Abstract

We demonstrate new GRIN-based endomicroscopic objectives for high resolution single photon fluorescence imaging modalities. Two endoscopic optical design approaches are presented in detail utilizing firstly diffractive and secondly refractive optical elements for the color correction in a spectral range from 488 nm to 550 nm. They are compared with their precursor device experimentally and by simulation. Inherent aberrations for off-axis field points could be lowered remarkably compared with the values of the state-of-the-art system by increasing the intrinsic optical complexity but maintaining the outer spatial dimensions. As a result, those presented objectives predict a diffraction-limited imaging of objects up to 300 μm in diameter with a numerical aperture of 0.8 while keeping an overall outer diameter of the assembly at 1.4 mm. Lastly, confocal fluorescence imaging experiments focus on the comparison between the numerical predicted and the practically achieved quality parameters.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Visible-band testbed projector with a replicated diffractive optical element

C. Bill Chen, Ronald G. Hegg, W. Todd Johnson, William B. King, David F. Rock, and Robert Spande
Appl. Opt. 38(34) 7105-7111 (1999)

Design and evaluation of an ultra-slim objective for in-vivo deep optical biopsy

Sara M. Landau, Chen Liang, Robert T. Kester, Tomasz S. Tkaczyk, and Michael R. Descour
Opt. Express 18(5) 4758-4775 (2010)

Computational imaging using lightweight diffractive-refractive optics

Yifan Peng, Qiang Fu, Hadi Amata, Shuochen Su, Felix Heide, and Wolfgang Heidrich
Opt. Express 23(24) 31393-31407 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Tearney, M. E. Brezinski, J. G. Fujimoto, N. J. Weissman, S. A. Boppart, B. E. Bouma, and J. F. Southern, “Scanning single-mode fiber optic catheter–endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
    [Crossref] [PubMed]
  2. S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
    [Crossref] [PubMed]
  3. K. Singh, D. Yamada, and G. Tearney, “Common path side viewing monolithic ball lens probe for optical coherence tomography,” Mod. Tech. in Med. 7(1), 29–33 (2015).
  4. S. Donner, S. Bleeker, T. Ripken, M. Ptok, M. Jungheim, and A. Krueger, “Automated working distance adjustment enables optical coherence tomography of the human larynx in awake patients,” J. Med. Imaging. 2(2), 026003 (2015).
    [Crossref]
  5. E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.-F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation,” J. Vasc. Res. 41(5), 400–411 (2004).
    [Crossref] [PubMed]
  6. M.-A. Dhallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
    [Crossref]
  7. A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper-and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
    [Crossref] [PubMed]
  8. P. Kim, M. Puorishaag, D. Ct, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
    [Crossref] [PubMed]
  9. L. Yang, J. Wang, G. Tian, J. Yuan, Q. Liu, and L. Fu, “Five-lens, easy-to-implement miniature objective for a fluorescence confocal microendoscope,” Opt. Express 24(1), 473–484 (2016).
    [Crossref] [PubMed]
  10. H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, “Second harmonic generation imaging via nonlinear endomicroscopy,” Opt. Express 18(2), 1255–1260 (2010).
    [Crossref] [PubMed]
  11. G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
    [Crossref] [PubMed]
  12. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003).
    [Crossref] [PubMed]
  13. D. Bird and M. Gu, “Two-photon fluorescence endoscopy with a micro-optic scanning head,” Opt. Lett. 28(17), 1552–1554 (2003).
    [Crossref] [PubMed]
  14. R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
    [Crossref] [PubMed]
  15. C. Wang and N. Ji, “Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy,” Opt. Lett. 37(11), 2001–2003 (2012).
    [Crossref] [PubMed]
  16. C. Wang and N. Ji, “Characterization and improvement of three-dimensional imaging performance of GRINlens-based two-photon fluorescence endomicroscopes with adaptive optics,” Opt. Express 21(22), 27142–27154 (2013).
    [Crossref] [PubMed]
  17. W. Yan, X. Peng, D. Lin, Q. Wang, J. Gao, T. Luo, J. Zhou, T. Ye, J. Qu, and H. Niu, “Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes,” Front. Optoelectron. 8(2), 177–182 (2015).
    [Crossref]
  18. X. Duan, H. Li, Z. Qiu, B. P. Joshi, A. Pant, A. Smith, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “MEMS-based multiphoton endomicroscope for repetitive imaging of mouse colon,” Biomed. Opt. Express 6(8), 3074–3083 (2015).
    [Crossref] [PubMed]
  19. F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS Endoscopy,” Opt. Express 14(10), 4427– 4432 (2006).
    [Crossref] [PubMed]
  20. M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18(3), 2380–2388 (2010).
    [Crossref] [PubMed]
  21. G. Matz, B. Messerschmidt, and H. Gross, “Improved chromatical and field correction of high-NA GRIN-based endomicroscopic imaging systems for new biophotonics applications,” Proc. SPIE 9304, 93041E (2015).
    [Crossref]
  22. T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Microsc. 244(2), 113–121 (2011).
    [Crossref] [PubMed]
  23. C. G. Wynne, “Flat-field microscope objective,” J. Sci. Instrum. 38(3), 92 (1961).
    [Crossref]
  24. H. C. Claussen, “Microscope objectives with Plano-correction,” Appl. Opt. 3(9), 993–1003 (1964).
    [Crossref]
  25. A. Miks and J. Novak, “Analysis and synthesis of planachromats,” Appl. Opt. 49(17), 3403–3410 (2010).
    [Crossref] [PubMed]
  26. F. Träger, Springer Handbook of Lasers and Optics (SpringerNew York, 2007).
    [Crossref]

