Abstract

A new optical parametric oscillator (OPO) architecture with high tuning speed capability is demonstrated. This device exploits the versatility offered by aperiodic quasi-phase matching (QPM) to provide a broad parametric gain spectrum without changing the temperature, angle, or position of the nonlinear crystal. Rapid tuning is then straightforwardly achieved using a fast intracavity spectral filter. This concept is demonstrated here for a picosecond synchronously pumped OPO containing an aperiodically poled MgO-doped LiNbO3 crystal and a rapidly tunable spectral filter based on a diffraction grating. Tuning over 160 nm around 3.86 μm is achieved at fixed temperature and a fast tuning over 30 nm in 40 μs is demonstrated. Different configurations are tested and compared. The cavity length detuning is analyzed and discussed. This device is successfully used to detect N2O by absorption. This approach could be generalized to other spectral ranges (e.g., visible) and temporal regimes (e.g., continuous-wave or nanosecond).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical parametric oscillation in quasi-phase-matched GaAs

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier
Opt. Lett. 29(16) 1912-1914 (2004)

Wide and fast dispersion tuning of a picosecond OPO based on aperiodic quasi-phase matching using an axially chirped volume Bragg grating

Delphine Descloux, Guillaume Walter, Erwan Cadiou, Jean-Baptiste Dherbecourt, Guillaume Gorju, Jean-Michel Melkonian, Myriam Raybaut, Cyril Drag, and Antoine Godard
Opt. Lett. 41(17) 4060-4063 (2016)

Multiple-wavelength quasi-phase-matching for efficient idler generation in MgO:LiNbO3 based nanosecond optical parametric oscillator

Om Prakash Naraniya, M. R. Shenoy, and K. Thyagarajan
Appl. Opt. 51(9) 1312-1317 (2012)

