Abstract

We demonstrate a compact spectrometer system by using a gradient grating period guided-mode resonance filter—mounted on a linear photodetector array—that exhibits spatially dependent resonance characteristics; a specific incident wavelength is reflected such that the underlying array pixels measure minimum intensity. A precalibrated transmission efficiency matrix is used to determine each pixel’s transmission efficiency for specific wavelengths. Unknown spectral information can be calculated from the measured intensity. Grating periods of 250–388 nm in 2-nm increments are used in each 100-cycle period. Device length is 2.23 mm. Spectral range of 506–700 nm is measurable with 1-nm resolution.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical spectrometer based on continuously-chirped guided mode resonance filter

Yung-Jr Hung, Chia-Wei Kao, Tzu-Chieh Kao, Chia-Wei Huang, Jia-Jin Lin, and Chuan-Ci Yin
Opt. Express 26(21) 27515-27527 (2018)

Tunable guided-mode resonance filter with a gradient grating period fabricated by casting a stretched PDMS grating wedge

Chaolong Fang, Bo Dai, Zheng Li, Ali Zahid, Qi Wang, Bin Sheng, and Dawei Zhang
Opt. Lett. 41(22) 5302-5305 (2016)

High-efficiency guided-mode resonance filter

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson
Opt. Lett. 23(19) 1556-1558 (1998)

References

  • View by:
  • |
  • |
  • |

  1. Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19(13), 12356–12364 (2011).
    [Crossref] [PubMed]
  2. D. Sander, M. O. Duecker, O. Blume, and J. Mueller, “Optical microspectrometer in SiON slab waveguides,” Proc. SPIE 2686, 100–107 (1996).
    [Crossref]
  3. B. Momeni, E. S. Hosseini, and A. Adibi, “Planar photonic crystal microspectrometers in silicon-nitride for the visible range,” Opt. Express 17(19), 17060–17069 (2009).
    [Crossref] [PubMed]
  4. O. Schmidt, P. Kiesel, S. Mohta, and N. M. Johnson, “Resolving pm wavelength shifts in optical sensing,” Appl. Phys. B 86(4), 593–600 (2007).
    [Crossref]
  5. S. W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32(6), 632–634 (2007).
    [Crossref] [PubMed]
  6. N. K. Pervez, W. Cheng, Z. Jia, M. P. Cox, H. M. Edrees, and I. Kymissis, “Photonic crystal spectrometer,” Opt. Express 18(8), 8277–8285 (2010).
    [Crossref] [PubMed]
  7. A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
    [Crossref] [PubMed]
  8. F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
    [Crossref]
  9. J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
    [Crossref] [PubMed]
  10. S. W. Wang, X. Chen, W. Lu, L. Wang, Y. Wu, and Z. Wang, “Integrated optical filter arrays fabricated by using the combinatorial etching technique,” Opt. Lett. 31(3), 332–334 (2006).
    [Crossref] [PubMed]
  11. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  12. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [Crossref]
  13. H.-A. Lin and C.-S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28(4), 1042-1045 (2016).
    [Crossref]
  14. R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” Proc. SPIE 5255, 20–34 (2003).
  15. H. A. Lin, H. Y. Hsu, and C. S. Huang, “Compact wavelength detection system based on a gradient grating period guided-mode resonance filter,” submitted for publication (2016).

2016 (1)

H.-A. Lin and C.-S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28(4), 1042-1045 (2016).
[Crossref]

2015 (1)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref] [PubMed]

2014 (1)

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

2012 (1)

2011 (1)

2010 (1)

2009 (1)

2007 (2)

2006 (1)

2003 (1)

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” Proc. SPIE 5255, 20–34 (2003).

1996 (1)

D. Sander, M. O. Duecker, O. Blume, and J. Mueller, “Optical microspectrometer in SiON slab waveguides,” Proc. SPIE 2686, 100–107 (1996).
[Crossref]

1993 (1)

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Adibi, A.

Bao, J.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref] [PubMed]

Bawendi, M. G.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref] [PubMed]

Blume, O.

D. Sander, M. O. Duecker, O. Blume, and J. Mueller, “Optical microspectrometer in SiON slab waveguides,” Proc. SPIE 2686, 100–107 (1996).
[Crossref]

Chamanzar, M.

Chen, E. H.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Chen, X.

Cheng, W.

Cox, M. P.

de Graaf, G.

Ding, Y.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” Proc. SPIE 5255, 20–34 (2003).

Duecker, M. O.

D. Sander, M. O. Duecker, O. Blume, and J. Mueller, “Optical microspectrometer in SiON slab waveguides,” Proc. SPIE 2686, 100–107 (1996).
[Crossref]

Edrees, H. M.

Eftekhar, A. A.

Emadi, A.

Englund, D.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Harris, N. C.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Hosseini, E. S.

Huang, C.-S.

H.-A. Lin and C.-S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28(4), 1042-1045 (2016).
[Crossref]

Jia, Z.

Johnson, N. M.

O. Schmidt, P. Kiesel, S. Mohta, and N. M. Johnson, “Resolving pm wavelength shifts in optical sensing,” Appl. Phys. B 86(4), 593–600 (2007).
[Crossref]

Kiesel, P.