2016 (1)

2015 (6)

K. Singh, D. Yamada, and G. Tearney, “Common path side viewing monolithic ball lens probe for optical coherence tomography,” Mod. Tech. in Med. 7(1), 29–33 (2015).

S. Donner, S. Bleeker, T. Ripken, M. Ptok, M. Jungheim, and A. Krueger, “Automated working distance adjustment enables optical coherence tomography of the human larynx in awake patients,” J. Med. Imaging. 2(2), 026003 (2015).
[Crossref]

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

W. Yan, X. Peng, D. Lin, Q. Wang, J. Gao, T. Luo, J. Zhou, T. Ye, J. Qu, and H. Niu, “Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes,” Front. Optoelectron. 8(2), 177–182 (2015).
[Crossref]

X. Duan, H. Li, Z. Qiu, B. P. Joshi, A. Pant, A. Smith, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “MEMS-based multiphoton endomicroscope for repetitive imaging of mouse colon,” Biomed. Opt. Express 6(8), 3074–3083 (2015).
[Crossref] [PubMed]

G. Matz, B. Messerschmidt, and H. Gross, “Improved chromatical and field correction of high-NA GRIN-based endomicroscopic imaging systems for new biophotonics applications,” Proc. SPIE 9304, 93041E (2015).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Microsc. 244(2), 113–121 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (1)

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

2008 (2)

P. Kim, M. Puorishaag, D. Ct, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[Crossref] [PubMed]

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[Crossref] [PubMed]

2006 (1)

2005 (2)

M.-A. Dhallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
[Crossref]

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper-and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

2004 (1)

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.-F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

2003 (2)

1996 (1)

1964 (1)

1961 (1)

C. G. Wynne, “Flat-field microscope objective,” J. Sci. Instrum. 38(3), 92 (1961).
[Crossref]

Balu, M.

Bao, H.

Barretto, R. P.

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

Batrin, R.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Bezdetnaya, L.

M.-A. Dhallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
[Crossref]

Bird, D.

Bleeker, S.

S. Donner, S. Bleeker, T. Ripken, M. Ptok, M. Jungheim, and A. Krueger, “Automated working distance adjustment enables optical coherence tomography of the human larynx in awake patients,” J. Med. Imaging. 2(2), 026003 (2015).
[Crossref]

Boppart, S. A.

Bouma, B. E.

Bourg-Heckly, G.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Boussioutas, A.

Braud, F.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Brevier, J.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Brezinski, M. E.

Chen, Z.

Claussen, H. C.

Ct, D.

P. Kim, M. Puorishaag, D. Ct, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[Crossref] [PubMed]

Delaney, P. M.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper-and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Dhallewin, M.-A.

