Abstract

A high-power, wavelength-tunable, all-fiber integrated thulium-doped fiber laser (TDFL) at 2 μm is presented. The TDFL has a compact configuration which only consists of a low power seed oscillator and a stage of fiber power amplifier. The seed oscillator adopts a tunable band-pass filter as the wavelength selective element, matching the gain spectrum of thulium-doped fiber. It can provide ~5 W single-mode seed laser with superb spectral characteristics, and the lasing wavelength is adjustable from 1890 to 2050 nm. The fiber power amplifier provides a total gain of ~17 dB at 2 μm which boosts the signal power to the 300 W-level. The maximum average power reaches 327.5 W at 1930 nm with the highest slope efficiency of 57.4%. This TDFL can afford >270 W lasing operation over the whole tuning range of 140 nm spanning from 1910 to 2050 nm, together with high spectral quality and power stability. This is the first demonstration, to the best of our knowledge, on an all-fiber integrated wavelength-widely-tunable TDFL at 2 μm with output power at the 300 W-level. The results are of great interest for many applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm

Ke Yin, Bin Zhang, Guanghui Xue, Lei Li, and Jing Hou
Opt. Express 22(17) 19947-19952 (2014)

1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 μm

Lei Li, Bin Zhang, Ke Yin, Linyong Yang, and Jing Hou
Opt. Express 23(14) 18098-18105 (2015)

High-power widely tunable thulium fiber lasers

Timothy S. McComb, R. Andrew Sims, Christina C. C. Willis, Pankaj Kadwani, Vikas Sudesh, Lawrence Shah, and Martin Richardson
Appl. Opt. 49(32) 6236-6242 (2010)

References

  • View by:
  • |
  • |
  • |

  1. I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
    [Crossref]
  2. N. M. Fried and K. E. Murray, “New technologies in endourology - High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005).
    [Crossref] [PubMed]
  3. J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
    [PubMed]
  4. A. Pal, R. Sen, K. Bremer, S. Yao, E. Lewis, T. Sun, and K. T. V. Grattan, ““All-fiber” tunable laser in the 2 μm region, designed for CO2 detection,” Appl. Opt. 51(29), 7011–7015 (2012).
    [Crossref] [PubMed]
  5. N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
    [Crossref]
  6. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  7. W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [Invited],” Appl. Opt. 53(28), 6554–6568 (2014).
    [Crossref] [PubMed]
  8. G. Xue, B. Zhang, K. Yin, W. Yang, and J. Hou, “Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm,” Opt. Express 22(21), 25976–25983 (2014).
    [Crossref] [PubMed]
  9. S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
    [Crossref]
  10. T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).
  11. X. Jin, X. Wang, J. Xu, X. Wang, and P. Zhou, “High-power thulium-doped all-fibre amplified spontaneous emission sources,” J. Opt. 17(4), 045702 (2015).
    [Crossref]
  12. X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
    [Crossref]
  13. J. Liu, H. Shi, K. Liu, Y. Hou, and P. Wang, “210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA,” Opt. Express 22(11), 13572–13578 (2014).
    [Crossref] [PubMed]
  14. J. Liu, J. Xu, K. Liu, F. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013).
    [Crossref] [PubMed]
  15. J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
    [Crossref]
  16. Z. Li, A. M. Heidt, P. S. Teh, M. Berendt, J. K. Sahu, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “High-energy diode-seeded nanosecond 2 μm fiber MOPA systems incorporating active pulse shaping,” Opt. Lett. 39(6), 1569–1572 (2014).
    [Crossref] [PubMed]
  17. C. Gaida, M. Gebhardt, P. Kadwani, L. Leick, J. Broeng, L. Shah, and M. Richardson, “Amplification of nanosecond pulses to megawatt peak power levels in Tm3+-doped photonic crystal fiber rod,” Opt. Lett. 38(5), 691–693 (2013).
    [Crossref] [PubMed]
  18. L. Li, B. Zhang, K. Yin, L. Yang, and J. Hou, “1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 μm,” Opt. Express 23(14), 18098–18105 (2015).
    [Crossref] [PubMed]
  19. F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
    [Crossref]
  20. Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
    [Crossref] [PubMed]
  21. G. Imeshev and M. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
    [Crossref] [PubMed]
  22. X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
    [Crossref] [PubMed]
  23. Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, and J. Xu, “High power tandem-pumped thulium-doped fiber laser,” Opt. Express 23(3), 2991–2998 (2015).
    [Crossref] [PubMed]
  24. D. Creeden, B. R. Johnson, G. A. Rines, and S. D. Setzler, “Resonant tandem pumping of Tm-doped fiber lasers,” Proc. of SPIE 9081, 90810I 90811–90815 (2014).
  25. N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
    [Crossref] [PubMed]
  26. I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–12 (2014).
    [Crossref]
  27. T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, L. Shah, and M. Richardson, “Atmospheric transmission testing using a portable, tunable, high power thulium fiber laser system,” CLEO 2010: Standoff Laser Sensing, San Jose, CA, May 16, JThJ5 (2010).
    [Crossref]
  28. K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
    [Crossref] [PubMed]
  29. T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt. 49(32), 6236–6242 (2010).
    [Crossref] [PubMed]
  30. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
    [Crossref] [PubMed]
  31. J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
    [Crossref] [PubMed]

