Abstract

Two novel phase-shifted Brillouin dynamic gratings (PS-BDGs) are proposed using single pump phase-modulation (SPPM) in a polarization maintaining fiber (PMF) for the first time to our knowledge. Firstly, based on the stimulated Brillouin scattering (SBS), a transient PS-BDG with a 3-dB bandwidth of 354MHz is written by a 2-ns pump1 pulse and a 100-ps pump2 pulse, where the phase of pump1 pulse is shifted with π from its middle point through phase modulation. Then, with a high repetition rate of 250MHz for both pump pulses, an enhanced PS-BDG with a deep notch depth is obtained and its notch frequency can be easily tuned by changing the phase shift. We demonstrate a proof-of-concept experiment of the transient PS-BDG and show the notch frequency changing by tuning the phase shift. The proposed PS-BDGs have important potential applications in microwave photonics, all-optical signal processing and RoF (radio-over-fiber) networks.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok
Opt. Express 20(7) 7807-7821 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Nikles, L. The’venaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  2. Y. Luo, Y. Tang, J. Yang, Y. Wang, S. Wang, K. Tao, L. Zhan, and J. Xu, “High signal-to-noise ratio, single-frequency 2 μm Brillouin fiber laser,” Opt. Lett. 39(9), 2626–2628 (2014).
    [Crossref] [PubMed]
  3. M. K. Abd-Rahman, M. R. Nurdik, and N. S. A. Rahim, “Self-seeded multiwavelength dual-cavity Brillouin-erbium fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 541–548 (2014).
    [Crossref]
  4. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
    [Crossref] [PubMed]
  5. Y. Dong, D. Ba, T. Jiang, and D. Zhou, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 512–518 (2013).
  6. Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt. 48(22), 4297–4301 (2009).
    [Crossref] [PubMed]
  7. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
    [Crossref] [PubMed]
  8. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Operation of Brillouin optical correlation-domain reflectometry: theoretical analysis and experimental validation,” J. Lightwave Technol. 28(22), 3300–3306 (2010).
  9. N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
    [Crossref]
  10. N. Hayashi, Y. Mizuno, and K. Nakamura, “Simplified Brillouin optical correlation-domain reflectometry using polymer optical fiber,” IEEE Photonics J. 7(1), 1–7 (2015).
    [Crossref]
  11. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
    [Crossref] [PubMed]
  12. Y. Dong, Z. Lu, and Y. Liu, “Broadband Brillouin slow light based on multifrequency phase modulation in optical fibers,” J. Opt. Soc. Am. B 25(12), C109–C115 (2008).
    [Crossref]
  13. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
    [Crossref]
  14. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
    [Crossref] [PubMed]
  15. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technol. Lett. 18(1), 208–210 (2006).
    [Crossref]
  16. R. C. Tao, X. H. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brilliouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
    [Crossref]
  17. W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photonics J. 5(4), 4300–4303 (2013).
  18. K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
    [Crossref] [PubMed]
  19. Y. Dong, L. Chen, and X. Bao, “Characterization of the Brillouin grating spectra in a polarization-maintaining fiber,” Opt. Express 18(18), 18960–18967 (2010).
    [Crossref] [PubMed]
  20. K. Y. Song and H. J. Yoon, “Observation of narrowband intrinsic spectra of Brillouin dynamic gratings,” Opt. Lett. 35(17), 2958–2960 (2010).
    [Crossref] [PubMed]
  21. W. Zou, Z. He, and K. Hotate, “One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature,” Opt. Express 19(3), 2363–2370 (2011).
    [Crossref] [PubMed]
  22. D. P. Zhou, Y. Dong, L. Chen, and X. Bao, “Four-wave mixing analysis of Brillouin dynamic grating in a polarization-maintaining fiber: theory and experiment,” Opt. Express 19(21), 20785–20798 (2011).
    [Crossref] [PubMed]
  23. M. Santagiustina and L. Ursini, “Dynamic Brillouin gratings permanently sustained by chaotic lasers,” Opt. Lett. 37(5), 893–895 (2012).
    [Crossref] [PubMed]
  24. L. Yaron, Y. Peled, T. Langer, and M. Tur, “Enhanced spontaneous backscattering in Brillouin dynamic gratings,” Opt. Lett. 38(23), 5138–5141 (2013).
    [Crossref] [PubMed]
  25. Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
    [Crossref] [PubMed]
  26. S. N. Jouybari, H. Latifi, and F. Farahi, “Reflection spectrum analysis of stimulated Brillouin scattering dynamic grating,” Meas. Sci. Technol. 23, 085203 (2012).
  27. Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, and A. Zadok, “Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes,” Opt. Lett. 38(22), 4701–4704 (2013).
    [Crossref] [PubMed]
  28. K. Y. Song, “Effects of induced birefringence on Brillouin dynamic gratings in single-mode optical fibers,” Opt. Lett. 37(12), 2229–2231 (2012).
    [Crossref] [PubMed]
  29. S. Li, M. J. Li, and R. S. Vodhanel, “All-optical Brillouin dynamic grating generation in few-mode optical fiber,” Opt. Lett. 37(22), 4660–4662 (2012).
    [Crossref] [PubMed]
  30. Y. H. Kim and K. Y. Song, “Mapping of intermodal beat length distribution in an elliptical-core two-mode fiber based on Brillouin dynamic grating,” Opt. Express 22(14), 17292–17302 (2014).
    [Crossref] [PubMed]
  31. R. Pant, E. Li, C. G. Poulton, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Observation of Brillouin dynamic grating in a photonic chip,” Opt. Lett. 38(3), 305–307 (2013).
    [Crossref] [PubMed]
  32. Y. Dong, H. Zhang, Z. Lu, L. Chen, and X. Bao, “High-spatial-resolution time-domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fiber,” J. Lightwave Technol. 31(16), 2981–2986 (2013).
    [Crossref]