References

  • View by:
  • |
  • |
  • |

  1. N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, “Picosecond time-resolved Raman spectroscopy of solids: Capabilities and limitations for fluorescence rejection and the influence of diffuse reflectance,” Appl. Spectrosc. 55(12), 1701–1708 (2001).
    [Crossref]
  2. A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. V. Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
    [Crossref] [PubMed]
  3. V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52(4), 2516–2521 (1995).
    [Crossref]
  4. T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon–air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007).
    [Crossref] [PubMed]
  5. C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33(1), 831–838 (2011).
    [Crossref]
  6. D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D. 34(16), 2440–2454 (2001).
    [Crossref]
  7. C. Laporte, J. B. Dherbecourt, J. M. Melkonian, M. Raybaut, C. Drag, and A. Godard, “Analysis of cavity-length detuning in diffraction-grating narrowed picosecond optical parametric oscillators,” J. Opt. Soc. Am. B 31(5), 1026–1034 (2014).
    [Crossref]
  8. W. R. Bosenberg and D. R. Guyer, “Single frequency optical parametric oscillator,” Appl. Phys. Lett. 61(4), 387–389 (1992).
    [Crossref]
  9. M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, “Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy,” Appl. Opt. 50(4), A1–A10 (2011).
    [Crossref] [PubMed]
  10. B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
    [Crossref] [PubMed]
  11. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B 25(4), 463–480 (2008).
    [Crossref]
  12. M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22(12), 865–867 (1997).
    [Crossref] [PubMed]
  13. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17(15), 12731–12740 (2009).
    [Crossref] [PubMed]
  14. C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35(18), 3093–3095 (2010).
    [Crossref] [PubMed]
  15. B. W. Mayer, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 μm,” Opt. Lett. 38(21), 4265–4268 (2013).
    [Crossref] [PubMed]
  16. T. Beddard, M. Ebrahimzadeh, T. D. Reid, and W. Sibbett, “Five-optical-cycle pulse generation in the mid infrared from an optical parametric oscillator based on aperiodically poled lithium niobate,” Opt. Lett. 25(14), 1052–1054 (2000).
    [Crossref]
  17. K. A. Tillman, D. T. Reid, D. Artigas, J. Hellström, V. Pasiskevicius, and F. Laurell, “Low-threshold femtosecond optical parametric oscillator based on chirped-pulse frequency conversion,” Opt. Lett. 28(7), 543–545 (2003).
    [Crossref] [PubMed]
  18. C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, “Apodization of chirped quasi-phasematching devices,” J. Opt. Soc. Am. B 30(6), 1551–1568 (2013).
    [Crossref]
  19. J. Y. Lai, C. W. Hsu, N. Hsu, Y. H. Chen, and S. D. Yang, “Hyperfine aperiodic optical superlattice optimized by iterative domino algorithm for phase-matching engineering,” Opt. Lett. 37(7), 1184–1186 (2012).
    [Crossref] [PubMed]
  20. D. Descloux, C. Laporte, J. B. Dherbecourt, J. M. Melkonian, M. Raybaut, C. Drag, and A. Godard, “Spectrotemporal dynamics of a picosecond opo based on chirped quasi-phase-matching,” Opt. Lett. 40(2), 280–283 (2015).
    [Crossref] [PubMed]
  21. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
    [Crossref]
  22. Y. Ozeki and D. Tashiro, “Fast wavelength-tunable picosecond pulses from a passively mode-locked Er fiber laser using a galvanometer-driven intracavity filter,” Opt. Express 23(12), 15186–15194 (2015).
    [Crossref] [PubMed]
  23. P. Kelkar, F. Coppinger, A. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35(19), 1661–1662 (1999).
    [Crossref]
  24. T. W. Tukker, C. Otto, and J. Greve, “Design, optimization, and characterization of a narrow-bandwidth optical parametric oscillator,” J. Opt. Soc. Am. B 16(1), 90–95 (1999).
    [Crossref]
  25. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Narrowband bulk Bragg grating optical parametric oscillator,” Opt. Lett. 30(17), 2281–2283 (2005).
    [Crossref] [PubMed]
  26. P. J. K. Wisoff, R. G. Caro, and G. Mitchell, “A high power picosecond dye oscillator synchronously pumped by a Q-switched, mode-locked Nd:YAG laser,” Opt. Commun. 54(6), 353–357 (1985).
    [Crossref]

2015 (2)

2014 (1)

2013 (2)

2012 (1)

2011 (2)

M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, “Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy,” Appl. Opt. 50(4), A1–A10 (2011).
[Crossref] [PubMed]

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33(1), 831–838 (2011).
[Crossref]

2010 (1)

2009 (3)

2008 (1)

2007 (1)

2005 (1)

2004 (1)

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
[Crossref]

2003 (1)

2001 (2)

N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, “Picosecond time-resolved Raman spectroscopy of solids: Capabilities and limitations for fluorescence rejection and the influence of diffuse reflectance,” Appl. Spectrosc. 55(12), 1701–1708 (2001).
[Crossref]

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D. 34(16), 2440–2454 (2001).
[Crossref]

2000 (1)

1999 (2)

1997 (1)

1995 (1)

V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52(4), 2516–2521 (1995).
[Crossref]

1992 (1)

W. R. Bosenberg and D. R. Guyer, “Single frequency optical parametric oscillator,” Appl. Phys. Lett. 61(4), 387–389 (1992).
[Crossref]

1985 (1)

P. J. K. Wisoff, R. G. Caro, and G. Mitchell, “A high power picosecond dye oscillator synchronously pumped by a Q-switched, mode-locked Nd:YAG laser,” Opt. Commun. 54(6), 353–357 (1985).
[Crossref]

Ackermann, C.

Afeyan, B.

Arbore, M. A.

Arie, A.

Artigas, D.

Baron, A.

Beddard, T.

Bhushan, A.

P. Kelkar, F. Coppinger, A. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35(19), 1661–1662 (1999).
[Crossref]

Blom, H. A.

V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52(4), 2516–2521 (1995).
[Crossref]

Bosenberg, W. R.

