Abstract

Based on heavily Tm-doped germanate glass fibers (TGFs), a short all-TGF MOPA laser system with uniform core parameters in each stage was demonstrated. An 11.7 W stable single-frequency laser at 1.95 μm with an optical-to-optical conversion efficiency of 20.4% is obtained from a homemade 31-cm-long double-cladding single-mode TGF. The estimated stimulated Brillouin scattering (SBS) threshold of 980 W and the measured relative intensity noise of < −130 dB/Hz for frequencies above 2 MHz are achieved in this MOPA system. Furthermore, the prospect for further power-scaling of such short MOPA laser is considered.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency sub-watt in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1950 nm

Xianchao Guan, Changsheng Yang, Tian Qiao, Wei Lin, Qilai Zhao, Guowu Tang, Guoquan Qian, Qi Qian, Zhongmin Yang, and Shanhui Xu
Opt. Express 26(6) 6817-6825 (2018)

1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber

Xin He, Shanhui Xu, Can Li, Changsheng Yang, Qi Yang, Shupei Mo, Dongdan Chen, and Zhongmin Yang
Opt. Express 21(18) 20800-20805 (2013)

High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling

Qiang Fang, Wei Shi, Khanh Kieu, Eliot Petersen, Arturo Chavez-Pirson, and Nasser Peyghambarian
Opt. Express 20(15) 16410-16420 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett. 29(13), 1503–1505 (2004).
    [Crossref] [PubMed]
  2. N. Y. Voo, J. K. Sahu, and M. Ibsen, “345 mW 1836 nm single-frequency DFB fiber laser MOPA,” IEEE Photonics Technol. Lett. 17(12), 2550–2552 (2005).
    [Crossref]
  3. J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, “Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber,” Opt. Lett. 34(22), 3493–3495 (2009).
    [Crossref] [PubMed]
  4. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  5. Q. Clément, J. M. Melkonian, J. Barrientos-Barria, J. B. Dherbecourt, M. Raybaut, and A. Godard, “Tunable optical parametric amplification of a single-frequency quantum cascade laser around 8 μm in ZnGeP2.,” Opt. Lett. 38(20), 4046–4049 (2013).
    [Crossref] [PubMed]
  6. J. Guo, G. He, B. Zhang, X. Zheng, Z. Jiao, and B. Wang, “Compact Efficient 2.1-μm intracavity MgO:PPLN OPO with a VBG output coupler,” IEEE Photon. Technol. Lett. 27(6), 573–576 (2015).
    [Crossref]
  7. L. Pearson, J. W. Kim, Z. Zhang, M. Ibsen, J. K. Sahu, and W. A. Clarkson, “High-power linearly-polarized single-frequency thulium-doped fiber master-oscillator power-amplifier,” Opt. Express 18(2), 1607–1612 (2010).
    [Crossref] [PubMed]
  8. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett. 34(8), 1204–1206 (2009).
    [Crossref] [PubMed]
  9. D. Gapontsev, N. Platonov, M. Meleshkevich, O. Mishechkin, O. Shkurikhin, S. Agger, P.Varming, and J. H. Poylsen, “20 W single-frequency fiber laser operating at 1.93 um,” OSA/CLEO, CFI5 (2007).
  10. X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “102 W monolithic single frequency Tm-doped fiber MOPA,” Opt. Express 21(26), 32386–32392 (2013).
    [Crossref] [PubMed]
  11. J. Liu, H. Shi, K. Liu, Y. Hou, and P. Wang, “210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA,” Opt. Express 22(11), 13572–13578 (2014).
    [Crossref] [PubMed]
  12. G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
    [Crossref]
  13. J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
    [Crossref] [PubMed]
  14. N. P. Barnes, B. M. Walsh, D. J. Reichle, R. J. DeYoung, and S. B. Jiang, “Tm: germanate fiber laser: tuning and Q-switching,” Appl. Phys. B 89(2-3), 299–304 (2007).
    [Crossref]
  15. R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett. 36(7), 1173–1175 (2011).
    [Crossref] [PubMed]
  16. P. L. Higby and I. D. Aggarwal, “Properties of barium gallium germanate glasses,” J. Non-Cryst. Solids 163(3), 303–308 (1993).
    [Crossref]
  17. X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
    [Crossref] [PubMed]
  18. Q. Yang, S. Xu, C. Li, C. Yang, Z. Feng, Y. Xiao, X. Huang, and Z. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
    [Crossref]
  19. X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
    [Crossref] [PubMed]
  20. S. Yu, Z. Yang, and S. Xu, “Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass,” J. Fluoresc. 20(3), 745–751 (2010).
    [Crossref] [PubMed]
  21. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
    [Crossref]
  22. S. D. Jackson and T. A. King, “Dynamics of the output of heavily Tm-doped double-clad silica fiber lasers,” J. Opt. Soc. Am. B 16(12), 2178–2188 (1999).
    [Crossref]
  23. D. Kouznetsov and J. V. Moloney, “Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry,” J. Opt. Soc. Am. B 19(6), 1259–1263 (2002).
    [Crossref]
  24. P. Koška, P. Peterka, J. Aubrecht, O. Podrazký, F. Todorov, M. Becker, Y. Baravets, P. Honzátko, and I. Kašík, “Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers,” Opt. Express 24(1), 102–107 (2016).
    [Crossref] [PubMed]
  25. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]