  33. Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, and A. Zadok, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” IEEE Sens. J. 12(1), 189–194 (2012).
    [Crossref]
  34. A. Bergman, L. Yaron, T. Langer, and M. Tur, “Dynamic and distributed slope-assisted fiber strain sensing based on optical time-domain analysis of Brillouin dynamic gratings,” J. Lightwave Technol. 33(12), 2611–2616 (2015).
    [Crossref]
  35. Y. Dong, T. Jiang, L. Teng, H. Zhang, L. Chen, X. Bao, and Z. Lu, “Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings,” Opt. Lett. 39(10), 2967–2970 (2014).
    [Crossref] [PubMed]
  36. M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
    [Crossref] [PubMed]
  37. S. Chin, N. Primerov, and L. Thevenaz, “Photonic delay line for broadband optical signals, based on dynamic grating reflectors in fibers” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC, 2010), pp. 1–3.
  38. J. J. Guo, M. Li, Y. Deng, N. Huang, J. Liu, and N. Zhu, “Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings,” Opt. Express 22(4), 4290–4300 (2014).
    [Crossref] [PubMed]
  39. K. O. Hill, B. Malo, F. Bilodeau, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fibre by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [Crossref]
  40. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  41. Y. Zhu, H. Mei, and T. Zhu, “Dual-wavelength FBG inscribed by femtosecond laser for simultaneous measurement of high temperature and strain,” Chin. Opt. Lett. 7(8), 675–678 (2009).
    [Crossref]
  42. N. Quoc Ngo, “Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission,” Opt. Lett. 32(20), 3020–3022 (2007).
    [Crossref] [PubMed]
  43. M. H. Asghari and J. Azaña, “Design of all-optical high-order temporal integrators based on multiple-phase-shifted Bragg gratings,” Opt. Express 16(15), 11459–11469 (2008).
    [Crossref] [PubMed]
  44. C. Cuadrado-Laborde and M. V. Andrés, “In-fiber all-optical fractional differentiator,” Opt. Lett. 34(6), 833–835 (2009).
    [Crossref] [PubMed]
  45. W. Zhang, W. Li, and J. Yao, “Optical differentiator based on an integrated sidewall phase-shifted Bragg grating,” IEEE Photonics J. 26(23), 2383–2386 (2014).
    [Crossref]
  46. A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
    [Crossref]
  47. I. V. Kabakova, B. Corcoran, J. A. Bolger, M. C. de Sterke, and B. J. Eggleton, “All-optical self-switching in optimized phase-shifted fiber Bragg grating,” Opt. Express 17(7), 5083–5088 (2009).
    [Crossref] [PubMed]
  48. J. Q. Sun, J. L. Chen, and Y. X. Huang, “Wavelength switchable single-longitudinal-mode fiber laser with two pi phase-shifted chirped fiber Bragg grating as a narrow linewidth filter,” Opt. Eng. 49(9), 091007 (2010).
    [Crossref]
  49. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express 16(3), 1945–1950 (2008).
    [Crossref] [PubMed]
  50. Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
    [Crossref]
  51. B. Lin, M. Jiang, S. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
    [Crossref]
  52. W. Z. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
    [Crossref]
  53. Y. Deng, M. Li, N. B. Huang, and N. H. Zhu, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photonics J. 6(4), 5500908 (2014).
  54. Y. Dong, H. Zhang, D. Zhou, X. Bao, and L. Chen, “Chapter 5: Characterization of Brillouin grating in optical fibers and their applications,” in Fiber Optic Sensors (Intech Publisher, 2012), pp. 115–136.
  55. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of Phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).
  56. T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21(3), 2953–2963 (2013).
    [Crossref] [PubMed]
  57. D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50(11), 1548–1553 (2011).
    [Crossref] [PubMed]
  58. D. Wu, T. Zhu, K. S. Chiang, and M. Deng, “All single-mode fiber Mach–Zehnder interferometer based on two Peanut-shape structures,” J. Lightwave Technol. 30(5), 805–810 (2012).
    [Crossref]
  59. T. Zhu, B. Zhang, L. Shi, S. Huang, M. Deng, J. Liu, and X. Li, “Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering,” Opt. Express 24(2), 1324–1330 (2016).
    [Crossref] [PubMed]
  60. Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating,” Opt. Lett. 35(2), 193–195 (2010).
    [Crossref] [PubMed]
  61. Y. Cao, P. Lu, Z. Yang, and W. Chen, “An efficient method of all-optical buffering with ultra-small core photonic crystal fibers,” Opt. Express 16(18), 14142–14150 (2008).
    [Crossref] [PubMed]
  62. Y. Dong, X. Bao, and L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber,” Opt. Lett. 34(17), 2590–2592 (2009).
    [Crossref] [PubMed]
  63. C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, “Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers,” Opt. Express 14(25), 12063–12070 (2006).
    [Crossref] [PubMed]
  64. K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006).
    [Crossref] [PubMed]
  65. R. Cherif, M. Zghal, and L. Tartara, “Characterization of stimulated Brillouin scattering in small core microstructured chalcogenide fiber,” Opt. Commun. 285(3), 341–346 (2012).
    [Crossref]
  66. R. K. Sinha, A. Kumar, and T. S. Saini, “Analysis and design of single-mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4900706 (2016).
    [Crossref]
  67. K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenid fiber,” Opt. Express 13(25), 5860–5865 (2006).
  68. R. Pant, C. G. Poulton, D. Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19(9), 8285–8290 (2011).
    [Crossref] [PubMed]
  69. A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. Luther-Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
    [Crossref] [PubMed]
  70. H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3(1), 30–34 (2016).
    [Crossref]
  71. R. Pant, E. Li, C. G. Poulton, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Observation of Brillouin dynamic grating in a photonic chip,” Opt. Lett. 38(3), 305–307 (2013).
    [Crossref] [PubMed]