W. R. Bosenberg and D. R. Guyer, “Single frequency optical parametric oscillator,” Appl. Phys. Lett. 61(4), 387–389 (1992).
[Crossref]

Boudoux, C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
[Crossref]

Bouma, B. E.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
[Crossref]

Caro, R. G.

P. J. K. Wisoff, R. G. Caro, and G. Mitchell, “A high power picosecond dye oscillator synchronously pumped by a Q-switched, mode-locked Nd:YAG laser,” Opt. Commun. 54(6), 353–357 (1985).
[Crossref]

Chang, D.

Charbonneau-Lefort, M.

Chazapis, V.

V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52(4), 2516–2521 (1995).
[Crossref]

Chen, Y. H.

Combrié, S.

Coppinger, F.

P. Kelkar, F. Coppinger, A. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35(19), 1661–1662 (1999).
[Crossref]

de Boer, J. F.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
[Crossref]

de Rossi, A.

Delaye, P.

Descloux, D.

Dherbecourt, J. B.

Drag, C.

Dubreuil, N.

Ebrahimzadeh, M.

Everall, N.

Fejer, M. M.

Freudiger, C. W.

Frey, R.

Gallmann, L.

Gao, Y.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33(1), 831–838 (2011).
[Crossref]

Godard, A.

Gord, J. R.

Greve, J.

Guyer, D. R.

W. R. Bosenberg and D. R. Guyer, “Single frequency optical parametric oscillator,” Appl. Phys. Lett. 61(4), 387–389 (1992).
[Crossref]

Hahn, T.

Halonen, L.

Hanna, D. C.

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D. 34(16), 2440–2454 (2001).
[Crossref]

Hellström, J.

Hill, W.

Holtom, G. R.

Hsu, C. W.

Hsu, N.

Jacobsson, B.

Jalali, B.

P. Kelkar, F. Coppinger, A. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35(19), 1661–1662 (1999).
[Crossref]

Kelkar, P.

P. Kelkar, F. Coppinger, A. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35(19), 1661–1662 (1999).
[Crossref]

Keller, U.

Kiefer, J.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33(1), 831–838 (2011).
[Crossref]

Kliewer, C. J.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33(1), 831–838 (2011).
[Crossref]

Lai, J. Y.

Langrock, C.

Laporte, C.

Laurell, F.

Lin, Y. W.

Marco, O.

Matousek, P.

Mayer, B. W.

Melkonian, J. M.

Meyer, T. R.

Mitchell, G.

P. J. K. Wisoff, R. G. Caro, and G. Mitchell, “A high power picosecond dye oscillator synchronously pumped by a Q-switched, mode-locked Nd:YAG laser,” Opt. Commun. 54(6), 353–357 (1985).
[Crossref]

Norman, A. G.

V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52(4), 2516–2521 (1995).
[Crossref]

O’Connor, M. V.

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D. 34(16), 2440–2454 (2001).
[Crossref]

Oron, D.

Otto, C.

Ozeki, Y.

Parker, A. W.

Pasiskevicius, V.

Patterson, B. D.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33(1), 831–838 (2011).
[Crossref]

Peltola, J.

Phillips, C. C.

V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52(4), 2516–2521 (1995).
[Crossref]

Phillips, C. R.

Pierce, M. C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
[Crossref]

Prabhudesai, V.

Raybaut, M.

Reid, D. T.

Reid, T. D.

Roosen, G.

Roy, S.

Ryasnyanskiy, A.

Saar, B. G.

Seeger, T.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33(1), 831–838 (2011).
[Crossref]

Settersten, T. B.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33(1), 831–838 (2011).
[Crossref]

Shepherd, D. P.

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D. 34(16), 2440–2454 (2001).
[Crossref]

Sibbett, W.

Silberberg, Y.

Siltanen, M.

Suchowski, H.

Tashiro, D.

Tearney, G. J.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
[Crossref]

Tiihonen, M.

Tillman, K. A.

Towrie, M.

Tran, Q. V.

Tukker, T. W.

Vainio, M.

