Abstract

Subwavelength resonators, ranging from single atoms to metallic nanoparticles, typically exhibit a narrow-bandwidth response to optical excitations. We computationally design and experimentally synthesize tailored distributions of silver nanodisks to extinguish light over broad and varied frequency windows. We show that metallic nanodisks are 2–10x more efficient in absorbing and scattering light than common structures, and can approach fundamental limits to broadband scattering for subwavelength particles. We measure broadband extinction per volume that closely approaches theoretical predictions over three representative visible-range wavelength windows, confirming the high efficiency of nanodisks and demonstrating the collective power of computational design and experimental precision for developing new photonics technologies.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fundamental limits to optical response in absorptive systems

Owen D. Miller, Athanasios G. Polimeridis, M. T. Homer Reid, Chia Wei Hsu, Brendan G. DeLacy, John D. Joannopoulos, Marin Soljačić, and Steven G. Johnson
Opt. Express 24(4) 3329-3364 (2016)

Optimization of broadband optical response of multilayer nanospheres

Wenjun Qiu, Brendan G. DeLacy, Steven G. Johnson, John D. Joannopoulos, and Marin Soljačić
Opt. Express 20(16) 18494-18504 (2012)

Configuring Au and Ag nanorods for sensing applications

Ovidio Peña-Rodríguez, Umapada Pal, Vladimir Rodríguez-Iglesias, Luis Rodríguez-Fernández, and Alicia Oliver
J. Opt. Soc. Am. B 28(4) 714-720 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
    [Crossref] [PubMed]
  2. K. Nakayama, K. Tanabe, and H. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
    [Crossref]
  3. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-Film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
    [Crossref] [PubMed]
  4. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
    [Crossref] [PubMed]
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  6. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
    [Crossref]
  7. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  8. J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
    [Crossref] [PubMed]
  9. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  10. H. Wheeler, “Fundamental limitations of small antennas,” Proc. IRE 35(12), 1479–1484 (1947).
    [Crossref]
  11. A. Raman, W. Shin, and S. Fan, “Upper bound on the modal material loss rate in plasmonic and metamaterial systems,” Phys. Rev. Lett. 110(18), 183901 (2013).
    [Crossref] [PubMed]
  12. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
    [Crossref] [PubMed]
  13. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
    [Crossref]
  14. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  15. W. Qiu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optimization of broadband optical response of multilayer nanospheres,” Opt. Express 20(16), 18494–18504 (2012).
    [Crossref] [PubMed]
  16. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
    [Crossref] [PubMed]
  17. Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98(4), 043101 (2011).
    [Crossref]
  18. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  19. O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24(4), 3329–3364 (2016).
    [Crossref] [PubMed]
  20. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  21. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
    [Crossref]
  22. O. R. Evans and W. Lin, “Crystal engineering of NLO materials based on metal--organic coordination networks,” Acc. Chem. Res. 35(7), 511–522 (2002).
    [Crossref] [PubMed]
  23. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).
  24. M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, “Defining rules for the shape evolution of gold nanoparticles,” J. Am. Chem. Soc. 134(35), 14542–14554 (2012).
    [Crossref] [PubMed]
  25. X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
    [Crossref] [PubMed]
  26. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
    [Crossref] [PubMed]
  27. S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
    [Crossref] [PubMed]
  28. M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
    [Crossref] [PubMed]
  29. C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Songs, 1983).
  30. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
    [Crossref] [PubMed]
  31. O. D. Miller, C. W. Hsu, E. Anquillare, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, “Power–bandwidth limitations of an optical resonance,” arXiv: http://arxiv.org/abs/1510.06902
  32. R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75(5), 053801 (2007).
    [Crossref]
  33. O. D. Miller, C. W. Hsu, M. T. H. Reid, W. Qiu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to extinction by metallic nanoparticles,” Phys. Rev. Lett. 112(12), 123903 (2014).
    [Crossref] [PubMed]
  34. C. L. Nehl and J. H. Hafner, “Shape-dependent plasmon resonances of gold nanoparticles,” J. Mater. Chem. 18(21), 2415–2419 (2008).
    [Crossref]
  35. M. I. Tribelsky, “Anomalous light absorption by small particles,” Europhys. Lett. 94(1), 14004 (2011).
    [Crossref]
  36. S. Mehrotra, “On the Implementation of a Primal-Dual Interior Point Method,” SIAM J. Optim. 2(4), 575–601 (1992).
    [Crossref]
  37. D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, Vol. 6. (Athena Scientific, 1997).
  38. M. A. T. L. A. B. Release, 2014b, The MathWorks, Inc., Natick, Massachusetts, United States.
  39. E. Palik, Handbook of Optical Constants of Solids, 3rd edition; (Academic Press, 1998).
  40. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  41. Y. Sun, “Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering,” Chem. Soc. Rev. 42(7), 2497–2511 (2013).
    [Crossref] [PubMed]
  42. Z. Yang, H. Qian, H. Chen, and J. N. Anker, “One-pot hydrothermal synthesis of silver nanowires via citrate reduction,” J. Colloid Interface Sci. 352(2), 285–291 (2010).
    [Crossref] [PubMed]
  43. C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Funct. Mater. 15(7), 1197–1208 (2005).
    [Crossref]
  44. N. Li, Q. Zhang, S. Quinlivan, J. Goebl, Y. Gan, and Y. Yin, “H2O2-aided seed-mediated synthesis of silver nanoplates with improved yield and efficiency,” ChemPhysChem 13(10), 2526–2530 (2012).
    [Crossref] [PubMed]
  45. J. Xiao and L. Qi, “Surfactant-assisted, shape-controlled synthesis of gold nanocrystals,” Nanoscale 3(4), 1383–1396 (2011).
    [Crossref] [PubMed]
  46. X. Xia and Y. Xia, “Symmetry breaking during seeded growth of nanocrystals,” Nano Lett. 12(11), 6038–6042 (2012).
    [Crossref] [PubMed]
  47. G. S. Métraux and C. A. Mirkin, “Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness,” Adv. Mater. 17(4), 412–415 (2005).
    [Crossref]
  48. W. Zhang, X. Qiao, X. Qiu, Q. Chen, Y. Cai, and H. Chen, “Controllable synthesis and ostwald ripening of silver nanoparticles,” Curr. Nanosci. 9(6), 753–758 (2013).
    [Crossref]
  49. C. W. Hsu, O. D. Miller, S. G. Johnson, and M. Soljačić, “Optimization of sharp and viewing-angle-independent structural color,” Opt. Express 23(7), 9516–9526 (2015).
    [Crossref] [PubMed]
  50. M. T. H. Reid, “Scuff-em: free, open-source boundary-element software,” http://homerreid.com/scuff-EM .
  51. R. F. Harrington, Field Computation by Moment Methods (IEEE, 1993).