2016 (4)

2015 (2)

N. Hayashi, Y. Mizuno, and K. Nakamura, “Simplified Brillouin optical correlation-domain reflectometry using polymer optical fiber,” IEEE Photonics J. 7(1), 1–7 (2015).
[Crossref]

A. Bergman, L. Yaron, T. Langer, and M. Tur, “Dynamic and distributed slope-assisted fiber strain sensing based on optical time-domain analysis of Brillouin dynamic gratings,” J. Lightwave Technol. 33(12), 2611–2616 (2015).
[Crossref]

2014 (8)

Y. Dong, T. Jiang, L. Teng, H. Zhang, L. Chen, X. Bao, and Z. Lu, “Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings,” Opt. Lett. 39(10), 2967–2970 (2014).
[Crossref] [PubMed]

J. J. Guo, M. Li, Y. Deng, N. Huang, J. Liu, and N. Zhu, “Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings,” Opt. Express 22(4), 4290–4300 (2014).
[Crossref] [PubMed]

Y. H. Kim and K. Y. Song, “Mapping of intermodal beat length distribution in an elliptical-core two-mode fiber based on Brillouin dynamic grating,” Opt. Express 22(14), 17292–17302 (2014).
[Crossref] [PubMed]

Y. Luo, Y. Tang, J. Yang, Y. Wang, S. Wang, K. Tao, L. Zhan, and J. Xu, “High signal-to-noise ratio, single-frequency 2 μm Brillouin fiber laser,” Opt. Lett. 39(9), 2626–2628 (2014).
[Crossref] [PubMed]

M. K. Abd-Rahman, M. R. Nurdik, and N. S. A. Rahim, “Self-seeded multiwavelength dual-cavity Brillouin-erbium fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 541–548 (2014).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
[Crossref]

W. Zhang, W. Li, and J. Yao, “Optical differentiator based on an integrated sidewall phase-shifted Bragg grating,” IEEE Photonics J. 26(23), 2383–2386 (2014).
[Crossref]

Y. Deng, M. Li, N. B. Huang, and N. H. Zhu, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photonics J. 6(4), 5500908 (2014).

2013 (9)

R. Pant, E. Li, C. G. Poulton, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Observation of Brillouin dynamic grating in a photonic chip,” Opt. Lett. 38(3), 305–307 (2013).
[Crossref] [PubMed]

T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21(3), 2953–2963 (2013).
[Crossref] [PubMed]

W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photonics J. 5(4), 4300–4303 (2013).

Y. Dong, D. Ba, T. Jiang, and D. Zhou, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 512–518 (2013).

R. Pant, E. Li, C. G. Poulton, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Observation of Brillouin dynamic grating in a photonic chip,” Opt. Lett. 38(3), 305–307 (2013).
[Crossref] [PubMed]

Y. Dong, H. Zhang, Z. Lu, L. Chen, and X. Bao, “High-spatial-resolution time-domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fiber,” J. Lightwave Technol. 31(16), 2981–2986 (2013).
[Crossref]

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref] [PubMed]

L. Yaron, Y. Peled, T. Langer, and M. Tur, “Enhanced spontaneous backscattering in Brillouin dynamic gratings,” Opt. Lett. 38(23), 5138–5141 (2013).
[Crossref] [PubMed]

Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, and A. Zadok, “Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes,” Opt. Lett. 38(22), 4701–4704 (2013).
[Crossref] [PubMed]

2012 (11)

K. Y. Song, “Effects of induced birefringence on Brillouin dynamic gratings in single-mode optical fibers,” Opt. Lett. 37(12), 2229–2231 (2012).
[Crossref] [PubMed]

S. Li, M. J. Li, and R. S. Vodhanel, “All-optical Brillouin dynamic grating generation in few-mode optical fiber,” Opt. Lett. 37(22), 4660–4662 (2012).
[Crossref] [PubMed]

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[Crossref] [PubMed]

S. N. Jouybari, H. Latifi, and F. Farahi, “Reflection spectrum analysis of stimulated Brillouin scattering dynamic grating,” Meas. Sci. Technol. 23, 085203 (2012).

Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, and A. Zadok, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” IEEE Sens. J. 12(1), 189–194 (2012).
[Crossref]

R. C. Tao, X. H. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brilliouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

D. Wu, T. Zhu, K. S. Chiang, and M. Deng, “All single-mode fiber Mach–Zehnder interferometer based on two Peanut-shape structures,” J. Lightwave Technol. 30(5), 805–810 (2012).
[Crossref]

R. Cherif, M. Zghal, and L. Tartara, “Characterization of stimulated Brillouin scattering in small core microstructured chalcogenide fiber,” Opt. Commun. 285(3), 341–346 (2012).
[Crossref]

W. Z. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

M. Santagiustina and L. Ursini, “Dynamic Brillouin gratings permanently sustained by chaotic lasers,” Opt. Lett. 37(5), 893–895 (2012).
[Crossref] [PubMed]

2011 (6)

2010 (6)

2009 (5)

2008 (8)

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
[Crossref] [PubMed]

Y. Dong, Z. Lu, and Y. Liu, “Broadband Brillouin slow light based on multifrequency phase modulation in optical fibers,” J. Opt. Soc. Am. B 25(12), C109–C115 (2008).
[Crossref]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref] [PubMed]

Y. Cao, P. Lu, Z. Yang, and W. Chen, “An efficient method of all-optical buffering with ultra-small core photonic crystal fibers,” Opt. Express 16(18), 14142–14150 (2008).
[Crossref] [PubMed]

M. H. Asghari and J. Azaña, “Design of all-optical high-order temporal integrators based on multiple-phase-shifted Bragg gratings,” Opt. Express 16(15), 11459–11469 (2008).
[Crossref] [PubMed]

D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express 16(3), 1945–1950 (2008).
[Crossref] [PubMed]

2007 (2)

N. Quoc Ngo, “Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission,” Opt. Lett. 32(20), 3020–3022 (2007).
[Crossref] [PubMed]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[Crossref] [PubMed]

2006 (4)

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, “Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers,” Opt. Express 14(25), 12063–12070 (2006).
[Crossref] [PubMed]

K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006).
[Crossref] [PubMed]

K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenid fiber,” Opt. Express 13(25), 5860–5865 (2006).