2016 (1)

2015 (3)

J. Guo, G. He, B. Zhang, X. Zheng, Z. Jiao, and B. Wang, “Compact Efficient 2.1-μm intracavity MgO:PPLN OPO with a VBG output coupler,” IEEE Photon. Technol. Lett. 27(6), 573–576 (2015).
[Crossref]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

Q. Yang, S. Xu, C. Li, C. Yang, Z. Feng, Y. Xiao, X. Huang, and Z. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

2014 (1)

2013 (3)

2012 (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

2011 (2)

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett. 36(7), 1173–1175 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (2)

2008 (1)

2007 (2)

J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
[Crossref] [PubMed]

N. P. Barnes, B. M. Walsh, D. J. Reichle, R. J. DeYoung, and S. B. Jiang, “Tm: germanate fiber laser: tuning and Q-switching,” Appl. Phys. B 89(2-3), 299–304 (2007).
[Crossref]

2005 (1)

N. Y. Voo, J. K. Sahu, and M. Ibsen, “345 mW 1836 nm single-frequency DFB fiber laser MOPA,” IEEE Photonics Technol. Lett. 17(12), 2550–2552 (2005).
[Crossref]

2004 (1)

2002 (1)

1999 (2)

1993 (1)

P. L. Higby and I. D. Aggarwal, “Properties of barium gallium germanate glasses,” J. Non-Cryst. Solids 163(3), 303–308 (1993).
[Crossref]

Aggarwal, I. D.

P. L. Higby and I. D. Aggarwal, “Properties of barium gallium germanate glasses,” J. Non-Cryst. Solids 163(3), 303–308 (1993).
[Crossref]

Agger, S.

Amzajerdian, F.

Aubrecht, J.

Baravets, Y.

Barnes, N. P.

N. P. Barnes, B. M. Walsh, D. J. Reichle, R. J. DeYoung, and S. B. Jiang, “Tm: germanate fiber laser: tuning and Q-switching,” Appl. Phys. B 89(2-3), 299–304 (2007).
[Crossref]

Barrientos-Barria, J.

Barty, C. P. J.

Beach, R. J.

Becker, M.

Book, L. D.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett. 34(8), 1204–1206 (2009).
[Crossref] [PubMed]

Chen, D.

Chen, X.

Clarkson, W. A.

Clément, Q.

Dawson, J. W.

DeYoung, R. J.

N. P. Barnes, B. M. Walsh, D. J. Reichle, R. J. DeYoung, and S. B. Jiang, “Tm: germanate fiber laser: tuning and Q-switching,” Appl. Phys. B 89(2-3), 299–304 (2007).
[Crossref]

Dherbecourt, J. B.

Feng, Z.

Q. Yang, S. Xu, C. Li, C. Yang, Z. Feng, Y. Xiao, X. Huang, and Z. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Geng, J.

Godard, A.

Goodno, G. D.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett. 34(8), 1204–1206 (2009).
[Crossref] [PubMed]

Guo, J.

J. Guo, G. He, B. Zhang, X. Zheng, Z. Jiao, and B. Wang, “Compact Efficient 2.1-μm intracavity MgO:PPLN OPO with a VBG output coupler,” IEEE Photon. Technol. Lett. 27(6), 573–576 (2015).
[Crossref]

He, G.

J. Guo, G. He, B. Zhang, X. Zheng, Z. Jiao, and B. Wang, “Compact Efficient 2.1-μm intracavity MgO:PPLN OPO with a VBG output coupler,” IEEE Photon. Technol. Lett. 27(6), 573–576 (2015).
[Crossref]

He, X.