O. Schmidt, P. Kiesel, S. Mohta, and N. M. Johnson, “Resolving pm wavelength shifts in optical sensing,” Appl. Phys. B 86(4), 593–600 (2007).
[Crossref]

Kymissis, I.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

N. K. Pervez, W. Cheng, Z. Jia, M. P. Cox, H. M. Edrees, and I. Kymissis, “Photonic crystal spectrometer,” Opt. Express 18(8), 8277–8285 (2010).
[Crossref] [PubMed]

Lee, K. J.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” Proc. SPIE 5255, 20–34 (2003).

Li, L.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Li, M.

Li, Q.

Lin, H.-A.

H.-A. Lin and C.-S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28(4), 1042-1045 (2016).
[Crossref]

Lu, W.

Magnusson, R.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” Proc. SPIE 5255, 20–34 (2003).

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[Crossref] [PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Maldonado, T. A.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” Proc. SPIE 5255, 20–34 (2003).

Meng, F.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Mohta, S.

O. Schmidt, P. Kiesel, S. Mohta, and N. M. Johnson, “Resolving pm wavelength shifts in optical sensing,” Appl. Phys. B 86(4), 593–600 (2007).
[Crossref]

Momeni, B.

Mueller, J.

D. Sander, M. O. Duecker, O. Blume, and J. Mueller, “Optical microspectrometer in SiON slab waveguides,” Proc. SPIE 2686, 100–107 (1996).
[Crossref]

Nie, J.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Pervez, N.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Pervez, N. K.

Priambodo, P. S.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” Proc. SPIE 5255, 20–34 (2003).

Sander, D.

D. Sander, M. O. Duecker, O. Blume, and J. Mueller, “Optical microspectrometer in SiON slab waveguides,” Proc. SPIE 2686, 100–107 (1996).
[Crossref]

Schmidt, O.

O. Schmidt, P. Kiesel, S. Mohta, and N. M. Johnson, “Resolving pm wavelength shifts in optical sensing,” Appl. Phys. B 86(4), 593–600 (2007).
[Crossref]

Schröder, T.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Shin, D.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” Proc. SPIE 5255, 20–34 (2003).

Shiue, R.-J.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Soltani, M.

Wan, N.

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Wang, H.

Wang, L.

Wang, S. S.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[Crossref] [PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Wang, S. W.

Wang, Z.

Wolffenbuttel, R.

Wu, H.

Wu, Y.

Xia, C.

Xia, Z.

Yegnanarayanan, S.

Young, P. P.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” Proc. SPIE 5255, 20–34 (2003).

Zhang, T.

Zheng, W.

Appl. Opt. (1)

Appl. Phys. B (1)

O. Schmidt, P. Kiesel, S. Mohta, and N. M. Johnson, “Resolving pm wavelength shifts in optical sensing,” Appl. Phys. B 86(4), 593–600 (2007).
[Crossref]

Appl. Phys. Lett. (2)

F. Meng, R.-J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H.-A. Lin and C.-S. Huang, “Linear variable filter based on a gradient grating period guided-mode resonance filter,” IEEE Photonics Technol. Lett. 28(4), 1042-1045 (2016).
[Crossref]

Nature (1)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (2)

D. Sander, M. O. Duecker, O. Blume, and J. Mueller, “Optical microspectrometer in SiON slab waveguides,” Proc. SPIE 2686, 100–107 (1996).
[Crossref]

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” Proc. SPIE 5255, 20–34 (2003).

Other (1)

H. A. Lin, H. Y. Hsu, and C. S. Huang, “Compact wavelength detection system based on a gradient grating period guided-mode resonance filter,” submitted for publication (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schema of GGP-GMRF. (b) Optical image of a completed plastic GGP-GMRF. (c) and (d) SEM images of top and cross-sectional views, respectively. (e) Transmission spectra for different grating periods.
Fig. 2
Fig. 2 Fundamental concept of using GGP-GMRF with a photodetector as a spectrometer. (a) Schematic setup of GGP-GMRF spectrometer. (b) Illustration of an incident wave and (c) the corresponding intensity distribution measured in photodetector. Please refer to the text for the detailed description.
Fig. 3
Fig. 3 Lorentzian fitted curves of the intensity distribution measured using the photodetector for different incident wavelengths (600–604 nm). The inset shows the raw intensity distribution and the Lorentzian fitted curve for 600-nm incident light.
Fig. 4
Fig. 4 Three spectra measured using both the GGP-GMRF spectrometer (solid curves) and the Ocean Optics spectrometer (dotted curves). Left and right axes indicate the intensity measured by the GGP-GMRF and Ocean Optics spectrometers, respectively.
Fig. 5
Fig. 5 (a) Experimental setup of GGP-GMRF spectrometer for the LED spectrum measurement. (b) Measured spectra for yellow LED using both GGP-GMRF (solid curves) and Ocean Optics (dotted curves) spectrometers. Left and right axes indicate the intensity measured by the GGP-GMRF and Ocean Optics spectrometers, respectively.

Tables (1)

Tables Icon

Table 1 Detection range, resolution and size of various compact spectrometers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ= n eff Λ

Metrics