M.-A. Dhallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
[Crossref]

Donner, S.

S. Donner, S. Bleeker, T. Ripken, M. Ptok, M. Jungheim, and A. Krueger, “Automated working distance adjustment enables optical coherence tomography of the human larynx in awake patients,” J. Med. Imaging. 2(2), 026003 (2015).
[Crossref]

Druilhe, A.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Duan, X.

Ducourthial, G.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

El Khatib, S.

M.-A. Dhallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
[Crossref]

Evans, C. L.

Fabert, M.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Fu, L.

Fujimoto, J. G.

Ganikhanov, F.

Gao, J.

W. Yan, X. Peng, D. Lin, Q. Wang, J. Gao, T. Luo, J. Zhou, T. Ye, J. Qu, and H. Niu, “Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes,” Front. Optoelectron. 8(2), 177–182 (2015).
[Crossref]

Genet, M.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.-F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

Gross, H.

G. Matz, B. Messerschmidt, and H. Gross, “Improved chromatical and field correction of high-NA GRIN-based endomicroscopic imaging systems for new biophotonics applications,” Proc. SPIE 9304, 93041E (2015).
[Crossref]

Gu, M.

Guillemin, F.

M.-A. Dhallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
[Crossref]

Habert, R.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Han, S.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[Crossref] [PubMed]

Humayun, M.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[Crossref] [PubMed]

Jeremy, R.

Ji, N.

Joshi, B. P.

Jung, J. C.

Jungheim, M.

S. Donner, S. Bleeker, T. Ripken, M. Ptok, M. Jungheim, and A. Krueger, “Automated working distance adjustment enables optical coherence tomography of the human larynx in awake patients,” J. Med. Imaging. 2(2), 026003 (2015).
[Crossref]

Kiesslich, R.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper-and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Kim, P.

P. Kim, M. Puorishaag, D. Ct, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[Crossref] [PubMed]

Krueger, A.

S. Donner, S. Bleeker, T. Ripken, M. Ptok, M. Jungheim, and A. Krueger, “Automated working distance adjustment enables optical coherence tomography of the human larynx in awake patients,” J. Med. Imaging. 2(2), 026003 (2015).
[Crossref]

Kudlinski, A.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Kurabayashi, K.

Laemmel, E.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.-F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

Le Gargasson, J.-F.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.-F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

Le Goualher, G.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.-F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

Leclerc, P.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Légaré, F.

Leroux, A.

M.-A. Dhallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
[Crossref]

Li, H.

Lin, C. P.

P. Kim, M. Puorishaag, D. Ct, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[Crossref] [PubMed]

Lin, D.

W. Yan, X. Peng, D. Lin, Q. Wang, J. Gao, T. Luo, J. Zhou, T. Ye, J. Qu, and H. Niu, “Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes,” Front. Optoelectron. 8(2), 177–182 (2015).
[Crossref]

Liu, G.

Liu, Q.

Louradour, F.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Luo, T.

W. Yan, X. Peng, D. Lin, Q. Wang, J. Gao, T. Luo, J. Zhou, T. Ye, J. Qu, and H. Niu, “Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes,” Front. Optoelectron. 8(2), 177–182 (2015).
[Crossref]

Mansuryan, T.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Matz, G.

G. Matz, B. Messerschmidt, and H. Gross, “Improved chromatical and field correction of high-NA GRIN-based endomicroscopic imaging systems for new biophotonics applications,” Proc. SPIE 9304, 93041E (2015).
[Crossref]

McLaren, W. J.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper-and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Messerschmidt, B.

G. Matz, B. Messerschmidt, and H. Gross, “Improved chromatical and field correction of high-NA GRIN-based endomicroscopic imaging systems for new biophotonics applications,” Proc. SPIE 9304, 93041E (2015).
[Crossref]

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

Miks, A.

Neurath, M. F.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper-and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Niu, H.

W. Yan, X. Peng, D. Lin, Q. Wang, J. Gao, T. Luo, J. Zhou, T. Ye, J. Qu, and H. Niu, “Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes,” Front. Optoelectron. 8(2), 177–182 (2015).
[Crossref]

Novak, J.

Oldham, K. R.

Pant, A.

Peng, X.