Vodopyanov, K. L.

V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52(4), 2516–2521 (1995).
[Crossref]

Watson, M. A.

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D. 34(16), 2440–2454 (2001).
[Crossref]

Wisoff, P. J. K.

P. J. K. Wisoff, R. G. Caro, and G. Mitchell, “A high power picosecond dye oscillator synchronously pumped by a Q-switched, mode-locked Nd:YAG laser,” Opt. Commun. 54(6), 353–357 (1985).
[Crossref]

Xie, X. S.

Yang, S. D.

Yun, S. H.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. R. Bosenberg and D. R. Guyer, “Single frequency optical parametric oscillator,” Appl. Phys. Lett. 61(4), 387–389 (1992).
[Crossref]

Appl. Spectrosc. (2)

Electron. Lett. (1)

P. Kelkar, F. Coppinger, A. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35(19), 1661–1662 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. D. (1)

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D. 34(16), 2440–2454 (2001).
[Crossref]

Opt. Commun. (1)

P. J. K. Wisoff, R. G. Caro, and G. Mitchell, “A high power picosecond dye oscillator synchronously pumped by a Q-switched, mode-locked Nd:YAG laser,” Opt. Commun. 54(6), 353–357 (1985).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35(18), 3093–3095 (2010).
[Crossref] [PubMed]

B. W. Mayer, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 μm,” Opt. Lett. 38(21), 4265–4268 (2013).
[Crossref] [PubMed]

T. Beddard, M. Ebrahimzadeh, T. D. Reid, and W. Sibbett, “Five-optical-cycle pulse generation in the mid infrared from an optical parametric oscillator based on aperiodically poled lithium niobate,” Opt. Lett. 25(14), 1052–1054 (2000).
[Crossref]

K. A. Tillman, D. T. Reid, D. Artigas, J. Hellström, V. Pasiskevicius, and F. Laurell, “Low-threshold femtosecond optical parametric oscillator based on chirped-pulse frequency conversion,” Opt. Lett. 28(7), 543–545 (2003).
[Crossref] [PubMed]

J. Y. Lai, C. W. Hsu, N. Hsu, Y. H. Chen, and S. D. Yang, “Hyperfine aperiodic optical superlattice optimized by iterative domino algorithm for phase-matching engineering,” Opt. Lett. 37(7), 1184–1186 (2012).
[Crossref] [PubMed]

D. Descloux, C. Laporte, J. B. Dherbecourt, J. M. Melkonian, M. Raybaut, C. Drag, and A. Godard, “Spectrotemporal dynamics of a picosecond opo based on chirped quasi-phase-matching,” Opt. Lett. 40(2), 280–283 (2015).
[Crossref] [PubMed]

M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22(12), 865–867 (1997).
[Crossref] [PubMed]

B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Narrowband bulk Bragg grating optical parametric oscillator,” Opt. Lett. 30(17), 2281–2283 (2005).
[Crossref] [PubMed]

Phys. Rev. B (1)

V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52(4), 2516–2521 (1995).
[Crossref]

Proc. Combust. Inst. (1)