2016 (1)

2015 (1)

2014 (2)

O. D. Miller, C. W. Hsu, M. T. H. Reid, W. Qiu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to extinction by metallic nanoparticles,” Phys. Rev. Lett. 112(12), 123903 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

2013 (3)

A. Raman, W. Shin, and S. Fan, “Upper bound on the modal material loss rate in plasmonic and metamaterial systems,” Phys. Rev. Lett. 110(18), 183901 (2013).
[Crossref] [PubMed]

W. Zhang, X. Qiao, X. Qiu, Q. Chen, Y. Cai, and H. Chen, “Controllable synthesis and ostwald ripening of silver nanoparticles,” Curr. Nanosci. 9(6), 753–758 (2013).
[Crossref]

Y. Sun, “Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering,” Chem. Soc. Rev. 42(7), 2497–2511 (2013).
[Crossref] [PubMed]

2012 (5)

N. Li, Q. Zhang, S. Quinlivan, J. Goebl, Y. Gan, and Y. Yin, “H2O2-aided seed-mediated synthesis of silver nanoplates with improved yield and efficiency,” ChemPhysChem 13(10), 2526–2530 (2012).
[Crossref] [PubMed]

X. Xia and Y. Xia, “Symmetry breaking during seeded growth of nanocrystals,” Nano Lett. 12(11), 6038–6042 (2012).
[Crossref] [PubMed]

M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, “Defining rules for the shape evolution of gold nanoparticles,” J. Am. Chem. Soc. 134(35), 14542–14554 (2012).
[Crossref] [PubMed]

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-Film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

W. Qiu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optimization of broadband optical response of multilayer nanospheres,” Opt. Express 20(16), 18494–18504 (2012).
[Crossref] [PubMed]