W. Yan, X. Peng, D. Lin, Q. Wang, J. Gao, T. Luo, J. Zhou, T. Ye, J. Qu, and H. Niu, “Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes,” Front. Optoelectron. 8(2), 177–182 (2015).
[Crossref]

Perchant, A.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.-F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

Polglase, A. L.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper-and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Potma, E. O.

Ptok, M.

S. Donner, S. Bleeker, T. Ripken, M. Ptok, M. Jungheim, and A. Krueger, “Automated working distance adjustment enables optical coherence tomography of the human larynx in awake patients,” J. Med. Imaging. 2(2), 026003 (2015).
[Crossref]

Puorishaag, M.

P. Kim, M. Puorishaag, D. Ct, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[Crossref] [PubMed]

Qiu, Z.

Qu, J.

W. Yan, X. Peng, D. Lin, Q. Wang, J. Gao, T. Luo, J. Zhou, T. Ye, J. Qu, and H. Niu, “Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes,” Front. Optoelectron. 8(2), 177–182 (2015).
[Crossref]

Ripken, T.

S. Donner, S. Bleeker, T. Ripken, M. Ptok, M. Jungheim, and A. Krueger, “Automated working distance adjustment enables optical coherence tomography of the human larynx in awake patients,” J. Med. Imaging. 2(2), 026003 (2015).
[Crossref]

Russell, S.

Sarunic, M. V.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[Crossref] [PubMed]

Schnitzer, M. J.

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003).
[Crossref] [PubMed]

Singh, K.

K. Singh, D. Yamada, and G. Tearney, “Common path side viewing monolithic ball lens probe for optical coherence tomography,” Mod. Tech. in Med. 7(1), 29–33 (2015).

Skinner, S. A.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper-and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Smith, A.

Southern, J. F.

Tearney, G.

K. Singh, D. Yamada, and G. Tearney, “Common path side viewing monolithic ball lens probe for optical coherence tomography,” Mod. Tech. in Med. 7(1), 29–33 (2015).

Tearney, G. J.

Thiberville, L.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Tian, G.

Träger, F.

F. Träger, Springer Handbook of Lasers and Optics (SpringerNew York, 2007).
[Crossref]

Tromberg, B. J.

Vever-Bizet, C.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Vicaut, E.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.-F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

Wang, C.

Wang, J.

Wang, Q.

W. Yan, X. Peng, D. Lin, Q. Wang, J. Gao, T. Luo, J. Zhou, T. Ye, J. Qu, and H. Niu, “Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes,” Front. Optoelectron. 8(2), 177–182 (2015).
[Crossref]

Wang, T. D.

Weissman, N. J.

Wilson, T.

T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Microsc. 244(2), 113–121 (2011).
[Crossref] [PubMed]

Wu, J.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[Crossref] [PubMed]

Wynne, C. G.

C. G. Wynne, “Flat-field microscope objective,” J. Sci. Instrum. 38(3), 92 (1961).
[Crossref]

Xie, X. S.

Yamada, D.

K. Singh, D. Yamada, and G. Tearney, “Common path side viewing monolithic ball lens probe for optical coherence tomography,” Mod. Tech. in Med. 7(1), 29–33 (2015).

Yan, W.

W. Yan, X. Peng, D. Lin, Q. Wang, J. Gao, T. Luo, J. Zhou, T. Ye, J. Qu, and H. Niu, “Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes,” Front. Optoelectron. 8(2), 177–182 (2015).
[Crossref]

Yang, C.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[Crossref] [PubMed]

Yang, L.

Ye, T.

W. Yan, X. Peng, D. Lin, Q. Wang, J. Gao, T. Luo, J. Zhou, T. Ye, J. Qu, and H. Niu, “Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes,” Front. Optoelectron. 8(2), 177–182 (2015).
[Crossref]

Yuan, J.

Yun, S. H.

P. Kim, M. Puorishaag, D. Ct, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[Crossref] [PubMed]

Zhou, J.