2000 (1)

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

1997 (2)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

M. Nikles, L. The’venaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fibre by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Abd-Rahman, M. K.

M. K. Abd-Rahman, M. R. Nurdik, and N. S. A. Rahim, “Self-seeded multiwavelength dual-cavity Brillouin-erbium fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 541–548 (2014).
[Crossref]

Abedin, K. S.

K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenid fiber,” Opt. Express 13(25), 5860–5865 (2006).

K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006).
[Crossref] [PubMed]

Aggarwal, I.

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fibre by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Andrés, M. V.

Antman, Y.

Aryanfar, I.

Asghari, M. H.

Azaña, J.

Ba, D.

Y. Dong, D. Ba, T. Jiang, and D. Zhou, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 512–518 (2013).

Bao, X.

Y. Dong, T. Jiang, L. Teng, H. Zhang, L. Chen, X. Bao, and Z. Lu, “Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings,” Opt. Lett. 39(10), 2967–2970 (2014).
[Crossref] [PubMed]

T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21(3), 2953–2963 (2013).
[Crossref] [PubMed]

Y. Dong, H. Zhang, Z. Lu, L. Chen, and X. Bao, “High-spatial-resolution time-domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fiber,” J. Lightwave Technol. 31(16), 2981–2986 (2013).
[Crossref]

D. P. Zhou, Y. Dong, L. Chen, and X. Bao, “Four-wave mixing analysis of Brillouin dynamic grating in a polarization-maintaining fiber: theory and experiment,” Opt. Express 19(21), 20785–20798 (2011).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating,” Opt. Lett. 35(2), 193–195 (2010).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Characterization of the Brillouin grating spectra in a polarization-maintaining fiber,” Opt. Express 18(18), 18960–18967 (2010).
[Crossref] [PubMed]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of Phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt. 48(22), 4297–4301 (2009).
[Crossref] [PubMed]

Y. Dong, X. Bao, and L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber,” Opt. Lett. 34(17), 2590–2592 (2009).
[Crossref] [PubMed]

Bashkansky, M.

Bergman, A.

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fibre by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Bolger, J. A.

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[Crossref] [PubMed]

Cao, Y.

R. C. Tao, X. H. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brilliouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

Y. Cao, P. Lu, Z. Yang, and W. Chen, “An efficient method of all-optical buffering with ultra-small core photonic crystal fibers,” Opt. Express 16(18), 14142–14150 (2008).
[Crossref] [PubMed]

Chen, J. L.

J. Q. Sun, J. L. Chen, and Y. X. Huang, “Wavelength switchable single-longitudinal-mode fiber laser with two pi phase-shifted chirped fiber Bragg grating as a narrow linewidth filter,” Opt. Eng. 49(9), 091007 (2010).
[Crossref]

Chen, L.

Y. Dong, T. Jiang, L. Teng, H. Zhang, L. Chen, X. Bao, and Z. Lu, “Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings,” Opt. Lett. 39(10), 2967–2970 (2014).
[Crossref] [PubMed]

Y. Dong, H. Zhang, Z. Lu, L. Chen, and X. Bao, “High-spatial-resolution time-domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fiber,” J. Lightwave Technol. 31(16), 2981–2986 (2013).
[Crossref]

D. P. Zhou, Y. Dong, L. Chen, and X. Bao, “Four-wave mixing analysis of Brillouin dynamic grating in a polarization-maintaining fiber: theory and experiment,” Opt. Express 19(21), 20785–20798 (2011).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating,” Opt. Lett. 35(2), 193–195 (2010).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Characterization of the Brillouin grating spectra in a polarization-maintaining fiber,” Opt. Express 18(18), 18960–18967 (2010).
[Crossref] [PubMed]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of Phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

Y. Dong, X. Bao, and L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber,” Opt. Lett. 34(17), 2590–2592 (2009).
[Crossref] [PubMed]

Chen, W.

Cherif, R.

R. Cherif, M. Zghal, and L. Tartara, “Characterization of stimulated Brillouin scattering in small core microstructured chalcogenide fiber,” Opt. Commun. 285(3), 341–346 (2012).
[Crossref]

Chiang, K. S.

Chin, S.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref] [PubMed]

Chinello, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

Choi, D. Y.

Choi, D.-Y.

Choudhary, A.

Corcoran, B.

Cuadrado-Laborde, C.

de Sterke, M. C.

Deng, M.

Deng, Y.

J. J. Guo, M. Li, Y. Deng, N. Huang, J. Liu, and N. Zhu, “Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings,” Opt. Express 22(4), 4290–4300 (2014).
[Crossref] [PubMed]

Y. Deng, M. Li, N. B. Huang, and N. H. Zhu, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photonics J. 6(4), 5500908 (2014).

Dong, Y.

