Abstract

Planar lenses are attractive photonic devices due to its minimized size and easy to integrate. However, planar lenses designed in traditional ways are restricted by the diffraction limit. They have difficulties in further reducing the focal spot size beyond the diffraction limit. Super-oscillation provides a possible way to solve the problem. However, lenses based on super-oscillation have always been affected by huge sidelobes, which resulted in limited field of view and difficulties in real applications. To address the problem, in the paper, a far-field sub-diffraction lens based on binary amplitude-phase mask was demonstrated under illumination of linearly polarized plane wave at wavelength 632.8 nm. The lens realized a long focal length of 148λ (94 µm), and the full width at half maximum of the focal line was 0.406λ, which was super-oscillatory. More important is that such a flat lens has small sidelobes and wide field of view. Within the measured range of [-132λ, + 120λ], the maximum sidelobe observed on the focal plane was less than 22% of the central peak. Such binary amplitude-phase planar lens can also be extended to long focal length far-field sub-diffraction focusing lens for other spectrum ranges.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Super-oscillation focusing lens based on continuous amplitude and binary phase modulation

Zhongquan Wen, Yinghu He, Yuyan Li, Li Chen, and Gang Chen
Opt. Express 22(18) 22163-22171 (2014)

Realizing a terahertz far-field sub-diffraction optical needle with sub-wavelength concentric ring structure array

Desheng Ruan, Zeyu Li, Lianghui Du, Xun Zhou, Liguo Zhu, Cuiping Lin, Mengyu Yang, Gang Chen, Weiqing Yuan, Gaofeng Liang, and Zhongquan Wen
Appl. Opt. 57(27) 7905-7909 (2018)

Generating a three-dimensional hollow spot with sub-diffraction transverse size by a focused cylindrical vector wave

Zhixiang Wu, Qijian Jin, Shuo Zhang, Kun Zhang, Lingfang Wang, Luru Dai, Zhongquan Wen, Zhihai Zhang, Gaofeng Liang, Yufei Liu, and Gang Chen
Opt. Express 26(7) 7866-7875 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” J. Light Sci. Appl. 2(4), e72 (2013).
    [Crossref]
  2. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
    [Crossref] [PubMed]
  3. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
    [Crossref] [PubMed]
  4. X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, T. Zentgraf, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1(7), 517–521 (2013).
    [Crossref]
  5. L. Verslegers, P. B. Catrysse, Z. Yu, W. Shin, Z. Ruan, and S. Fan, “Phase front design with metallic pillar arrays,” Opt. Lett. 35(6), 844–846 (2010).
    [Crossref] [PubMed]
  6. S. Yin, C. Zhou, X. Luo, and C. Du, “Imaging by a sub-wavelength metallic lens with large field of view,” Opt. Express 16(4), 2578–2583 (2008).
    [Crossref] [PubMed]
  7. S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
    [Crossref] [PubMed]
  8. T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
    [Crossref]
  9. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
    [Crossref] [PubMed]
  10. N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
    [Crossref] [PubMed]
  11. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
    [Crossref]
  12. J. Lindberg, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 14(8), 083001 (2012).
    [Crossref]
  13. E. T. F. Rogers and N. I. Zheludev, “Mathematical concepts of optical superresolution,” J. Opt. 15(9), 094008 (2013).
    [Crossref]
  14. V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt. 52(3), 330–339 (2013).
    [Crossref] [PubMed]
  15. G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
    [Crossref] [PubMed]
  16. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
    [Crossref] [PubMed]
  17. G. Yuan, E. T. F. Rogers, T. Roy, Z. Shen, and N. I. Zheludev, “Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution,” Opt. Express 22(6), 6428–6437 (2014).
    [Crossref] [PubMed]
  18. F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
    [Crossref] [PubMed]
  19. T. Liu, J. Tan, J. Liu, and H. Wang, “Vectorial design of super-oscillatory lens,” Opt. Express 21(13), 15090–15101 (2013).
    [Crossref] [PubMed]
  20. G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photonics Technol. Lett. 28(3), 335–338 (2016).
    [Crossref]
  21. Z. Wen, Y. He, Y. Li, L. Chen, and G. Chen, “Super-oscillation focusing lens based on continuous amplitude and binary phase modulation,” Opt. Express 22(18), 22163–22171 (2014).
    [Crossref] [PubMed]
  22. J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
    [Crossref]
  23. K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
    [Crossref]
  24. N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antenn. Propag. 55(3), 556–567 (2007).
    [Crossref]
  25. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2007).

