Abstract

We report on a high-power third-order dispersion managed amplification system that delivers 33-fs pulses of 93.5 W at a repetition rate of 55 MHz. A pair of grisms are used as the pre-chirper for optimizing the third order dispersion (TOD) to group velocity dispersion (GVD) ratio. Detail experiments show that the use of a grsim pre-chirper significantly enhances the quality of the compressed pulses. We demonstrate that the third order dispersion of both the amplifier and the compressor can be compensated for by the grisms. Furthermore, the nonlinear phase shift introduced by spectral asymmetry during amplification can be restrained. This type of scheme, applied in our experiment, can be used for further development of a high power laser with ultrashort pulse and wide spectrum.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation

Jian Zhao, Wenxue Li, Chao Wang, Yang Liu, and Heping Zeng
Opt. Express 22(26) 32214-32219 (2014)

130 W, 180 fs ultrafast Yb-doped fiber frequency comb based on chirped-pulse fiber amplification

Daping Luo, Yang Liu, Chenglin Gu, Zhiwei Zhu, Zejiang Deng, Lian Zhou, Yuanfeng Di, Gehui Xie, and Wenxue Li
Opt. Express 28(4) 4817-4824 (2020)

34-fs, all-fiber all-polarization-maintaining single-mode pulse nonlinear amplifier

Jia Yu, Ye Feng, Yajun Cai, Xiaohui Li, Xiaohong Hu, Wei Zhang, Lina Duan, Zhi Yang, Yishan Wang, Yuanshan Liu, and Wei Zhao
Opt. Express 24(15) 16630-16637 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Nakamura, I. Ito, and Y. Kobayashi, “Offset-free broadband Yb:fiber optical frequency comb for optical clocks,” Opt. Express 23(15), 19376–19381 (2015).
    [Crossref] [PubMed]
  2. C. Hu, T. Chen, P. Jiang, B. Wu, J. Su, and Y. Shen, “Broadband high-power mid-IR femtosecond pulse generation from an ytterbium-doped fiber laser pumped optical parametric amplifier,” Opt. Lett. 40(24), 5774–5777 (2015).
    [Crossref] [PubMed]
  3. A. Volpe, F. Di Niso, C. Gaudiuso, A. De Rosa, R. M. Vázquez, A. Ancona, P. M. Lugarà, and R. Osellame, “Welding of PMMA by a femtosecond fiber laser,” Opt. Express 23(4), 4114–4124 (2015).
    [Crossref] [PubMed]
  4. L. Shi, W. Li, H. Zhou, D. Wang, L. Ding, and H. Zeng, “Enhanced ultraviolet pulse generation via dual-color filament interaction induced phase-matching control,” Appl. Phys. Lett. 102(8), 081112 (2013).
    [Crossref]
  5. L. Shi, W. Li, H. Zhou, L. Ding, and H. Zeng, “Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings,” Opt. Lett. 38(4), 398–400 (2013).
    [Crossref] [PubMed]
  6. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-Stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
    [Crossref] [PubMed]
  7. K. Kim, X. Peng, W. Lee, S. Gee, M. Mielke, T. Luo, L. Pan, Q. Wang, and S. Jiang, “Monolithic polarization maintaining fiber chirped pulse amplification (CPA) system for high energy femtosecond pulse generation at 1.03 µm,” Opt. Express 23(4), 4766–4770 (2015).
    [Crossref] [PubMed]
  8. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and M. Fermann, “High energy femtosecond Yb cubicon fiber amplifier,” Opt. Express 13(12), 4717–4722 (2005).
    [Crossref] [PubMed]
  9. V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25(24), 1753–1755 (2000).
    [Crossref] [PubMed]
  10. A. Chong, L. Kuznetsova, and F. Wise, “Theoretical optimization of nonlinear chirped-pulse fiber amplifiers,” J. Opt. Soc. Am. B 24(8), 1815–1823 (2007).
    [Crossref]
  11. A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
    [Crossref] [PubMed]
  12. Y. Deng, C. Y. Chien, B. G. Fidric, and J. D. Kafka, “Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier,” Opt. Lett. 34(22), 3469–3471 (2009).
    [Crossref] [PubMed]
  13. D. B. Soh, J. Nilsson, and A. B. Grudinin, “Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. II. Finite gain-bandwidth effect,” J. Opt. Soc. Am. B 23(1), 10–19 (2006).
    [Crossref]
  14. D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett. 32(17), 2520–2522 (2007).
    [Crossref] [PubMed]
  15. J. Zhao, W. Li, C. Wang, Y. Liu, and H. Zeng, “Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation,” Opt. Express 22(26), 32214–32219 (2014).
    [Crossref] [PubMed]
  16. W. Liu, D. N. Schimpf, T. Eidam, J. Limpert, A. Tünnermann, F. X. Kärtner, and G. Chang, “Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulses,” Opt. Lett. 40(2), 151–154 (2015).
    [Crossref] [PubMed]
  17. Y. Liu, W. Li, J. Zhao, D. Bai, D. Luo, and H. Zeng, “High-power pre-chirp managed amplification of femtosecond pulses at high repetition rates,” Laser Phys. Lett. 12(7), 075101 (2015).
    [Crossref]
  18. V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Propagation and breakup of pulses in fiber amplifiers and dispersion-decreasing fibers with third-order dispersion,” Phys. Rev. A 84(2), 023823 (2011).
    [Crossref]
  19. S. Kane and J. Squier, “Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,” IEEE J. Quantum Electron. 31(11), 2052–2057 (1995).
    [Crossref]
  20. L. Kuznetsova, F. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification of femtosecond pulses in a Yb-doped fiber amplifier near the gain narrowing limit using a reflection grism compressor,” in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2007), paper TuB3.
  21. S. Zhou, L. Kuznetsova, A. Chong, and F. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express 13(13), 4869–4877 (2005).
    [Crossref] [PubMed]
  22. A. Galvanauskas, Ultrafast Lasers (CRC, 2002).
  23. Y. Zaouter, D. N. Papadopoulos, M. Hanna, F. Druon, E. Cormier, and P. Georges, “Third-order spectral phase compensation in parabolic pulse compression,” Opt. Express 15(15), 9372–9377 (2007).
    [Crossref] [PubMed]
  24. P. Wan, L. M. Yang, and J. Liu, “High pulse energy 2 µm femtosecond fiber laser,” Opt. Express 21(2), 1798–1803 (2013).
    [Crossref] [PubMed]
  25. L. J. Kong, X. S. Xiao, and C. X. Yang, “Tunable all-normal-dispersion Yb-doped mode-locked fiber lasers,” Laser Phys. 20(4), 834–837 (2010).
    [Crossref]