2011 (7)

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98(4), 043101 (2011).
[Crossref]

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref] [PubMed]

J. Xiao and L. Qi, “Surfactant-assisted, shape-controlled synthesis of gold nanocrystals,” Nanoscale 3(4), 1383–1396 (2011).
[Crossref] [PubMed]

M. I. Tribelsky, “Anomalous light absorption by small particles,” Europhys. Lett. 94(1), 14004 (2011).
[Crossref]

2010 (4)

Z. Yang, H. Qian, H. Chen, and J. N. Anker, “One-pot hydrothermal synthesis of silver nanowires via citrate reduction,” J. Colloid Interface Sci. 352(2), 285–291 (2010).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2009 (3)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
[Crossref] [PubMed]

2008 (3)

C. L. Nehl and J. H. Hafner, “Shape-dependent plasmon resonances of gold nanoparticles,” J. Mater. Chem. 18(21), 2415–2419 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

K. Nakayama, K. Tanabe, and H. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

2007 (3)

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75(5), 053801 (2007).
[Crossref]

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
[Crossref]

2006 (3)

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref] [PubMed]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

2005 (2)

C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Funct. Mater. 15(7), 1197–1208 (2005).
[Crossref]

G. S. Métraux and C. A. Mirkin, “Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness,” Adv. Mater. 17(4), 412–415 (2005).
[Crossref]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

2002 (1)

O. R. Evans and W. Lin, “Crystal engineering of NLO materials based on metal--organic coordination networks,” Acc. Chem. Res. 35(7), 511–522 (2002).
[Crossref] [PubMed]

1999 (1)

1992 (1)

S. Mehrotra, “On the Implementation of a Primal-Dual Interior Point Method,” SIAM J. Optim. 2(4), 575–601 (1992).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1947 (1)

H. Wheeler, “Fundamental limitations of small antennas,” Proc. IRE 35(12), 1479–1484 (1947).
[Crossref]

Anker, J. N.

Z. Yang, H. Qian, H. Chen, and J. N. Anker, “One-pot hydrothermal synthesis of silver nanowires via citrate reduction,” J. Colloid Interface Sci. 352(2), 285–291 (2010).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Atwater, H.

K. Nakayama, K. Tanabe, and H. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

Averitt, R. D.

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Bao, J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Bao, K.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Bardhan, R.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Cai, Y.

W. Zhang, X. Qiao, X. Qiu, Q. Chen, Y. Cai, and H. Chen, “Controllable synthesis and ostwald ripening of silver nanoparticles,” Curr. Nanosci. 9(6), 753–758 (2013).
[Crossref]

Callahan, D. M.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Campolongo, M. J.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref] [PubMed]

Capasso, F.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Celanovic, I.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Chen, H.

W. Zhang, X. Qiao, X. Qiu, Q. Chen, Y. Cai, and H. Chen, “Controllable synthesis and ostwald ripening of silver nanoparticles,” Curr. Nanosci. 9(6), 753–758 (2013).
[Crossref]

Z. Yang, H. Qian, H. Chen, and J. N. Anker, “One-pot hydrothermal synthesis of silver nanowires via citrate reduction,” J. Colloid Interface Sci. 352(2), 285–291 (2010).
[Crossref] [PubMed]

Chen, Q.

W. Zhang, X. Qiao, X. Qiu, Q. Chen, Y. Cai, and H. Chen, “Controllable synthesis and ostwald ripening of silver nanoparticles,” Curr. Nanosci. 9(6), 753–758 (2013).
[Crossref]

Cheng, W.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref] [PubMed]

Chou, J. B.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

DeLacy, B. G.

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Evans, O. R.

O. R. Evans and W. Lin, “Crystal engineering of NLO materials based on metal--organic coordination networks,” Acc. Chem. Res. 35(7), 511–522 (2002).
[Crossref] [PubMed]

Fan, J. A.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Fan, S.

A. Raman, W. Shin, and S. Fan, “Upper bound on the modal material loss rate in plasmonic and metamaterial systems,” Phys. Rev. Lett. 110(18), 183901 (2013).
[Crossref] [PubMed]

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98(4), 043101 (2011).
[Crossref]

Fang, N. X.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Gan, Y.