W. Yan, X. Peng, D. Lin, Q. Wang, J. Gao, T. Luo, J. Zhou, T. Ye, J. Qu, and H. Niu, “Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes,” Front. Optoelectron. 8(2), 177–182 (2015).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Front. Optoelectron. (1)

W. Yan, X. Peng, D. Lin, Q. Wang, J. Gao, T. Luo, J. Zhou, T. Ye, J. Qu, and H. Niu, “Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes,” Front. Optoelectron. 8(2), 177–182 (2015).
[Crossref]

Gastrointest. Endosc. (1)

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper-and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

P. Kim, M. Puorishaag, D. Ct, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[Crossref] [PubMed]

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[Crossref] [PubMed]

J. Med. Imaging. (1)

S. Donner, S. Bleeker, T. Ripken, M. Ptok, M. Jungheim, and A. Krueger, “Automated working distance adjustment enables optical coherence tomography of the human larynx in awake patients,” J. Med. Imaging. 2(2), 026003 (2015).
[Crossref]

J. Microsc. (1)

T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Microsc. 244(2), 113–121 (2011).
[Crossref] [PubMed]

J. Sci. Instrum. (1)

C. G. Wynne, “Flat-field microscope objective,” J. Sci. Instrum. 38(3), 92 (1961).
[Crossref]

J. Urol. (1)

M.-A. Dhallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
[Crossref]

J. Vasc. Res. (1)

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.-F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation,” J. Vasc. Res. 41(5), 400–411 (2004).
[Crossref] [PubMed]

Mod. Tech. in Med. (1)

K. Singh, D. Yamada, and G. Tearney, “Common path side viewing monolithic ball lens probe for optical coherence tomography,” Mod. Tech. in Med. 7(1), 29–33 (2015).

Nat. Methods (1)

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Proc. SPIE (1)

G. Matz, B. Messerschmidt, and H. Gross, “Improved chromatical and field correction of high-NA GRIN-based endomicroscopic imaging systems for new biophotonics applications,” Proc. SPIE 9304, 93041E (2015).
[Crossref]

Sci. Rep. (1)

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Other (1)