2015 (6)

2014 (1)

2013 (3)

2011 (1)

V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Propagation and breakup of pulses in fiber amplifiers and dispersion-decreasing fibers with third-order dispersion,” Phys. Rev. A 84(2), 023823 (2011).
[Crossref]

2010 (2)

A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
[Crossref] [PubMed]

L. J. Kong, X. S. Xiao, and C. X. Yang, “Tunable all-normal-dispersion Yb-doped mode-locked fiber lasers,” Laser Phys. 20(4), 834–837 (2010).
[Crossref]

2009 (1)

2007 (3)

2006 (1)

2005 (2)

2002 (1)

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-Stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref] [PubMed]

2000 (1)

1995 (1)

S. Kane and J. Squier, “Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,” IEEE J. Quantum Electron. 31(11), 2052–2057 (1995).
[Crossref]

Aguergaray, C.

V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Propagation and breakup of pulses in fiber amplifiers and dispersion-decreasing fibers with third-order dispersion,” Phys. Rev. A 84(2), 023823 (2011).
[Crossref]

Ancona, A.

Bai, D.

Y. Liu, W. Li, J. Zhao, D. Bai, D. Luo, and H. Zeng, “High-power pre-chirp managed amplification of femtosecond pulses at high repetition rates,” Laser Phys. Lett. 12(7), 075101 (2015).
[Crossref]

Chang, G.

Chen, T.

Chien, C. Y.

Cho, G.

Chong, A.

Cormier, E.

De Rosa, A.

Deng, Y.

Di Niso, F.

Ding, L.

L. Shi, W. Li, H. Zhou, D. Wang, L. Ding, and H. Zeng, “Enhanced ultraviolet pulse generation via dual-color filament interaction induced phase-matching control,” Appl. Phys. Lett. 102(8), 081112 (2013).
[Crossref]

L. Shi, W. Li, H. Zhou, L. Ding, and H. Zeng, “Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings,” Opt. Lett. 38(4), 398–400 (2013).
[Crossref] [PubMed]

Druon, F.

Dudley, J. M.

Dudovich, N.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-Stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref] [PubMed]

Eidam, T.