Y. Dong, T. Jiang, L. Teng, H. Zhang, L. Chen, X. Bao, and Z. Lu, “Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings,” Opt. Lett. 39(10), 2967–2970 (2014).
[Crossref] [PubMed]

Y. Dong, H. Zhang, Z. Lu, L. Chen, and X. Bao, “High-spatial-resolution time-domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fiber,” J. Lightwave Technol. 31(16), 2981–2986 (2013).
[Crossref]

Y. Dong, D. Ba, T. Jiang, and D. Zhou, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 512–518 (2013).

D. P. Zhou, Y. Dong, L. Chen, and X. Bao, “Four-wave mixing analysis of Brillouin dynamic grating in a polarization-maintaining fiber: theory and experiment,” Opt. Express 19(21), 20785–20798 (2011).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating,” Opt. Lett. 35(2), 193–195 (2010).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Characterization of the Brillouin grating spectra in a polarization-maintaining fiber,” Opt. Express 18(18), 18960–18967 (2010).
[Crossref] [PubMed]

Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt. 48(22), 4297–4301 (2009).
[Crossref] [PubMed]

Y. Dong, X. Bao, and L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber,” Opt. Lett. 34(17), 2590–2592 (2009).
[Crossref] [PubMed]

Y. Dong, Z. Lu, and Y. Liu, “Broadband Brillouin slow light based on multifrequency phase modulation in optical fibers,” J. Opt. Soc. Am. B 25(12), C109–C115 (2008).
[Crossref]

Duan, D. W.

Dutton, Z.

Eggleton, B. J.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Eyal, A.

Farahi, F.

S. N. Jouybari, H. Latifi, and F. Farahi, “Reflection spectrum analysis of stimulated Brillouin scattering dynamic grating,” Meas. Sci. Technol. 23, 085203 (2012).

Feng, X. H.

R. C. Tao, X. H. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brilliouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

Fink, T.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Florea, C.

Galzerano, G.

Gatti, D.

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[Crossref] [PubMed]

González Herráez, M.

Guan, B.

R. C. Tao, X. H. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brilliouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

Guo, J. J.

Han, M.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Hayashi, N.

N. Hayashi, Y. Mizuno, and K. Nakamura, “Simplified Brillouin optical correlation-domain reflectometry using polymer optical fiber,” IEEE Photonics J. 7(1), 1–7 (2015).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
[Crossref]

He, Q.

He, Z.

Hile, S.

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fibre by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Hotate, K.

Huang, N.

Huang, N. B.

Y. Deng, M. Li, N. B. Huang, and N. H. Zhu, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photonics J. 6(4), 5500908 (2014).

Huang, S.

Huang, Y. X.

J. Q. Sun, J. L. Chen, and Y. X. Huang, “Wavelength switchable single-longitudinal-mode fiber laser with two pi phase-shifted chirped fiber Bragg grating as a narrow linewidth filter,” Opt. Eng. 49(9), 091007 (2010).
[Crossref]

Janner, D.

Jiang, H.

Jiang, M.

B. Lin, M. Jiang, S. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

Jiang, T.

Y. Dong, T. Jiang, L. Teng, H. Zhang, L. Chen, X. Bao, and Z. Lu, “Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings,” Opt. Lett. 39(10), 2967–2970 (2014).
[Crossref] [PubMed]

Y. Dong, D. Ba, T. Jiang, and D. Zhou, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 512–518 (2013).

Jouybari, S. N.

S. N. Jouybari, H. Latifi, and F. Farahi, “Reflection spectrum analysis of stimulated Brillouin scattering dynamic grating,” Meas. Sci. Technol. 23, 085203 (2012).

Kabakova, I. V.

Kim, Y. H.

Kumar, A.

R. K. Sinha, A. Kumar, and T. S. Saini, “Analysis and design of single-mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4900706 (2016).
[Crossref]

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

Langer, T.

Laporta, P.

Latifi, H.

S. N. Jouybari, H. Latifi, and F. Farahi, “Reflection spectrum analysis of stimulated Brillouin scattering dynamic grating,” Meas. Sci. Technol. 23, 085203 (2012).

Levanon, N.

Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, and A. Zadok, “Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes,” Opt. Lett. 38(22), 4701–4704 (2013).
[Crossref] [PubMed]

Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, and A. Zadok, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” IEEE Sens. J. 12(1), 189–194 (2012).
[Crossref]

Li, E.

Li, H.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Li, M.

Y. Deng, M. Li, N. B. Huang, and N. H. Zhu, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photonics J. 6(4), 5500908 (2014).

J. J. Guo, M. Li, Y. Deng, N. Huang, J. Liu, and N. Zhu, “Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings,” Opt. Express 22(4), 4290–4300 (2014).
[Crossref] [PubMed]

W. Z. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Li, M. J.

Li, S.

Li, W.

W. Zhang, W. Li, and J. Yao, “Optical differentiator based on an integrated sidewall phase-shifted Bragg grating,” IEEE Photonics J. 26(23), 2383–2386 (2014).
[Crossref]

W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photonics J. 5(4), 4300–4303 (2013).

Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt. 48(22), 4297–4301 (2009).
[Crossref] [PubMed]

Li, W. Z.

W. Z. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Li, X.

Li, Z.

R. C. Tao, X. H. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brilliouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

Lin, B.

B. Lin, M. Jiang, S. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

Liu, J.

Liu, N.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Liu, Y.

Loayssa, A.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

Longhi, S.

Lu, P.

Lu, Y.

Lu, Z.

Luo, Y.

Luther-Davies, B.

Madden, S.

Madden, S. J.

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fibre by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Marpaung, D.

Martinelli, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

Mcfarlane, H.

Mei, H.

Melloni, A.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

Mizuno, Y.

N. Hayashi, Y. Mizuno, and K. Nakamura, “Simplified Brillouin optical correlation-domain reflectometry using polymer optical fiber,” IEEE Photonics J. 7(1), 1–7 (2015).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
[Crossref]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Operation of Brillouin optical correlation-domain reflectometry: theoretical analysis and experimental validation,” J. Lightwave Technol. 28(22), 3300–3306 (2010).