Heebner, J. E.

Higby, P. L.

P. L. Higby and I. D. Aggarwal, “Properties of barium gallium germanate glasses,” J. Non-Cryst. Solids 163(3), 303–308 (1993).
[Crossref]

Honzátko, P.

Hou, Y.

Hu, L.

Huang, X.

Q. Yang, S. Xu, C. Li, C. Yang, Z. Feng, Y. Xiao, X. Huang, and Z. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Ibsen, M.

Jackson, S. D.

Jiang, S.

Jiang, S. B.

N. P. Barnes, B. M. Walsh, D. J. Reichle, R. J. DeYoung, and S. B. Jiang, “Tm: germanate fiber laser: tuning and Q-switching,” Appl. Phys. B 89(2-3), 299–304 (2007).
[Crossref]

Jiao, Z.

J. Guo, G. He, B. Zhang, X. Zheng, Z. Jiao, and B. Wang, “Compact Efficient 2.1-μm intracavity MgO:PPLN OPO with a VBG output coupler,” IEEE Photon. Technol. Lett. 27(6), 573–576 (2015).
[Crossref]

Kašík, I.

Kim, J. W.

King, T. A.

Koška, P.

Kouznetsov, D.

Li, C.

Q. Yang, S. Xu, C. Li, C. Yang, Z. Feng, Y. Xiao, X. Huang, and Z. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref] [PubMed]

Liu, J.

Liu, K.

Luo, T.

Melkonian, J. M.

Messerly, M. J.

Mo, S.

Moloney, J. V.

Pax, P. H.

Pearson, L.

Peterka, P.

Podrazký, O.

Povlsen, J. H.

Qian, Q.

Raybaut, M.

Reichle, D. J.

N. P. Barnes, B. M. Walsh, D. J. Reichle, R. J. DeYoung, and S. B. Jiang, “Tm: germanate fiber laser: tuning and Q-switching,” Appl. Phys. B 89(2-3), 299–304 (2007).
[Crossref]

Rothenberg, J. E.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett. 34(8), 1204–1206 (2009).
[Crossref] [PubMed]

Sahu, J. K.

Shi, H.

Shverdin, M. Y.

Si, L.

Siders, C. W.

Sridharan, A. K.

Stappaerts, E. A.

Tang, G.

Tian, Y.

Todorov, F.

Varming, P.

Voo, N. Y.

N. Y. Voo, J. K. Sahu, and M. Ibsen, “345 mW 1836 nm single-frequency DFB fiber laser MOPA,” IEEE Photonics Technol. Lett. 17(12), 2550–2552 (2005).
[Crossref]

Walsh, B. M.

N. P. Barnes, B. M. Walsh, D. J. Reichle, R. J. DeYoung, and S. B. Jiang, “Tm: germanate fiber laser: tuning and Q-switching,” Appl. Phys. B 89(2-3), 299–304 (2007).
[Crossref]

Wang, B.

J. Guo, G. He, B. Zhang, X. Zheng, Z. Jiao, and B. Wang, “Compact Efficient 2.1-μm intracavity MgO:PPLN OPO with a VBG output coupler,” IEEE Photon. Technol. Lett. 27(6), 573–576 (2015).
[Crossref]

Wang, J.

Wang, P.

Wang, Q.

Wang, X.

Weber, M. E.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

Weiss, S. B.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

Wen, X.

Wu, J.

Xiao, H.

Xiao, Y.

Q. Yang, S. Xu, C. Li, C. Yang, Z. Feng, Y. Xiao, X. Huang, and Z. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Xu, R.

Xu, S.

Q. Yang, S. Xu, C. Li, C. Yang, Z. Feng, Y. Xiao, X. Huang, and Z. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref] [PubMed]

S. Yu, Z. Yang, and S. Xu, “Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass,” J. Fluoresc. 20(3), 745–751 (2010).
[Crossref] [PubMed]

Yang, C.

Q. Yang, S. Xu, C. Li, C. Yang, Z. Feng, Y. Xiao, X. Huang, and Z. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref] [PubMed]

Yang, Q.

Q. Yang, S. Xu, C. Li, C. Yang, Z. Feng, Y. Xiao, X. Huang, and Z. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref] [PubMed]

Yang, Z.

Q. Yang, S. Xu, C. Li, C. Yang, Z. Feng, Y. Xiao, X. Huang, and Z. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref] [PubMed]

S. Yu, Z. Yang, and S. Xu, “Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass,” J. Fluoresc. 20(3), 745–751 (2010).
[Crossref] [PubMed]

Yao, Z.