N. Li, Q. Zhang, S. Quinlivan, J. Goebl, Y. Gan, and Y. Yin, “H2O2-aided seed-mediated synthesis of silver nanoplates with improved yield and efficiency,” ChemPhysChem 13(10), 2526–2530 (2012).
[Crossref] [PubMed]

Goebl, J.

N. Li, Q. Zhang, S. Quinlivan, J. Goebl, Y. Gan, and Y. Yin, “H2O2-aided seed-mediated synthesis of silver nanoplates with improved yield and efficiency,” ChemPhysChem 13(10), 2526–2530 (2012).
[Crossref] [PubMed]

Grandidier, J.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Hafner, J. H.

C. L. Nehl and J. H. Hafner, “Shape-dependent plasmon resonances of gold nanoparticles,” J. Mater. Chem. 18(21), 2415–2419 (2008).
[Crossref]

Halas, N. J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hamam, R. E.

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75(5), 053801 (2007).
[Crossref]

Homer Reid, M. T.

Hsu, C. W.

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Joannopoulos, J. D.

O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24(4), 3329–3364 (2016).
[Crossref] [PubMed]

O. D. Miller, C. W. Hsu, M. T. H. Reid, W. Qiu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to extinction by metallic nanoparticles,” Phys. Rev. Lett. 112(12), 123903 (2014).
[Crossref] [PubMed]

W. Qiu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optimization of broadband optical response of multilayer nanospheres,” Opt. Express 20(16), 18494–18504 (2012).
[Crossref] [PubMed]

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75(5), 053801 (2007).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johnson, S. G.

Karalis, A.

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75(5), 053801 (2007).
[Crossref]

Kim, S. G.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Langille, M. R.

M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, “Defining rules for the shape evolution of gold nanoparticles,” J. Am. Chem. Soc. 134(35), 14542–14554 (2012).
[Crossref] [PubMed]

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

Lee, Y. E.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Lenert, A.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Li, N.

N. Li, Q. Zhang, S. Quinlivan, J. Goebl, Y. Gan, and Y. Yin, “H2O2-aided seed-mediated synthesis of silver nanoplates with improved yield and efficiency,” ChemPhysChem 13(10), 2526–2530 (2012).
[Crossref] [PubMed]

Lin, W.

O. R. Evans and W. Lin, “Crystal engineering of NLO materials based on metal--organic coordination networks,” Acc. Chem. Res. 35(7), 511–522 (2002).
[Crossref] [PubMed]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Lofton, C.

C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Funct. Mater. 15(7), 1197–1208 (2005).
[Crossref]

Lu, X.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref] [PubMed]

Luo, D.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Manoharan, V. N.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Mehrotra, S.

S. Mehrotra, “On the Implementation of a Primal-Dual Interior Point Method,” SIAM J. Optim. 2(4), 575–601 (1992).
[Crossref]

Métraux, G. S.

G. S. Métraux and C. A. Mirkin, “Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness,” Adv. Mater. 17(4), 412–415 (2005).
[Crossref]

Miller, O. D.

Mirkin, C. A.

M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, “Defining rules for the shape evolution of gold nanoparticles,” J. Am. Chem. Soc. 134(35), 14542–14554 (2012).
[Crossref] [PubMed]

G. S. Métraux and C. A. Mirkin, “Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness,” Adv. Mater. 17(4), 412–415 (2005).
[Crossref]

Munday, J. N.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nakayama, K.

K. Nakayama, K. Tanabe, and H. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Nehl, C. L.

C. L. Nehl and J. H. Hafner, “Shape-dependent plasmon resonances of gold nanoparticles,” J. Mater. Chem. 18(21), 2415–2419 (2008).
[Crossref]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Noguez, C.

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
[Crossref]

Nordlander, P.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Personick, M. L.

M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, “Defining rules for the shape evolution of gold nanoparticles,” J. Am. Chem. Soc. 134(35), 14542–14554 (2012).
[Crossref] [PubMed]

Polimeridis, A. G.

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Qi, L.

J. Xiao and L. Qi, “Surfactant-assisted, shape-controlled synthesis of gold nanocrystals,” Nanoscale 3(4), 1383–1396 (2011).
[Crossref] [PubMed]

Qian, H.