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

Morrison, B.

Nakamura, K.

N. Hayashi, Y. Mizuno, and K. Nakamura, “Simplified Brillouin optical correlation-domain reflectometry using polymer optical fiber,” IEEE Photonics J. 7(1), 1–7 (2015).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
[Crossref]

Nikles, M.

M. Nikles, L. The’venaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Nurdik, M. R.

M. K. Abd-Rahman, M. R. Nurdik, and N. S. A. Rahim, “Self-seeded multiwavelength dual-cavity Brillouin-erbium fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 541–548 (2014).
[Crossref]

Pagani, M.

Pant, R.

Peled, Y.

Peng, W.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Poulton, C. G.

Primerov, N.

Pureza, P.

Quoc Ngo, N.

Rahim, N. S. A.

M. K. Abd-Rahman, M. R. Nurdik, and N. S. A. Rahim, “Self-seeded multiwavelength dual-cavity Brillouin-erbium fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 541–548 (2014).
[Crossref]

Rao, Y. J.

Robert, P. A.

M. Nikles, L. The’venaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Saini, T. S.

R. K. Sinha, A. Kumar, and T. S. Saini, “Analysis and design of single-mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4900706 (2016).
[Crossref]

Sancho, J.

Sanghera, J.

Santagiustina, M.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref] [PubMed]

M. Santagiustina and L. Ursini, “Dynamic Brillouin gratings permanently sustained by chaotic lasers,” Opt. Lett. 37(5), 893–895 (2012).
[Crossref] [PubMed]

Shahnia, S.

Shi, L.

Shi, L. L.

Shum, P.

B. Lin, M. Jiang, S. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

Sinha, R. K.

R. K. Sinha, A. Kumar, and T. S. Saini, “Analysis and design of single-mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4900706 (2016).
[Crossref]

Song, K. Y.

Sun, J. Q.

J. Q. Sun, J. L. Chen, and Y. X. Huang, “Wavelength switchable single-longitudinal-mode fiber laser with two pi phase-shifted chirped fiber Bragg grating as a narrow linewidth filter,” Opt. Eng. 49(9), 091007 (2010).
[Crossref]

Tang, Y.

Tao, K.

Tao, R. C.

R. C. Tao, X. H. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brilliouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

Tartara, L.

R. Cherif, M. Zghal, and L. Tartara, “Characterization of stimulated Brillouin scattering in small core microstructured chalcogenide fiber,” Opt. Commun. 285(3), 341–346 (2012).
[Crossref]

Teng, L.

The’venaz, L.

M. Nikles, L. The’venaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Thevenaz, L.

Thévenaz, L.

Tjin, S.

B. Lin, M. Jiang, S. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

Tur, M.

Ursini, L.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref] [PubMed]

M. Santagiustina and L. Ursini, “Dynamic Brillouin gratings permanently sustained by chaotic lasers,” Opt. Lett. 37(5), 893–895 (2012).
[Crossref] [PubMed]

Vodhanel, R. S.

Vu, K.

Wang, L. X.

W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photonics J. 5(4), 4300–4303 (2013).

Wang, S.

Wang, Y.

Wu, D.

Xiao, X.

Xu, J.

Yan, L.

Yang, J.

Yang, Z.

Yao, J.

Yao, J. P.

W. Z. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Yaron, L.

Yoon, H. J.

Zadok, A.

Zghal, M.

R. Cherif, M. Zghal, and L. Tartara, “Characterization of stimulated Brillouin scattering in small core microstructured chalcogenide fiber,” Opt. Commun. 285(3), 341–346 (2012).
[Crossref]

Zhan, L.

Zhang, B.

Zhang, H.

Zhang, Q.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Zhang, W.

W. Zhang, W. Li, and J. Yao, “Optical differentiator based on an integrated sidewall phase-shifted Bragg grating,” IEEE Photonics J. 26(23), 2383–2386 (2014).
[Crossref]

Zhou, D.

Y. Dong, D. Ba, T. Jiang, and D. Zhou, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 512–518 (2013).

Zhou, D. P.

Zhu, N.

Zhu, N. H.

Y. Deng, M. Li, N. B. Huang, and N. H. Zhu, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photonics J. 6(4), 5500908 (2014).

W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photonics J. 5(4), 4300–4303 (2013).

Zhu, T.

Zhu, Y.

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[Crossref] [PubMed]

Zilka, E.

Zou, W.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fibre by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (2)

R. K. Sinha, A. Kumar, and T. S. Saini, “Analysis and design of single-mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4900706 (2016).
[Crossref]

M. K. Abd-Rahman, M. R. Nurdik, and N. S. A. Rahim, “Self-seeded multiwavelength dual-cavity Brillouin-erbium fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 541–548 (2014).
[Crossref]

IEEE Photonics J. (5)

N. Hayashi, Y. Mizuno, and K. Nakamura, “Simplified Brillouin optical correlation-domain reflectometry using polymer optical fiber,” IEEE Photonics J. 7(1), 1–7 (2015).
[Crossref]

W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photonics J. 5(4), 4300–4303 (2013).

Y. Dong, D. Ba, T. Jiang, and D. Zhou, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 512–518 (2013).

Y. Deng, M. Li, N. B. Huang, and N. H. Zhu, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photonics J. 6(4), 5500908 (2014).