Fermann, M.

Fermann, M. E.

Fidric, B. G.

Gaudiuso, C.

Gee, S.

Georges, P.

Grudinin, A. B.

Hanna, M.

Hartl, I.

Harvey, J. D.

V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Propagation and breakup of pulses in fiber amplifiers and dispersion-decreasing fibers with third-order dispersion,” Phys. Rev. A 84(2), 023823 (2011).
[Crossref]

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25(24), 1753–1755 (2000).
[Crossref] [PubMed]

Hu, C.

Imeshev, G.

Ito, I.

Jiang, P.

Jiang, S.

Kafka, J. D.

Kane, S.

S. Kane and J. Squier, “Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,” IEEE J. Quantum Electron. 31(11), 2052–2057 (1995).
[Crossref]

Kärtner, F. X.

Kim, K.

Kobayashi, Y.

Kong, L. J.

L. J. Kong, X. S. Xiao, and C. X. Yang, “Tunable all-normal-dispersion Yb-doped mode-locked fiber lasers,” Laser Phys. 20(4), 834–837 (2010).
[Crossref]

Kruglov, V. I.

V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Propagation and breakup of pulses in fiber amplifiers and dispersion-decreasing fibers with third-order dispersion,” Phys. Rev. A 84(2), 023823 (2011).
[Crossref]

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25(24), 1753–1755 (2000).
[Crossref] [PubMed]

Kuznetsova, L.

Lee, W.

Li, W.

Y. Liu, W. Li, J. Zhao, D. Bai, D. Luo, and H. Zeng, “High-power pre-chirp managed amplification of femtosecond pulses at high repetition rates,” Laser Phys. Lett. 12(7), 075101 (2015).
[Crossref]

J. Zhao, W. Li, C. Wang, Y. Liu, and H. Zeng, “Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation,” Opt. Express 22(26), 32214–32219 (2014).
[Crossref] [PubMed]

L. Shi, W. Li, H. Zhou, L. Ding, and H. Zeng, “Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings,” Opt. Lett. 38(4), 398–400 (2013).
[Crossref] [PubMed]

L. Shi, W. Li, H. Zhou, D. Wang, L. Ding, and H. Zeng, “Enhanced ultraviolet pulse generation via dual-color filament interaction induced phase-matching control,” Appl. Phys. Lett. 102(8), 081112 (2013).
[Crossref]

Limpert, J.

Liu, J.

Liu, W.

Liu, Y.

Y. Liu, W. Li, J. Zhao, D. Bai, D. Luo, and H. Zeng, “High-power pre-chirp managed amplification of femtosecond pulses at high repetition rates,” Laser Phys. Lett. 12(7), 075101 (2015).
[Crossref]

J. Zhao, W. Li, C. Wang, Y. Liu, and H. Zeng, “Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation,” Opt. Express 22(26), 32214–32219 (2014).
[Crossref] [PubMed]

Liu, Z.

Lugarà, P. M.

Luo, D.

Y. Liu, W. Li, J. Zhao, D. Bai, D. Luo, and H. Zeng, “High-power pre-chirp managed amplification of femtosecond pulses at high repetition rates,” Laser Phys. Lett. 12(7), 075101 (2015).
[Crossref]

Luo, T.

Marcinkevicius, A.

Mielke, M.

Mottay, E.

Nakamura, T.

Nilsson, J.

Oron, D.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-Stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref] [PubMed]

Osellame, R.

Pan, L.

Papadopoulos, D. N.

Peacock, A. C.

Peng, X.

Ruehl, A.

Schimpf, D. N.

Shah, L.

Shen, Y.

Shi, L.

L. Shi, W. Li, H. Zhou, D. Wang, L. Ding, and H. Zeng, “Enhanced ultraviolet pulse generation via dual-color filament interaction induced phase-matching control,” Appl. Phys. Lett. 102(8), 081112 (2013).
[Crossref]

L. Shi, W. Li, H. Zhou, L. Ding, and H. Zeng, “Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings,” Opt. Lett. 38(4), 398–400 (2013).
[Crossref] [PubMed]

Silberberg, Y.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-Stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref] [PubMed]

Soh, D. B.

Squier, J.

S. Kane and J. Squier, “Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,” IEEE J. Quantum Electron. 31(11), 2052–2057 (1995).
[Crossref]

Su, J.

Tünnermann, A.

Vázquez, R. M.

Volpe, A.

Wan, P.