F. Träger, Springer Handbook of Lasers and Optics (SpringerNew York, 2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Precursor system: Consists of a BK7-window, a high-refractive index plano-convex lens and a DOE sandwiched between two GRIN-lenses with different, special adapted GRIN-profiles; NAObject=0.8; NAImage=0.326; Lateral magnification: −2.61; Color corrected for 488 nm – 550 nm to match beam paths of excitation and emission wavelengths for confocal, single photon fluorescence measurements; Drawback: progressively decreasing performance for off-axis zones as indicated by the polychromatic MTF vs. field for 488 nm and 550 nm (right).
Fig. 2
Fig. 2 Design DiPolyC: Consists of a sapphire window, two high refractive index planoconvex lenses, a DOE and a GRIN-lens with a highly aspherical profile; NAObject=0.8; NAImage=0.308; Lateral magnification: −2.58; Color correction 488 nm – 550 nm; Advantage: significantly stabilized off-axis imaging quality as indicated by the polychromatic MTF vs. field for 488 nm and 550 nm (right).
Fig. 3
Fig. 3 Evaluation of the influence of the undesired diffraction orders of the DOE on the imaging performance for confocal single photon fluorescence imaging processes; The calculation is performed by convolving the PSF in the object plane (λ =488 nm) with the PSF in the image plane (λ =550 nm) while assuming a complete conversion of the energy at the specimen; The table on the left presents the ratio between the detected (EDetected) and emitted amount of energy (EEmitted) passing through the on-axis pinhole in the image plane of the size of one airy diameter (2.2 μm; @λ =550 nm); the DOE is assumed to work perfectly in either the zeroth, first or second diffraction order for the illumination and detection for case (a); the DOE is assumed to work perfectly in the first order for the illumination and perfectly in either the zeroth, first or second diffraction order for the detection in case (b) (η0/1/2 is the diffraction efficiency of the corresponding order).
Fig. 4
Fig. 4 Design RePolyC: Consists of a sapphire window, two high refractive index planoconvex lenses, an achromat and a GRIN-lens with a highly aspherical profile; NAObject=0.8; NAImage=0.277; Lateral magnification: −2.87; Color correction 488 nm – 550 nm; Advantages: the omission of a DOE and significantly stabilized off-axis imaging quality as indicated by the polychromatic MTF vs. field for 488 nm and 550 nm (right).
Fig. 5
Fig. 5 Monochromatic Strehl ratio of the on-axis (a) and 100 μm (object-sided) off-axis (b) field point as a function of the object-sided working distance and the wavelength evaluated for the precursor (left), DiPolyC (middle) and RePolyC (right), respectively; the black lines confine the region with a Strehl ratio larger than 0.8 and thus predict a diffraction limited imaging performance; the improved off-axis correction for the recent developments as well as a good spherochromatic and axial chromatic correction for the targeted wavelengths of 488 nm and 550 nm is obvious; RePolyC shows additionally a finite on-axis and off-axis axial chromatic aberration for the extended spectral range.
Fig. 6
Fig. 6 Single elements and sub-assembling groups of the endomicroscopic devices DiPolyC and RePolyC.
Fig. 7
Fig. 7 Desired, experimentally determined wavefront at 633 nm of the GRIN-lens measured with a shearing interferometer (left); Remaining undesired higher order aberrations of the same wavefront after subtracting a Zernike fringe fit up to 4th order; transverse axes normalized on unity and W scaled in wavelengths (@ 633 nm).
Fig. 8
Fig. 8 Experimental setup for the evaluation of the endoscopic GRIN-objectives; the object imaged by the endoscopic system was scanned and digitalized confocally by the use of a laser scanning microscope; a self build x-y-z micrometer positing system enabled a precise positioning of the two objectives to each other.
Fig. 9
Fig. 9 (a) Confocal images of subresolution beads (FluoSpheres Carboxylate 0.2 μm yellow-green 505/515, 2% solids, diluted 1:10.000 in water) observed through RePolyC (left), DiPolyC (middle) and their precursor device (right) for progressively increased image zones (top to bottom); Excitation at 488 nm and detection from 505 nm to 540 nm with an adapted laser intensity for every measurement; The increased performance for RePolyC and DiPolyC in comparison with the precursor is obvious; Scale bar corresponds to 2 μm in image plane (b) confocal z-stack of a subresolution sphere in fluorescence mode with DiPolyC at a lateral distance of 50 μm from the optical axis in the image plane; Scale bar corresponds to 2 μm in image plane (c) Determination of the corresponding axial FWHM in the object plane by a Gaussian fit to the intensity maximums IMax(z) of the lateral Gaussian fits.
Fig. 10
Fig. 10 Experimentally measured lateral (left) and axial (right) resolution of RePolyC (green), DiPolyC (blue) as well as their precursor (red) depending on the radial size of the corresponding object zone; the later FWHM values are converted to the object plane by dividing by the lateral magnification; the axial FWHM’s are measured in the object plane directly since the MO is physically connected with the endomicroscopic objective.
Fig. 11
Fig. 11 Analysis of tangential (T) and sagittal (S) resolution (black lines) and the axial peak-intensities (red lines) for every slice of the z-stack by evaluating the PSF at an image height of 369 μm; the FWHM values are converted to the object plane by making use of the magnification; determination of the lateral FWHM’s at the circle of least confusion by averaging the values for the tangential and sagittal plane confined by the blue bar (compare Fig. 10).
Fig. 12
Fig. 12 Confocal images of a 1.76±0.16 μm thick fluorescine layer measured with DiPolyC(middle), RePolyC (botton) and their precursor (top) at selective axial distances of the image side (left) and the respective highest intensity projections (right side); the images are scaled in the image plane of the GRIN-systems whereas the red circles symbolize the margin of the back surface of the corresponding GRIN-system with a diameter of 1 mm; excitation light: 488 nm; MO: UplanSApo10x0.4 NA; white scale bar corresponds to 100 μm in object plane, respectively.
Fig. 13
Fig. 13 Experimentally measured confocal PSF intensity response averaged over four samples of a 1.76±0.16 μm thick fluorescine layer for RePolyC (green), DiPolyC (blue) and its precursor (red) (left); Predicted PSF intensity response when all surfaces would be anti reflection-coated and the NA of the MO would be matched with the NA of the GRIN-objective at the intermediate image plane (right); The radial distance is converted to the object plane by using the lateral magnification of the corresponding probe.

Metrics