Z. Yang, H. Qian, H. Chen, and J. N. Anker, “One-pot hydrothermal synthesis of silver nanowires via citrate reduction,” J. Colloid Interface Sci. 352(2), 285–291 (2010).
[Crossref] [PubMed]

Qiao, X.

W. Zhang, X. Qiao, X. Qiu, Q. Chen, Y. Cai, and H. Chen, “Controllable synthesis and ostwald ripening of silver nanoparticles,” Curr. Nanosci. 9(6), 753–758 (2013).
[Crossref]

Qiu, W.

O. D. Miller, C. W. Hsu, M. T. H. Reid, W. Qiu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to extinction by metallic nanoparticles,” Phys. Rev. Lett. 112(12), 123903 (2014).
[Crossref] [PubMed]

W. Qiu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optimization of broadband optical response of multilayer nanospheres,” Opt. Express 20(16), 18494–18504 (2012).
[Crossref] [PubMed]

Qiu, X.

W. Zhang, X. Qiao, X. Qiu, Q. Chen, Y. Cai, and H. Chen, “Controllable synthesis and ostwald ripening of silver nanoparticles,” Curr. Nanosci. 9(6), 753–758 (2013).
[Crossref]

Quinlivan, S.

N. Li, Q. Zhang, S. Quinlivan, J. Goebl, Y. Gan, and Y. Yin, “H2O2-aided seed-mediated synthesis of silver nanoplates with improved yield and efficiency,” ChemPhysChem 13(10), 2526–2530 (2012).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Raman, A.

A. Raman, W. Shin, and S. Fan, “Upper bound on the modal material loss rate in plasmonic and metamaterial systems,” Phys. Rev. Lett. 110(18), 183901 (2013).
[Crossref] [PubMed]

Reid, M. T. H.

O. D. Miller, C. W. Hsu, M. T. H. Reid, W. Qiu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to extinction by metallic nanoparticles,” Phys. Rev. Lett. 112(12), 123903 (2014).
[Crossref] [PubMed]

Rinnerbauer, V.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Ruan, Z.

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98(4), 043101 (2011).
[Crossref]

Rycenga, M.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
[Crossref] [PubMed]

Santbergen, R.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-Film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shen, Y. R.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

Shin, W.

A. Raman, W. Shin, and S. Fan, “Upper bound on the modal material loss rate in plasmonic and metamaterial systems,” Phys. Rev. Lett. 110(18), 183901 (2013).
[Crossref] [PubMed]

Shvets, G.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Sigmund, W.

C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Funct. Mater. 15(7), 1197–1208 (2005).
[Crossref]

Skrabalak, S. E.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
[Crossref] [PubMed]

Smets, A. H. M.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-Film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Soljacic, M.

O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24(4), 3329–3364 (2016).
[Crossref] [PubMed]

C. W. Hsu, O. D. Miller, S. G. Johnson, and M. Soljačić, “Optimization of sharp and viewing-angle-independent structural color,” Opt. Express 23(7), 9516–9526 (2015).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

O. D. Miller, C. W. Hsu, M. T. H. Reid, W. Qiu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to extinction by metallic nanoparticles,” Phys. Rev. Lett. 112(12), 123903 (2014).
[Crossref] [PubMed]

W. Qiu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optimization of broadband optical response of multilayer nanospheres,” Opt. Express 20(16), 18494–18504 (2012).
[Crossref] [PubMed]

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75(5), 053801 (2007).
[Crossref]

Sun, Y.

Y. Sun, “Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering,” Chem. Soc. Rev. 42(7), 2497–2511 (2013).
[Crossref] [PubMed]

Tan, H.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-Film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Tan, S. J.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref] [PubMed]

Tanabe, K.

K. Nakayama, K. Tanabe, and H. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Tribelsky, M. I.

M. I. Tribelsky, “Anomalous light absorption by small particles,” Europhys. Lett. 94(1), 14004 (2011).
[Crossref]

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Wang, E. N.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Wang, F.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Westcott, S. L.

Wheeler, H.

H. Wheeler, “Fundamental limitations of small antennas,” Proc. IRE 35(12), 1479–1484 (1947).
[Crossref]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Wiley, B.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
[Crossref] [PubMed]

Wu, C.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Xia, X.

X. Xia and Y. Xia, “Symmetry breaking during seeded growth of nanocrystals,” Nano Lett. 12(11), 6038–6042 (2012).
[Crossref] [PubMed]

Xia, Y.