2016 (1)

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

2015 (6)

X. Jin, X. Wang, J. Xu, X. Wang, and P. Zhou, “High-power thulium-doped all-fibre amplified spontaneous emission sources,” J. Opt. 17(4), 045702 (2015).
[Crossref]

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
[Crossref]

Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, and J. Xu, “High power tandem-pumped thulium-doped fiber laser,” Opt. Express 23(3), 2991–2998 (2015).
[Crossref] [PubMed]

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

L. Li, B. Zhang, K. Yin, L. Yang, and J. Hou, “1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 μm,” Opt. Express 23(14), 18098–18105 (2015).
[Crossref] [PubMed]

2014 (8)

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
[Crossref] [PubMed]

Z. Li, A. M. Heidt, P. S. Teh, M. Berendt, J. K. Sahu, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “High-energy diode-seeded nanosecond 2 μm fiber MOPA systems incorporating active pulse shaping,” Opt. Lett. 39(6), 1569–1572 (2014).
[Crossref] [PubMed]

J. Liu, H. Shi, K. Liu, Y. Hou, and P. Wang, “210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA,” Opt. Express 22(11), 13572–13578 (2014).
[Crossref] [PubMed]

K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
[Crossref] [PubMed]

W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [Invited],” Appl. Opt. 53(28), 6554–6568 (2014).
[Crossref] [PubMed]

G. Xue, B. Zhang, K. Yin, W. Yang, and J. Hou, “Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm,” Opt. Express 22(21), 25976–25983 (2014).
[Crossref] [PubMed]

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
[Crossref]

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–12 (2014).
[Crossref]

2013 (3)

2012 (3)

A. Pal, R. Sen, K. Bremer, S. Yao, E. Lewis, T. Sun, and K. T. V. Grattan, ““All-fiber” tunable laser in the 2 μm region, designed for CO2 detection,” Appl. Opt. 51(29), 7011–7015 (2012).
[Crossref] [PubMed]

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

2011 (1)

2010 (3)

2005 (2)

G. Imeshev and M. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
[Crossref] [PubMed]

N. M. Fried and K. E. Murray, “New technologies in endourology - High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005).
[Crossref] [PubMed]

2004 (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
[Crossref]

2002 (1)

Alam, S. U.

Barnes, N. P.

Bennetts, S.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Berendt, M.

Bremer, K.

Broeng, J.

Carmody, N.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Carter, A.

Chen, K. P.

Chen, T.

Clarkson, W. A.

Davidson, A.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Davies, P.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Dvoyrin, V. V.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–12 (2014).
[Crossref]

Ehrenreich, T.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Fang, Q.

Fermann, M.

Fried, N. M.

N. M. Fried and K. E. Murray, “New technologies in endourology - High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005).
[Crossref] [PubMed]

Gaida, C.

Gebhardt, M.

Grattan, K. T. V.

Han, B. M.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Hanna, D. C.

Haub, J.

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Haxsen, F.

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
[Crossref]

Heberle, A. P.

Heidt, A. M.

Hemming, A.

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Hou, J.

Hou, Y.

Huang, C.

Hughes, M.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Imeshev, G.

Jackson, S. D.

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
[Crossref]

Jin, X.

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

X. Jin, X. Wang, J. Xu, X. Wang, and P. Zhou, “High-power thulium-doped all-fibre amplified spontaneous emission sources,” J. Opt. 17(4), 045702 (2015).
[Crossref]

Kadwani, P.

Kelly, B.

Kracht, D.

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
[Crossref]

Leick, L.

Leveille, R.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Lewis, E.

Li, J.

Li, L.

Li, Z.

Liu, H. T.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Liu, J.

Liu, K.

Liu, Y.

Liu, Z.

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

Luo, H.

Luo, Y.

Majid, I.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

McComb, T. S.

Mingareev, I.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Moulton, P.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Murray, K. E.

N. M. Fried and K. E. Murray, “New technologies in endourology - High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005).
[Crossref] [PubMed]

Neumann, J.

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
[Crossref]

Nilsson, J.

Norwood, R. A.

Olowinsky, A.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Pal, A.

Peyghambarian, N.

Phelan, R.

Richardson, D. J.

Richardson, M.

Rines, G.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Sahu, J. K.