W. Zhang, W. Li, and J. Yao, “Optical differentiator based on an integrated sidewall phase-shifted Bragg grating,” IEEE Photonics J. 26(23), 2383–2386 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (5)

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

B. Lin, M. Jiang, S. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

R. C. Tao, X. H. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brilliouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

IEEE Sens. J. (1)

Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, and A. Zadok, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” IEEE Sens. J. 12(1), 189–194 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

W. Z. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

J. Lightwave Technol. (8)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Y. Dong, H. Zhang, Z. Lu, L. Chen, and X. Bao, “High-spatial-resolution time-domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fiber,” J. Lightwave Technol. 31(16), 2981–2986 (2013).
[Crossref]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of Phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

D. Wu, T. Zhu, K. S. Chiang, and M. Deng, “All single-mode fiber Mach–Zehnder interferometer based on two Peanut-shape structures,” J. Lightwave Technol. 30(5), 805–810 (2012).
[Crossref]

A. Bergman, L. Yaron, T. Langer, and M. Tur, “Dynamic and distributed slope-assisted fiber strain sensing based on optical time-domain analysis of Brillouin dynamic gratings,” J. Lightwave Technol. 33(12), 2611–2616 (2015).
[Crossref]

M. Nikles, L. The’venaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Operation of Brillouin optical correlation-domain reflectometry: theoretical analysis and experimental validation,” J. Lightwave Technol. 28(22), 3300–3306 (2010).

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

S. N. Jouybari, H. Latifi, and F. Farahi, “Reflection spectrum analysis of stimulated Brillouin scattering dynamic grating,” Meas. Sci. Technol. 23, 085203 (2012).

Nat. Photonics (1)

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

Opt. Commun. (1)

R. Cherif, M. Zghal, and L. Tartara, “Characterization of stimulated Brillouin scattering in small core microstructured chalcogenide fiber,” Opt. Commun. 285(3), 341–346 (2012).
[Crossref]

Opt. Eng. (1)

J. Q. Sun, J. L. Chen, and Y. X. Huang, “Wavelength switchable single-longitudinal-mode fiber laser with two pi phase-shifted chirped fiber Bragg grating as a narrow linewidth filter,” Opt. Eng. 49(9), 091007 (2010).
[Crossref]

Opt. Express (18)

D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express 16(3), 1945–1950 (2008).
[Crossref] [PubMed]

I. V. Kabakova, B. Corcoran, J. A. Bolger, M. C. de Sterke, and B. J. Eggleton, “All-optical self-switching in optimized phase-shifted fiber Bragg grating,” Opt. Express 17(7), 5083–5088 (2009).
[Crossref] [PubMed]

M. H. Asghari and J. Azaña, “Design of all-optical high-order temporal integrators based on multiple-phase-shifted Bragg gratings,” Opt. Express 16(15), 11459–11469 (2008).
[Crossref] [PubMed]

J. J. Guo, M. Li, Y. Deng, N. Huang, J. Liu, and N. Zhu, “Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings,” Opt. Express 22(4), 4290–4300 (2014).
[Crossref] [PubMed]

Y. H. Kim and K. Y. Song, “Mapping of intermodal beat length distribution in an elliptical-core two-mode fiber based on Brillouin dynamic grating,” Opt. Express 22(14), 17292–17302 (2014).
[Crossref] [PubMed]

T. Zhu, B. Zhang, L. Shi, S. Huang, M. Deng, J. Liu, and X. Li, “Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering,” Opt. Express 24(2), 1324–1330 (2016).
[Crossref] [PubMed]

T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21(3), 2953–2963 (2013).
[Crossref] [PubMed]

K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenid fiber,” Opt. Express 13(25), 5860–5865 (2006).

R. Pant, C. G. Poulton, D. Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19(9), 8285–8290 (2011).
[Crossref] [PubMed]

Y. Cao, P. Lu, Z. Yang, and W. Chen, “An efficient method of all-optical buffering with ultra-small core photonic crystal fibers,” Opt. Express 16(18), 14142–14150 (2008).
[Crossref] [PubMed]

C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, “Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers,” Opt. Express 14(25), 12063–12070 (2006).
[Crossref] [PubMed]

K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006).
[Crossref] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Characterization of the Brillouin grating spectra in a polarization-maintaining fiber,” Opt. Express 18(18), 18960–18967 (2010).
[Crossref] [PubMed]

W. Zou, Z. He, and K. Hotate, “One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature,” Opt. Express 19(3), 2363–2370 (2011).
[Crossref] [PubMed]

D. P. Zhou, Y. Dong, L. Chen, and X. Bao, “Four-wave mixing analysis of Brillouin dynamic grating in a polarization-maintaining fiber: theory and experiment,” Opt. Express 19(21), 20785–20798 (2011).
[Crossref] [PubMed]

Opt. Lett. (16)

M. Santagiustina and L. Ursini, “Dynamic Brillouin gratings permanently sustained by chaotic lasers,” Opt. Lett. 37(5), 893–895 (2012).
[Crossref] [PubMed]

L. Yaron, Y. Peled, T. Langer, and M. Tur, “Enhanced spontaneous backscattering in Brillouin dynamic gratings,” Opt. Lett. 38(23), 5138–5141 (2013).
[Crossref] [PubMed]

K. Y. Song and H. J. Yoon, “Observation of narrowband intrinsic spectra of Brillouin dynamic gratings,” Opt. Lett. 35(17), 2958–2960 (2010).
[Crossref] [PubMed]

Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, and A. Zadok, “Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes,” Opt. Lett. 38(22), 4701–4704 (2013).
[Crossref] [PubMed]

K. Y. Song, “Effects of induced birefringence on Brillouin dynamic gratings in single-mode optical fibers,” Opt. Lett. 37(12), 2229–2231 (2012).
[Crossref] [PubMed]

S. Li, M. J. Li, and R. S. Vodhanel, “All-optical Brillouin dynamic grating generation in few-mode optical fiber,” Opt. Lett. 37(22), 4660–4662 (2012).
[Crossref] [PubMed]

Y. Dong, T. Jiang, L. Teng, H. Zhang, L. Chen, X. Bao, and Z. Lu, “Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings,” Opt. Lett. 39(10), 2967–2970 (2014).
[Crossref] [PubMed]