2016 (1)

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photonics Technol. Lett. 28(3), 335–338 (2016).
[Crossref]

2015 (1)

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

2014 (4)

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

G. Yuan, E. T. F. Rogers, T. Roy, Z. Shen, and N. I. Zheludev, “Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution,” Opt. Express 22(6), 6428–6437 (2014).
[Crossref] [PubMed]

Z. Wen, Y. He, Y. Li, L. Chen, and G. Chen, “Super-oscillation focusing lens based on continuous amplitude and binary phase modulation,” Opt. Express 22(18), 22163–22171 (2014).
[Crossref] [PubMed]

2013 (8)

V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt. 52(3), 330–339 (2013).
[Crossref] [PubMed]

T. Liu, J. Tan, J. Liu, and H. Wang, “Vectorial design of super-oscillatory lens,” Opt. Express 21(13), 15090–15101 (2013).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, T. Zentgraf, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1(7), 517–521 (2013).
[Crossref]

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

E. T. F. Rogers and N. I. Zheludev, “Mathematical concepts of optical superresolution,” J. Opt. 15(9), 094008 (2013).
[Crossref]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” J. Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

2012 (4)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

J. Lindberg, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 14(8), 083001 (2012).
[Crossref]

2010 (1)

2009 (1)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

2008 (2)

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

S. Yin, C. Zhou, X. Luo, and C. Du, “Imaging by a sub-wavelength metallic lens with large field of view,” Opt. Express 16(4), 2578–2583 (2008).
[Crossref] [PubMed]

2007 (2)

N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antenn. Propag. 55(3), 556–567 (2007).
[Crossref]

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Adamo, G.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Bai, B.

X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, T. Zentgraf, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1(7), 517–521 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Capasso, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, W. Shin, Z. Ruan, and S. Fan, “Phase front design with metallic pillar arrays,” Opt. Lett. 35(6), 844–846 (2010).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Chad, J. E.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Chen, G.

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photonics Technol. Lett. 28(3), 335–338 (2016).
[Crossref]

Z. Wen, Y. He, Y. Li, L. Chen, and G. Chen, “Super-oscillation focusing lens based on continuous amplitude and binary phase modulation,” Opt. Express 22(18), 22163–22171 (2014).
[Crossref] [PubMed]

Chen, L.

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photonics Technol. Lett. 28(3), 335–338 (2016).
[Crossref]

Z. Wen, Y. He, Y. Li, L. Chen, and G. Chen, “Super-oscillation focusing lens based on continuous amplitude and binary phase modulation,” Opt. Express 22(18), 22163–22171 (2014).
[Crossref] [PubMed]

Chen, X.

X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, T. Zentgraf, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1(7), 517–521 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Chong, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Dai, L.

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photonics Technol. Lett. 28(3), 335–338 (2016).
[Crossref]

Dennis, M. R.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Du, C.

S. Yin, C. Zhou, X. Luo, and C. Du, “Imaging by a sub-wavelength metallic lens with large field of view,” Opt. Express 16(4), 2578–2583 (2008).
[Crossref] [PubMed]

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, W. Shin, Z. Ruan, and S. Fan, “Phase front design with metallic pillar arrays,” Opt. Lett. 35(6), 844–846 (2010).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

He, Y.

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photonics Technol. Lett. 28(3), 335–338 (2016).
[Crossref]

Z. Wen, Y. He, Y. Li, L. Chen, and G. Chen, “Super-oscillation focusing lens based on continuous amplitude and binary phase modulation,” Opt. Express 22(18), 22163–22171 (2014).
[Crossref] [PubMed]

Hong, M.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Hua Zhang, D.

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

Huang, K.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

Huang, L.

X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, T. Zentgraf, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1(7), 517–521 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Ishii, S.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” J. Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

Jiao, J.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Jin, G.

X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, T. Zentgraf, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1(7), 517–521 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Jin, N.

N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antenn. Propag. 55(3), 556–567 (2007).
[Crossref]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Kildishev, A. V.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” J. Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

Kotlyar, V. V.

Kovalev, A. A.

Li, D.

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

Li, G.

X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, T. Zentgraf, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1(7), 517–521 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Li, Y.

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photonics Technol. Lett. 28(3), 335–338 (2016).
[Crossref]

Z. Wen, Y. He, Y. Li, L. Chen, and G. Chen, “Super-oscillation focusing lens based on continuous amplitude and binary phase modulation,” Opt. Express 22(18), 22163–22171 (2014).
[Crossref] [PubMed]

Lin, F.

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photonics Technol. Lett. 28(3), 335–338 (2016).
[Crossref]

Lindberg, J.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

J. Lindberg, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 14(8), 083001 (2012).
[Crossref]

Liu, J.

Liu, S.

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photonics Technol. Lett. 28(3), 335–338 (2016).
[Crossref]

Liu, T.

Liu, Y.

Luk’yanchuk, B.

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Luo, X.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

S. Yin, C. Zhou, X. Luo, and C. Du, “Imaging by a sub-wavelength metallic lens with large field of view,” Opt. Express 16(4), 2578–2583 (2008).
[Crossref] [PubMed]

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Muhlenbernd, H.

X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, T. Zentgraf, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1(7), 517–521 (2013).
[Crossref]

Mühlenbernd, H.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Ni, X.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” J. Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

O’Faolain, L.

Qin, F.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

Qiu, C.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, T. Zentgraf, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1(7), 517–521 (2013).
[Crossref]

Qiu, C. W.

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Rahmat-Samii, Y.

