ¯ +(1+ n i 2 )],(a) J/q = R sun ( E gi , E gi1 )+ n i1 2 R exti1 ( E gi1 ,, V i1 ) R exti ( E gi ,, V i )[( 1 η inti 1) 4 α lumii ¯ l i n i 2 a lumii ¯ +(1+ n i 2 )] (i=2,3,..n1),(b) J/q = R sun ( E gn , E gn1 )+ n n1 2 R extn1 ( E gn1 ,, V n1 ) R extn ( E gn ,, V n )[( 1 η intn 1) 4 α lumin ¯ l n n n 2 a lumin ¯ +1],(c)
{ J/q = R sun ( E g1 ,) R int1 ( E g1 ,, V 1 )[( 1 η int1 1)+ a lumi1 ¯ 4 α lumi1 ¯ l 1 n 1 2 (1+ n 1 2 )],(a) J/q = R sun ( E gi , E gi1 )+ n i1 2 R exti1 ( E gi1 ,, V i1 ) R inti ( E gi ,, V i )[( 1 η inti 1)+ a lumii ¯ 4 α lumii ¯ l i n i 2 (1+ n i 2 )] (i=2,3,..n1),(b) J/q = R sun ( E gn , E gn1 )+ n n1 2 R extn1 ( E gn1 ,, V n1 ) R intn ( E gn ,, V n )[( 1 η intn 1)+ a lumin ¯ 4 α lumin ¯ l n n n 2 ],(c)
J/q = R sun ( E gi , E gi1 )+ R exti1 ( E gi1 ,, V i1 ) R exti ( E gi ,, V i )[( 1 η inti 1) 4 α lumii ¯ l i n i 2 a lumii ¯ +2],
and J/q = R sun ( E gi , E gi1 ) R exti ( E gi ,, V i )[( 1 η inti 1) 4 α lumii ¯ l i n i 2 a lumii ¯ +1], respectively.
η sc ( η int1 , η int2 ,, η intn )= Max E g1 , E g2 E gn i=1 n I V i P in .

Metrics