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33(1), 831–838 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Theoretical single-pass, small-signal parametric gain spectra (a) and corresponding QPM domain widths (half periods) (b) for gratings A, B and C, respectively in grey, black and red. Grating C domain widths are calculated using Lai et al. algorithm [19] to improve the flatness of the gain spectrum.The corresponding C* QPM domain widths (see Table 1) are shown.
Fig. 2
Fig. 2 Experimental setup.
Fig. 3
Fig. 3 Tunability within the gain bandwidth in the case of grating B. The emission can be controlled within the total gain spectral bandwidth represented in black (theoretical gain spectrum). The two blue signal spectra are experimental data, corresponding to different mirror M1 angle positions. The mirror deflection δθ is here of 0.52 mrad.
Fig. 4
Fig. 4 Wavelength tunability, for signal and idler waves, with M1 angle variation (a). Black dashed lines represent the theoretical slopes obtained with Eq. (4). The corresponding normalized output power as a function of the emitted wavelength is reperesented in (b). Measurements with grating B (blue dots) are performed at a pumping rate of 3. Measurements with grating C (red triangles) are performed at a pumping rate of 1.5 but nevertheless show a broader tuning range.
Fig. 5
Fig. 5 Build-up of the oscillation recorded with highly dispersive fiber A (see text below) when the angle of mirror M1 remains constant. The build-up spectrum is constrained by the diffraction grating. The fast modulations on the spectrum are due to Fabry-Perot effect on a silicon plate placed before the dispersive fiber in order to filter the unwanted lower wavelength light.
Fig. 6
Fig. 6 Spectrogram of the OPO emission with grating B, recorded with fiber B. Mirror M1 is a galvo-mirror driven by a sawtooth function. This figure shows the great potential for fast tuning of our device, the speed is over 30 nm in 40 μs for the idler wavelength.
Fig. 7
Fig. 7 Experimental setup for local N2O single pass detection in a gas cell.
Fig. 8
Fig. 8 N2O transmission, measured in single pass in a gas cell at atmospheric pressure for a partial pressure of 1.3 × 104 Pa, black squares (a) and (b). The HITRAN transmission lines are shown in grey (a), and the solid orange line in (a) and (b) corresponds to the convolution of this HITRAN transmission lines and a Gaussian profile with a FWHM corresponding to the mean OPO idler spectra FWHM within the addressed range.
Fig. 9
Fig. 9 Simplified representation of the unfolded SPOPO cavity. The mirrors are replaced by lenses and rotating mirror M1 is not represented. The detuning introduces a deflection δθ of the resonant beam.
Fig. 10
Fig. 10 Tolerance to cavity length detuning with a plane mirror (in grey) and a grating (in green). The data are recorded with grating A, when moving the output coupler M4 using a translation stage to vary the cavity length. The zero position corresponds to the cavity length that minimizes the OPO oscillation threshold.
Fig. 11
Fig. 11 Wavelength tunability due to cavity length variation, induced by output coupler M4 translation. Wavelength shift is linear with respect to cavity length variations. The linear fit shows a coefficient of ΔλL = 5.2 nm/mm. Grating B is used here.
Fig. 12
Fig. 12 Wavelength tuning with cavity length variation (a) and wavelength tuning with mirror M1 angle variation (b), for two configurations: δf = 115 mm (red circles) and δf = 160 mm (black squares). Output coupler M4 is translated to detune the cavity length. We observe a clear variation of the cavity length influence on wavelength due to the variation of the induced deflection angle (see Fig. 9). Grating B is used here.
Fig. 13
Fig. 13 Signal spectrum and output beam profile for the two previous configurations. The FWHM is around 0.7 nm for the larger δf (bigger waist radius and lower divergence of the beam in the focused arm of the cavity) and around 0.3 nm for the smaller δf (smaller waist radius and larger divergence of the beam in the focused arm of the cavity). The scale is the same for profiles (a) and (b), 1 tick = 1 mm.
Fig. 14
Fig. 14 Pump thresholds with grating B and a 90 % output coupler, for the different tested values of δf.

Tables (1)

Tables Icon

Table 1 Parameters used for chirped QPM grating and corresponding parametric gain bandwidth at the signal (Δλs) and idler (Δλi) wavelength. Grating C being aperiodic but not linearly chirped, grating C* corresponds to the equivalent QPM grating with a linear chirp rate κ′C* that leads the same gain bandwidth (FWHM).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

κ = d K g ( z ) d z | z = 0 .
Δ λ FWHM = ln ( 2 ) λ 2 π w tan θ ,
θ = arcsin ( λ 2 D ) .
Δ λ Δ θ | total = λ 0 ( 2 D λ 0 ) 2 1 + Δ λ Δ θ | beam adaptation .
Δ λ Δ θ | beam adaptation = Δ λ Δ K × Δ L Δ θ = 0.27 nm / mrad .

Metrics