Wang, C.

Wang, D.

L. Shi, W. Li, H. Zhou, D. Wang, L. Ding, and H. Zeng, “Enhanced ultraviolet pulse generation via dual-color filament interaction induced phase-matching control,” Appl. Phys. Lett. 102(8), 081112 (2013).
[Crossref]

Wang, Q.

Wise, F.

Wu, B.

Xiao, X. S.

L. J. Kong, X. S. Xiao, and C. X. Yang, “Tunable all-normal-dispersion Yb-doped mode-locked fiber lasers,” Laser Phys. 20(4), 834–837 (2010).
[Crossref]

Yang, C. X.

L. J. Kong, X. S. Xiao, and C. X. Yang, “Tunable all-normal-dispersion Yb-doped mode-locked fiber lasers,” Laser Phys. 20(4), 834–837 (2010).
[Crossref]

Yang, L. M.

Yelin, D.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-Stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref] [PubMed]

Zaouter, Y.

Zeng, H.

Y. Liu, W. Li, J. Zhao, D. Bai, D. Luo, and H. Zeng, “High-power pre-chirp managed amplification of femtosecond pulses at high repetition rates,” Laser Phys. Lett. 12(7), 075101 (2015).
[Crossref]

J. Zhao, W. Li, C. Wang, Y. Liu, and H. Zeng, “Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation,” Opt. Express 22(26), 32214–32219 (2014).
[Crossref] [PubMed]

L. Shi, W. Li, H. Zhou, L. Ding, and H. Zeng, “Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings,” Opt. Lett. 38(4), 398–400 (2013).
[Crossref] [PubMed]

L. Shi, W. Li, H. Zhou, D. Wang, L. Ding, and H. Zeng, “Enhanced ultraviolet pulse generation via dual-color filament interaction induced phase-matching control,” Appl. Phys. Lett. 102(8), 081112 (2013).
[Crossref]

Zhao, J.

Y. Liu, W. Li, J. Zhao, D. Bai, D. Luo, and H. Zeng, “High-power pre-chirp managed amplification of femtosecond pulses at high repetition rates,” Laser Phys. Lett. 12(7), 075101 (2015).
[Crossref]

J. Zhao, W. Li, C. Wang, Y. Liu, and H. Zeng, “Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation,” Opt. Express 22(26), 32214–32219 (2014).
[Crossref] [PubMed]

Zhou, H.

L. Shi, W. Li, H. Zhou, L. Ding, and H. Zeng, “Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings,” Opt. Lett. 38(4), 398–400 (2013).
[Crossref] [PubMed]

L. Shi, W. Li, H. Zhou, D. Wang, L. Ding, and H. Zeng, “Enhanced ultraviolet pulse generation via dual-color filament interaction induced phase-matching control,” Appl. Phys. Lett. 102(8), 081112 (2013).
[Crossref]

Zhou, S.

Appl. Phys. Lett. (1)

L. Shi, W. Li, H. Zhou, D. Wang, L. Ding, and H. Zeng, “Enhanced ultraviolet pulse generation via dual-color filament interaction induced phase-matching control,” Appl. Phys. Lett. 102(8), 081112 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Kane and J. Squier, “Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,” IEEE J. Quantum Electron. 31(11), 2052–2057 (1995).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

L. J. Kong, X. S. Xiao, and C. X. Yang, “Tunable all-normal-dispersion Yb-doped mode-locked fiber lasers,” Laser Phys. 20(4), 834–837 (2010).
[Crossref]

Laser Phys. Lett. (1)

Y. Liu, W. Li, J. Zhao, D. Bai, D. Luo, and H. Zeng, “High-power pre-chirp managed amplification of femtosecond pulses at high repetition rates,” Laser Phys. Lett. 12(7), 075101 (2015).
[Crossref]

Opt. Express (8)

Y. Zaouter, D. N. Papadopoulos, M. Hanna, F. Druon, E. Cormier, and P. Georges, “Third-order spectral phase compensation in parabolic pulse compression,” Opt. Express 15(15), 9372–9377 (2007).
[Crossref] [PubMed]

L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and M. Fermann, “High energy femtosecond Yb cubicon fiber amplifier,” Opt. Express 13(12), 4717–4722 (2005).
[Crossref] [PubMed]

S. Zhou, L. Kuznetsova, A. Chong, and F. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express 13(13), 4869–4877 (2005).
[Crossref] [PubMed]