X. Xia and Y. Xia, “Symmetry breaking during seeded growth of nanocrystals,” Nano Lett. 12(11), 6038–6042 (2012).
[Crossref] [PubMed]

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
[Crossref] [PubMed]

Xiao, J.

J. Xiao and L. Qi, “Surfactant-assisted, shape-controlled synthesis of gold nanocrystals,” Nanoscale 3(4), 1383–1396 (2011).
[Crossref] [PubMed]

Yang, Z.

Z. Yang, H. Qian, H. Chen, and J. N. Anker, “One-pot hydrothermal synthesis of silver nanowires via citrate reduction,” J. Colloid Interface Sci. 352(2), 285–291 (2010).
[Crossref] [PubMed]

Yeng, Y. X.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Yin, Y.

N. Li, Q. Zhang, S. Quinlivan, J. Goebl, Y. Gan, and Y. Yin, “H2O2-aided seed-mediated synthesis of silver nanoplates with improved yield and efficiency,” ChemPhysChem 13(10), 2526–2530 (2012).
[Crossref] [PubMed]

Zeman, M.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-Film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Zhang, J.

M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, “Defining rules for the shape evolution of gold nanoparticles,” J. Am. Chem. Soc. 134(35), 14542–14554 (2012).
[Crossref] [PubMed]

Zhang, Q.

N. Li, Q. Zhang, S. Quinlivan, J. Goebl, Y. Gan, and Y. Yin, “H2O2-aided seed-mediated synthesis of silver nanoplates with improved yield and efficiency,” ChemPhysChem 13(10), 2526–2530 (2012).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, X. Qiao, X. Qiu, Q. Chen, Y. Cai, and H. Chen, “Controllable synthesis and ostwald ripening of silver nanoparticles,” Curr. Nanosci. 9(6), 753–758 (2013).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

O. R. Evans and W. Lin, “Crystal engineering of NLO materials based on metal--organic coordination networks,” Acc. Chem. Res. 35(7), 511–522 (2002).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Funct. Mater. 15(7), 1197–1208 (2005).
[Crossref]

Adv. Mater. (5)

G. S. Métraux and C. A. Mirkin, “Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness,” Adv. Mater. 17(4), 412–415 (2005).
[Crossref]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

K. Nakayama, K. Tanabe, and H. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98(4), 043101 (2011).
[Crossref]

Chem. Soc. Rev. (1)

Y. Sun, “Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering,” Chem. Soc. Rev. 42(7), 2497–2511 (2013).
[Crossref] [PubMed]

ChemPhysChem (1)

N. Li, Q. Zhang, S. Quinlivan, J. Goebl, Y. Gan, and Y. Yin, “H2O2-aided seed-mediated synthesis of silver nanoplates with improved yield and efficiency,” ChemPhysChem 13(10), 2526–2530 (2012).
[Crossref] [PubMed]

Curr. Nanosci. (1)

W. Zhang, X. Qiao, X. Qiu, Q. Chen, Y. Cai, and H. Chen, “Controllable synthesis and ostwald ripening of silver nanoparticles,” Curr. Nanosci. 9(6), 753–758 (2013).
[Crossref]

Europhys. Lett. (1)

M. I. Tribelsky, “Anomalous light absorption by small particles,” Europhys. Lett. 94(1), 14004 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, “Defining rules for the shape evolution of gold nanoparticles,” J. Am. Chem. Soc. 134(35), 14542–14554 (2012).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

Z. Yang, H. Qian, H. Chen, and J. N. Anker, “One-pot hydrothermal synthesis of silver nanowires via citrate reduction,” J. Colloid Interface Sci. 352(2), 285–291 (2010).
[Crossref] [PubMed]

J. Mater. Chem. (1)

C. L. Nehl and J. H. Hafner, “Shape-dependent plasmon resonances of gold nanoparticles,” J. Mater. Chem. 18(21), 2415–2419 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nano Lett. (2)

X. Xia and Y. Xia, “Symmetry breaking during seeded growth of nanocrystals,” Nano Lett. 12(11), 6038–6042 (2012).
[Crossref] [PubMed]

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-Film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Nanoscale (1)