Y. Luo, Y. Tang, J. Yang, Y. Wang, S. Wang, K. Tao, L. Zhan, and J. Xu, “High signal-to-noise ratio, single-frequency 2 μm Brillouin fiber laser,” Opt. Lett. 39(9), 2626–2628 (2014).
[Crossref] [PubMed]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
[Crossref] [PubMed]

Y. Dong, X. Bao, and L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber,” Opt. Lett. 34(17), 2590–2592 (2009).
[Crossref] [PubMed]

A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. Luther-Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating,” Opt. Lett. 35(2), 193–195 (2010).
[Crossref] [PubMed]

R. Pant, E. Li, C. G. Poulton, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Observation of Brillouin dynamic grating in a photonic chip,” Opt. Lett. 38(3), 305–307 (2013).
[Crossref] [PubMed]

N. Quoc Ngo, “Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission,” Opt. Lett. 32(20), 3020–3022 (2007).
[Crossref] [PubMed]

C. Cuadrado-Laborde and M. V. Andrés, “In-fiber all-optical fractional differentiator,” Opt. Lett. 34(6), 833–835 (2009).
[Crossref] [PubMed]

R. Pant, E. Li, C. G. Poulton, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Observation of Brillouin dynamic grating in a photonic chip,” Opt. Lett. 38(3), 305–307 (2013).
[Crossref] [PubMed]

Optica (1)

Sci. Rep. (1)

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[Crossref] [PubMed]

Science (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[Crossref] [PubMed]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
[Crossref] [PubMed]

Other (2)

S. Chin, N. Primerov, and L. Thevenaz, “Photonic delay line for broadband optical signals, based on dynamic grating reflectors in fibers” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC, 2010), pp. 1–3.

Y. Dong, H. Zhang, D. Zhou, X. Bao, and L. Chen, “Chapter 5: Characterization of Brillouin grating in optical fibers and their applications,” in Fiber Optic Sensors (Intech Publisher, 2012), pp. 115–136.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Principle to generate PS-BDG in the PMF, (a) two pump pulses meet in the middle of PMF to write two pieces of BDGs and a continuous probe wave can read BDGs obtaining a reflection wave; (b) The frequency relationship of four optical waves, two waves along the same principle axis has a BFS ν B , and two waves at the same direction has a birefringence-induced frequency shift ν B i r e ; (c) The refractive index distribution diagram of the PS-BDG, Δ n ( z ) contains two BDG segments with a phase shift point at the junction.
Fig. 2
Fig. 2 (a) Input waveforms of pump1 with a fixed width of 2ns and pump2 with a narrow width of 100ps. (b) Temporal evolution of acoustic waves. (c) Intensity of acoustic wave filed along the PMF at point A. (d) Intensity of acoustic wave filed over the time at point A. (e) The temporal evolution of reflection signal. (f) Time integral reflection spectrum of PS-BDG and transient spectrum at 4ns.
Fig. 3
Fig. 3 (a) Input waveforms of pump1 and pump2 at the repetition rate of 250MHz. (b) Temporal evolution of acoustic waves in PMF. (c) Intensity of acoustic wave filed along the PMF at point A and B. (d) Intensity of acoustic wave over the time at point A. (e) The temporal evolution of reflection spectrum. (f) Integral reflection spectra of PS-BDG at the case of phase shift Δ φ = 0.8 π, 1 .0 π , 1.2 π .
Fig. 4
Fig. 4 Experimental setup for the generation and characterization of transient PS-BDG. OS: optical switch; PG: pulse generator; EDFA: erbium doped fiber amplifier; PD: photodetector; MG: microwave generator; OSA: optical spectrum analyzer; PBS: polarization beam splitter; TFBG: tunable fiber Bragg grating.
Fig. 5
Fig. 5 (a) Input driven voltage of PM and (b) the interference signals at phase-shift of π measured by the M-Z configuration, black line: the former part and the latter part in case 1 are in the maximum condition and the minimum condition respectively in case 1, blue line: the former part and the latter part are in the minimum condition and the maximum condition respectively in case 2. Red line: the phase-modulated optical pulse at the output of EOM1.
Fig. 6
Fig. 6 Optical spectrum of the single sideband modulated light.
Fig. 7
Fig. 7 (a) Measured distributed BDG reflection spectra and (b) the distributed Birefringence-induced frequency shift and local birefringence of PMF.
Fig. 8
Fig. 8 Measured temporal evolution BDG reflection signal in the uniform birefringence section of PMF with the phase-shift (a) Δ φ =0 , (b) Δ φ , (c) Δ φ =0 .93π , (d) Δ φ =1 .13π . (e) Time integral reflection spectra and (f) the reflection spectra at time of 47ns.

Tables (1)

Tables Icon

Table 1 Simulation parameters.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( z ) = { n ¯ + Δ n ( z ) cos ( 2 π ν B t 2 π Λ z + φ 1 ) ( L BDGs / 2 < z < L BDGs , B D G 1 ) n ¯ + Δ n ( z ) cos ( 2 π ν B t 2 π Λ z + φ 2 ) ( 0 < z < L BDGs / 2 , B D G 2 )
f < 1 n x L / c + t max
( z + n x c t ) E 1 = i g o ρ E 2 α 2 E 1
( z + n x c t ) E 2 = i g o ρ * E 1 α 2 E 2
( z + n y c t ) E 3 = i g o ρ * E 4 e i Δ k z α 2 E 3
( z + n y c t ) E 4 = i g o ρ E 3 e i Δ k z α 2 E 4
( t + Γ B 2 ) ρ = i g a ( E 1 E 2 * + E 3 * E 4 e i Δ k z )
Δ ν B ire = Δ n ν n g

Metrics