Yu, S.

S. Yu, Z. Yang, and S. Xu, “Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass,” J. Fluoresc. 20(3), 745–751 (2010).
[Crossref] [PubMed]

Zhang, B.

J. Guo, G. He, B. Zhang, X. Zheng, Z. Jiao, and B. Wang, “Compact Efficient 2.1-μm intracavity MgO:PPLN OPO with a VBG output coupler,” IEEE Photon. Technol. Lett. 27(6), 573–576 (2015).
[Crossref]

Zhang, J.

Zhang, Z.

Zheng, X.

J. Guo, G. He, B. Zhang, X. Zheng, Z. Jiao, and B. Wang, “Compact Efficient 2.1-μm intracavity MgO:PPLN OPO with a VBG output coupler,” IEEE Photon. Technol. Lett. 27(6), 573–576 (2015).
[Crossref]

Zhou, P.

Zong, J.

Appl. Phys. B (1)

N. P. Barnes, B. M. Walsh, D. J. Reichle, R. J. DeYoung, and S. B. Jiang, “Tm: germanate fiber laser: tuning and Q-switching,” Appl. Phys. B 89(2-3), 299–304 (2007).
[Crossref]

Chin. Phys. Lett. (1)

Q. Yang, S. Xu, C. Li, C. Yang, Z. Feng, Y. Xiao, X. Huang, and Z. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95µm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Guo, G. He, B. Zhang, X. Zheng, Z. Jiao, and B. Wang, “Compact Efficient 2.1-μm intracavity MgO:PPLN OPO with a VBG output coupler,” IEEE Photon. Technol. Lett. 27(6), 573–576 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

N. Y. Voo, J. K. Sahu, and M. Ibsen, “345 mW 1836 nm single-frequency DFB fiber laser MOPA,” IEEE Photonics Technol. Lett. 17(12), 2550–2552 (2005).
[Crossref]

J. Fluoresc. (1)

S. Yu, Z. Yang, and S. Xu, “Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass,” J. Fluoresc. 20(3), 745–751 (2010).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

P. L. Higby and I. D. Aggarwal, “Properties of barium gallium germanate glasses,” J. Non-Cryst. Solids 163(3), 303–308 (1993).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Eng. (1)

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

Opt. Express (7)

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “102 W monolithic single frequency Tm-doped fiber MOPA,” Opt. Express 21(26), 32386–32392 (2013).
[Crossref] [PubMed]

J. Liu, H. Shi, K. Liu, Y. Hou, and P. Wang, “210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA,” Opt. Express 22(11), 13572–13578 (2014).
[Crossref] [PubMed]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

L. Pearson, J. W. Kim, Z. Zhang, M. Ibsen, J. K. Sahu, and W. A. Clarkson, “High-power linearly-polarized single-frequency thulium-doped fiber master-oscillator power-amplifier,” Opt. Express 18(2), 1607–1612 (2010).
[Crossref] [PubMed]

P. Koška, P. Peterka, J. Aubrecht, O. Podrazký, F. Todorov, M. Becker, Y. Baravets, P. Honzátko, and I. Kašík, “Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers,” Opt. Express 24(1), 102–107 (2016).
[Crossref] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref] [PubMed]

Opt. Lett. (6)

Other (1)

D. Gapontsev, N. Platonov, M. Meleshkevich, O. Mishechkin, O. Shkurikhin, S. Agger, P.Varming, and J. H. Poylsen, “20 W single-frequency fiber laser operating at 1.93 um,” OSA/CLEO, CFI5 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Net gains versus absorbed pump power of the 8-cm-long SC-TGF for different input powers. Inset: cross section of the SC-TGF.
Fig. 2
Fig. 2 Experimental setup of a short all-TGF single-frequency MOPA laser. Inset (central): typical photograph of splice joint between the TGF and the silica fiber. Inset (right): cross section of the DC-TGF.
Fig. 3
Fig. 3 (a) Simulated laser output power versus the length of DC-TGFs for different pump powers. (b) Experimental output powers versus pump power of the MOPA lasers for different length of the DC-TGFs.
Fig. 4
Fig. 4 (a) Output powers versus pump power of the 31-cm-long DC-TGF for different input powers. Inset: output spectrum of the TGF MOPA laser. (b) Measured RIN of the TGF MOPA laser.

Metrics