P. Wan, L. M. Yang, and J. Liu, “High pulse energy 2 µm femtosecond fiber laser,” Opt. Express 21(2), 1798–1803 (2013).
[Crossref] [PubMed]

J. Zhao, W. Li, C. Wang, Y. Liu, and H. Zeng, “Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation,” Opt. Express 22(26), 32214–32219 (2014).
[Crossref] [PubMed]

A. Volpe, F. Di Niso, C. Gaudiuso, A. De Rosa, R. M. Vázquez, A. Ancona, P. M. Lugarà, and R. Osellame, “Welding of PMMA by a femtosecond fiber laser,” Opt. Express 23(4), 4114–4124 (2015).
[Crossref] [PubMed]

K. Kim, X. Peng, W. Lee, S. Gee, M. Mielke, T. Luo, L. Pan, Q. Wang, and S. Jiang, “Monolithic polarization maintaining fiber chirped pulse amplification (CPA) system for high energy femtosecond pulse generation at 1.03 µm,” Opt. Express 23(4), 4766–4770 (2015).
[Crossref] [PubMed]

T. Nakamura, I. Ito, and Y. Kobayashi, “Offset-free broadband Yb:fiber optical frequency comb for optical clocks,” Opt. Express 23(15), 19376–19381 (2015).
[Crossref] [PubMed]

Opt. Lett. (7)

C. Hu, T. Chen, P. Jiang, B. Wu, J. Su, and Y. Shen, “Broadband high-power mid-IR femtosecond pulse generation from an ytterbium-doped fiber laser pumped optical parametric amplifier,” Opt. Lett. 40(24), 5774–5777 (2015).
[Crossref] [PubMed]

W. Liu, D. N. Schimpf, T. Eidam, J. Limpert, A. Tünnermann, F. X. Kärtner, and G. Chang, “Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulses,” Opt. Lett. 40(2), 151–154 (2015).
[Crossref] [PubMed]

L. Shi, W. Li, H. Zhou, L. Ding, and H. Zeng, “Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings,” Opt. Lett. 38(4), 398–400 (2013).
[Crossref] [PubMed]

D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett. 32(17), 2520–2522 (2007).
[Crossref] [PubMed]

Y. Deng, C. Y. Chien, B. G. Fidric, and J. D. Kafka, “Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier,” Opt. Lett. 34(22), 3469–3471 (2009).
[Crossref] [PubMed]

A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
[Crossref] [PubMed]

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25(24), 1753–1755 (2000).
[Crossref] [PubMed]

Phys. Rev. A (1)

V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Propagation and breakup of pulses in fiber amplifiers and dispersion-decreasing fibers with third-order dispersion,” Phys. Rev. A 84(2), 023823 (2011).
[Crossref]

Phys. Rev. Lett. (1)

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-Stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref] [PubMed]

Other (2)

L. Kuznetsova, F. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification of femtosecond pulses in a Yb-doped fiber amplifier near the gain narrowing limit using a reflection grism compressor,” in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2007), paper TuB3.

A. Galvanauskas, Ultrafast Lasers (CRC, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Setup of high-power Yb-doped fiber amplifier system. ISO, isolator; LD, laser diode; WDM, wavelength division multiplexer; YDF, Yb-doped fiber; PCF, photonics crystal fiber; MM LD, multi-mode laser diode; DM, dichroitic, mirror.
Fig. 2
Fig. 2 The measured (a) spectral intensity and (b) the temporal intensity (red solid) of the compressed pulse from pre-amplifier, TBP: time-bandwidth product. (c) Measured output power of the self-similar amplifier. The maximum output power of 124 W corresponds to optical to optical conversion efficiency of 61%. (d) Recompressed pulse duration and spectral bandwidth as a function of the compressed output power.
Fig. 3
Fig. 3 Results from numerical simulations showing temporal and spectral evolution along the fiber amplifier with different TGRs: (a) and (d) 3 fs, (b) and (e) 0 fs, (c) and (f) −3 fs.
Fig. 4
Fig. 4 The measure temporal envelopes (blue solid), and calculated traces of transform-limited pulses (green dash) at 68-W output power varies with different pre-chirping ratios: (a) −0.3 fs, (b) 0 fs, (c) 0.2 fs, and (d) 0.5 fs. TGR: TOD to GVD ratio.
Fig. 5
Fig. 5 Measured temporal envelope profile of the compressed pulses at different output powers. The corresponding spectra are shown in inset.

Metrics