J. Xiao and L. Qi, “Surfactant-assisted, shape-controlled synthesis of gold nanocrystals,” Nanoscale 3(4), 1383–1396 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. A (1)

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75(5), 053801 (2007).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (4)

O. D. Miller, C. W. Hsu, M. T. H. Reid, W. Qiu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to extinction by metallic nanoparticles,” Phys. Rev. Lett. 112(12), 123903 (2014).
[Crossref] [PubMed]

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref] [PubMed]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

A. Raman, W. Shin, and S. Fan, “Upper bound on the modal material loss rate in plasmonic and metamaterial systems,” Phys. Rev. Lett. 110(18), 183901 (2013).
[Crossref] [PubMed]

Proc. IRE (1)

H. Wheeler, “Fundamental limitations of small antennas,” Proc. IRE 35(12), 1479–1484 (1947).
[Crossref]

Sci. Am. (1)

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

Science (3)

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

SIAM J. Optim. (1)

S. Mehrotra, “On the Implementation of a Primal-Dual Interior Point Method,” SIAM J. Optim. 2(4), 575–601 (1992).
[Crossref]

Other (8)

D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, Vol. 6. (Athena Scientific, 1997).

M. A. T. L. A. B. Release, 2014b, The MathWorks, Inc., Natick, Massachusetts, United States.

E. Palik, Handbook of Optical Constants of Solids, 3rd edition; (Academic Press, 1998).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

O. D. Miller, C. W. Hsu, E. Anquillare, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, “Power–bandwidth limitations of an optical resonance,” arXiv: http://arxiv.org/abs/1510.06902

C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Songs, 1983).

M. T. H. Reid, “Scuff-em: free, open-source boundary-element software,” http://homerreid.com/scuff-EM .

R. F. Harrington, Field Computation by Moment Methods (IEEE, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Broadband extinction cross-section per volume, σext/V, by computationally optimized distributions of nanoparticles (solid lines), alongside theoretical limits to broadband response from subwavelength particles (dashed lines). (a) Over visible wavelengths, tailored distributions of silver nanodisks are better than distributions of more common alternatives, including core-shell (SiO2–Ag) particles and dielectric (TiO2) or metal (Ag) spheres. (b) Across tunable wavelength windows, nanodisks offer significant and increasing enhancements away from silver’s bulk plasma wavelength, λp(Ag)≈324nm. Detailied theoretical aspect-ratio data is given in Appendix B.

Fig. 2
Fig. 2

(a-b) TEM images of nanoparticles synthesized for wavelength ranges (a) λ = 400–600nm (blue) and (b) λ = 600–800nm (red). Particle dimensions range from ≈5–50 nm for their shortest and longest dimensions, respectively. (c) A mixture of the nanoparticles in (a) and (b) enables coverage of λ = 400–800nm (purple). (d-e) Theoretically optimized and experimentally measured aspect ratios, which are on the order of 2-5 for shorter wavelengths (blue) and 3–10 for longer wavelengths (red). (f-g) Experimental measurement (solid) and computational optimization (dashed) of broadband extinction in the three target wavelength ranges. The measured per-volume extinction closely approach the computationally optimized values due to the small particle sizes and nearly matched aspect-ratio distributions.

Fig. 3
Fig. 3

Optimal extinction per volume (in water), over the 400–800nm wavelength window, for nanoparticles with material susceptibilities described by Palik (red) [39] versus Johnson and Christy (blue, JC) [40].

Fig. 4
Fig. 4

Comparison of experimentally measured σext/V spectra (bold) to a theoretical reconstruction (dashed) of the expected spectra given the experimentally measured aspect ratios, for two wavelength windows (red and blue).

Fig. 5
Fig. 5

(a) Reconstruction (blue) of experimental extinction (red) curve via least-squares optimization of the aspect-ratio distribution. (b) Aspect-ratio distribution that produces the theoretical curve in (a) for small, quasistatic silver nanoparticles.

Tables (3)

Tables Icon

Table 1 Comparison of Computationally-Optimized and Experimentally-Measured Nanoplate Properties

Tables Icon

Table 2 Aspect-ratio Data for Optimal Narrow-band Response (Fig. 1)

Tables Icon

Table 3 Percentage Distribution of Aspect Ratios

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FOM= min λ[ λ 1 , λ 2 ] σ ext ( λ ) V

Metrics