N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antenn. Propag. 55(3), 556–567 (2007).
[Crossref]

Rogers, E. T. F.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

G. Yuan, E. T. F. Rogers, T. Roy, Z. Shen, and N. I. Zheludev, “Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution,” Opt. Express 22(6), 6428–6437 (2014).
[Crossref] [PubMed]

E. T. F. Rogers and N. I. Zheludev, “Mathematical concepts of optical superresolution,” J. Opt. 15(9), 094008 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Roy, T.

G. Yuan, E. T. F. Rogers, T. Roy, Z. Shen, and N. I. Zheludev, “Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution,” Opt. Express 22(6), 6428–6437 (2014).
[Crossref] [PubMed]

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Ruan, Z.

Savo, S.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Shalaev, V. M.

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” J. Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Shen, X.

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

Shen, Z.

G. Yuan, E. T. F. Rogers, T. Roy, Z. Shen, and N. I. Zheludev, “Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution,” Opt. Express 22(6), 6428–6437 (2014).
[Crossref] [PubMed]

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Shin, W.

Stafeev, S. S.

Tan, J.

Tan, Q.

X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, T. Zentgraf, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1(7), 517–521 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Tao, X.

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

Teng, J.

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, W. Shin, Z. Ruan, and S. Fan, “Phase front design with metallic pillar arrays,” Opt. Lett. 35(6), 844–846 (2010).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Wang, C.

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Wang, H.

T. Liu, J. Tan, J. Liu, and H. Wang, “Vectorial design of super-oscillatory lens,” Opt. Express 21(13), 15090–15101 (2013).
[Crossref] [PubMed]

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Wang, J.

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

Wang, X.

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photonics Technol. Lett. 28(3), 335–338 (2016).
[Crossref]

Wang, Y.

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

Wen, Z.

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photonics Technol. Lett. 28(3), 335–338 (2016).
[Crossref]

Z. Wen, Y. He, Y. Li, L. Chen, and G. Chen, “Super-oscillation focusing lens based on continuous amplitude and binary phase modulation,” Opt. Express 22(18), 22163–22171 (2014).
[Crossref] [PubMed]

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Wu, J.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Xu, T.

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Yao, N.

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

Ye, H.

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

Yeo, S. P.

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

Yin, S.

Yu, N.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Yu, T.

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, W. Shin, Z. Ruan, and S. Fan, “Phase front design with metallic pillar arrays,” Opt. Lett. 35(6), 844–846 (2010).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Yuan, G.

G. Yuan, E. T. F. Rogers, T. Roy, Z. Shen, and N. I. Zheludev, “Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution,” Opt. Express 22(6), 6428–6437 (2014).
[Crossref] [PubMed]

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

Zentgraf, T.

X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, T. Zentgraf, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1(7), 517–521 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zhang, S.

X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, T. Zentgraf, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1(7), 517–521 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zhao, Z.

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

Zheludev, N. I.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

G. Yuan, E. T. F. Rogers, T. Roy, Z. Shen, and N. I. Zheludev, “Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution,” Opt. Express 22(6), 6428–6437 (2014).
[Crossref] [PubMed]

E. T. F. Rogers and N. I. Zheludev, “Mathematical concepts of optical superresolution,” J. Opt. 15(9), 094008 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Zhou, C.

Adv. Opt. Mater. (1)

X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, T. Zentgraf, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1(7), 517–521 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photonics Technol. Lett. 28(3), 335–338 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antenn. Propag. 55(3), 556–567 (2007).
[Crossref]

J. Light Sci. Appl. (1)

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” J. Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

J. Opt. (2)

J. Lindberg, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 14(8), 083001 (2012).
[Crossref]

E. T. F. Rogers and N. I. Zheludev, “Mathematical concepts of optical superresolution,” J. Opt. 15(9), 094008 (2013).
[Crossref]

Laser Photonics Rev. (1)

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photonics Rev. 8(1), 152–157 (2014).
[Crossref]

Nano Lett. (3)

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Nanotechnology (1)

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Sci. Rep. (2)

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

Other (1)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Far-field line-focusing of a plane wave with TE polarization by a micro lens based on binary amplitude-phase mask, and (b) the structure of the micro lens.
Fig. 2
Fig. 2 The (a) amplitude and (b) phase distribution on the lens mask.
Fig. 3
Fig. 3 The theoretical intensity distribution on the focal plane.
Fig. 4
Fig. 4 The SEM images of (a) the microlens and (b) the zoom-in image of the lens central part, where the red dashed line indicates the lens central line.
Fig. 5
Fig. 5 The intensity distribution in the nearby region of the central peak on the focal plane.
Fig. 6
Fig. 6 (a) The color map of the optical intensity on the y-z plane; (b) The central peak intensity and FWHM along the z-axis near the focal plane.
Fig. 7
Fig. 7 The intensity distribution in a large region of [-132λ, + 120λ] on the focal plane.
Fig. 8
Fig. 8 (a)The amplitude, (b) phase, and (c) local wavenumber distribution on the focal plane, where k’ and k0 are local wavenumber and wavenumber in medium respectively.

Metrics