Sen, R.

Shah, L.

Shi, H.

Shi, W.

Simakov, N.

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Sims, R. A.

Sorokin, E.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–12 (2014).
[Crossref]

Sorokina, I. T.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–12 (2014).
[Crossref]

Sudesh, V.

Sun, T.

Sun, X. W.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Sun, Z.

Tan, F.

Tang, Y.

Tang, Y. L.

J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
[Crossref]

Tankala, K.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Teh, P. S.

Tolstik, N.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–12 (2014).
[Crossref]

Turner, P. W.

Wandt, D.

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
[Crossref]

Wang, P.

Wang, Q.

Wang, S.

Wang, X.

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

X. Jin, X. Wang, J. Xu, X. Wang, and P. Zhou, “High-power thulium-doped all-fibre amplified spontaneous emission sources,” J. Opt. 17(4), 045702 (2015).
[Crossref]

X. Jin, X. Wang, J. Xu, X. Wang, and P. Zhou, “High-power thulium-doped all-fibre amplified spontaneous emission sources,” J. Opt. 17(4), 045702 (2015).
[Crossref]

Wang, Y.

J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
[Crossref]

Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, and J. Xu, “High power tandem-pumped thulium-doped fiber laser,” Opt. Express 23(3), 2991–2998 (2015).
[Crossref] [PubMed]

Wei, H. B.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Weirauch, F.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Wienke, A.

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
[Crossref]

Willis, C. C. C.

Wu, W.

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

Xia, S. J.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Xiao, H.

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

Xu, J.

Xu, J. Q.

J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
[Crossref]

Xue, G.

Yan, Z.

Yang, J.

Yang, J. L.

J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
[Crossref]

Yang, L.

Yang, W.

Yao, S.

Yin, K.

Zhang, B.

Zhang, F.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Zhang, G.

J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
[Crossref]

Zhang, L.

Zhao, F. J.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Zhou, K.

Zhou, P.

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

X. Jin, X. Wang, J. Xu, X. Wang, and P. Zhou, “High-power thulium-doped all-fibre amplified spontaneous emission sources,” J. Opt. 17(4), 045702 (2015).
[Crossref]

Zhu, X.

Zhuo, J.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Appl. Opt. (3)

Asian J. Androl. (1)

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–12 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
[Crossref]

J. Endourol. (1)

N. M. Fried and K. E. Murray, “New technologies in endourology - High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005).
[Crossref] [PubMed]

J. Opt. (1)

X. Jin, X. Wang, J. Xu, X. Wang, and P. Zhou, “High-power thulium-doped all-fibre amplified spontaneous emission sources,” J. Opt. 17(4), 045702 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
[Crossref]

Opt. Express (9)

G. Imeshev and M. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
[Crossref] [PubMed]

G. Xue, B. Zhang, K. Yin, W. Yang, and J. Hou, “Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm,” Opt. Express 22(21), 25976–25983 (2014).
[Crossref] [PubMed]

Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, and J. Xu, “High power tandem-pumped thulium-doped fiber laser,” Opt. Express 23(3), 2991–2998 (2015).
[Crossref] [PubMed]

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

L. Li, B. Zhang, K. Yin, L. Yang, and J. Hou, “1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 μm,” Opt. Express 23(14), 18098–18105 (2015).
[Crossref] [PubMed]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
[Crossref] [PubMed]

J. Liu, H. Shi, K. Liu, Y. Hou, and P. Wang, “210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA,” Opt. Express 22(11), 13572–13578 (2014).
[Crossref] [PubMed]

K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
[Crossref]

Opt. Laser Technol. (1)

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Opt. Lett. (5)

Proc. SPIE (2)

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Other (2)

D. Creeden, B. R. Johnson, G. A. Rines, and S. D. Setzler, “Resonant tandem pumping of Tm-doped fiber lasers,” Proc. of SPIE 9081, 90810I 90811–90815 (2014).

T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, L. Shah, and M. Richardson, “Atmospheric transmission testing using a portable, tunable, high power thulium fiber laser system,” CLEO 2010: Standoff Laser Sensing, San Jose, CA, May 16, JThJ5 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Layout of the high-power, wavelength-tunable, all-fiber integrated TDFL.
Fig. 2
Fig. 2 (a) The output power of the seed oscillator. (b) The seed spectra.
Fig. 3
Fig. 3 (a) Output spectrum at 1940 nm. Insets of (a) plot the spectra at 1910 and 2050 nm. (b) Evolutions of the TDFL’s output power at 1910, 1940 and 2050 nm.
Fig. 4
Fig. 4 (a) Output maximum power of the TDFL. (b) Long-term power stability test. Inset of (a) shows the measured beam profile when the output power is 30 W at 1940 nm. Inset of (b) plots the histogram of the power measurements.

Metrics