Abstract

A new super-resolution image restoration confocal Raman microscopy method (SRIR-RAMAN) is proposed for improving the spatial resolution of confocal Raman microscopy. This method can recover the lost high spatial frequency of the confocal Raman microscopy by using Poisson-MAP super-resolution imaging restoration, thereby improving the spatial resolution of confocal Raman microscopy and realizing its super-resolution imaging. Simulation analyses and experimental results indicate that the spatial resolution of SRIR-RAMAN can be improved by 65% to achieve 200 nm with the same confocal Raman microscopy system. This method can provide a new tool for high spatial resolution micro-probe structure detection in physical chemistry, materials science, biomedical science and other areas.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Confocal pore size measurement based on super-resolution image restoration

Dali Liu, Yun Wang, Lirong Qiu, Xinyue Mao, and Weiqian Zhao
Appl. Opt. 53(25) 5694-5700 (2014)

Super-resolution fluorescence microscopy by stepwise optical saturation

Yide Zhang, Prakash D. Nallathamby, Genevieve D. Vigil, Aamir A. Khan, Devon E. Mason, Joel D. Boerckel, Ryan K. Roeder, and Scott S. Howard
Biomed. Opt. Express 9(4) 1613-1629 (2018)

Super-resolution spinning-disk confocal microscopy using optical photon reassignment

Takuya Azuma and Takayuki Kei
Opt. Express 23(11) 15003-15011 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Sil and S. Umapathy, “Raman spectroscopy explores molecular structural signatures of hidden materials in depth: Universal Multiple Angle Raman Spectroscopy,” Sci. Rep. 4, 5308–5314 (2014).
    [Crossref] [PubMed]
  2. C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
    [Crossref] [PubMed]
  3. J. J. Schaefer, A. C. Crawford, M. D. Porter, and J. M. Harris, “Confocal Raman Microscopy for Investigating Synthesis and Characterization of Individual Optically Trapped Vinyl-Polymerized Surfactant Particles,” Appl. Spectrosc. 68(6), 633–641 (2014).
    [Crossref] [PubMed]
  4. X. H. Xianwei Hu, Z. Y. Zongxin Yu, B. G. Bingliang Gao, Z. S. Zhongning Shi, J. Y. Jiangyu Yu, and Z. W. Zhaowen Wang, “Equilibrium between NO3-and NO2-in KNO3-NaNO2 melts: a Raman spectra study,” Chin. Opt. Lett. 12(9), 093001 (2014).
    [Crossref]
  5. J. C. C. Day and N. Stone, “A subcutaneous Raman needle probe,” Appl. Spectrosc. 67(3), 349–354 (2013).
    [Crossref] [PubMed]
  6. M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
    [Crossref] [PubMed]
  7. N. Gierlinger, T. Keplinger, and M. Harrington, “Imaging of plant cell walls by confocal Raman microscopy,” Nat. Protoc. 7(9), 1694–1708 (2012).
    [Crossref] [PubMed]
  8. N. Everall, J. Lapham, F. Adar, A. Whitley, E. Lee, and S. Mamedov, “Optimizing depth resolution in confocal Raman microscopy: a comparison of metallurgical, dry corrected, and oil immersion objectives,” Appl. Spectrosc. 61(3), 251–259 (2007).
    [Crossref] [PubMed]
  9. K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
    [Crossref] [PubMed]
  10. J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
    [Crossref] [PubMed]
  11. T. Ichimura, S. Fujii, P. Verma, T. Yano, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett. 102(18), 186101 (2009).
    [Crossref] [PubMed]
  12. R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
    [Crossref] [PubMed]
  13. J. L. Harris, “Diffraction and Resolving Power,” J. Opt. Soc. Am. 54(7), 931–936 (1964).
    [Crossref]
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill,1968).
  15. A. Govil, D. M. Pallister, and M. D. Morris, “Three-dimensional digital confocal Raman microscopy,” Appl. Spectrosc. 47(1), 75–79 (1993).
    [Crossref]
  16. J. P. Tomba, J. M. Carella, and J. M. Pastor, “Interphase evolution in polymer films by confocal Raman microspectroscopy,” Appl. Spectrosc. 60(2), 115–121 (2006).
    [Crossref] [PubMed]
  17. L. Zhang, X. Feng, W. Zhang, and X. M. Liu, “Improving spatial resolution in fiber Raman distributed temperature sensor by using deconvolution algorithm,” Chin. Opt. Lett. 7(7), 560–563 (2009).
    [Crossref]
  18. M. Offroy, M. Moreau, S. Sobanska, P. Milanfar, and L. Duponchel, “Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization,” Sci. Rep. 5, 12303–12316 (2015).
    [Crossref] [PubMed]
  19. B. H. Su and W. Q. Jin, “POCS-MPMAP based super-resolution image restoration,” Guangzi Xuebao 32(4), 502–504 (2009).
  20. G. M. P. van Kempen, H. T. M. van der Voort, J. G. J. Bauman, and K. C. Strasters, “Comparing maximum likelihood estimation and constrained Tikhonov-Miller restoration,” IEEE. Eng. Med. Biol. 15(1), 76–83 (1996).
    [Crossref]
  21. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific Publishing Co. Pte. Ltd., 1996).
  22. R. Dosselmann and X. D. Yang, “Existing and emerging image quality metrics,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE, 2005), pp. 1906–1913.
  23. Medda, and V. DeBrunner, “Color image quality index based on the UIQI. Image Analysis and Interpretation,” in Proceedings of IEEE Conference on Image Analysis and Interpretation (IEEE, 2006), pp. 213–217.

2015 (3)

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
[Crossref] [PubMed]

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

M. Offroy, M. Moreau, S. Sobanska, P. Milanfar, and L. Duponchel, “Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization,” Sci. Rep. 5, 12303–12316 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (2)

J. C. C. Day and N. Stone, “A subcutaneous Raman needle probe,” Appl. Spectrosc. 67(3), 349–354 (2013).
[Crossref] [PubMed]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

2012 (1)

N. Gierlinger, T. Keplinger, and M. Harrington, “Imaging of plant cell walls by confocal Raman microscopy,” Nat. Protoc. 7(9), 1694–1708 (2012).
[Crossref] [PubMed]

2009 (5)

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

T. Ichimura, S. Fujii, P. Verma, T. Yano, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett. 102(18), 186101 (2009).
[Crossref] [PubMed]

M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
[Crossref] [PubMed]

B. H. Su and W. Q. Jin, “POCS-MPMAP based super-resolution image restoration,” Guangzi Xuebao 32(4), 502–504 (2009).

L. Zhang, X. Feng, W. Zhang, and X. M. Liu, “Improving spatial resolution in fiber Raman distributed temperature sensor by using deconvolution algorithm,” Chin. Opt. Lett. 7(7), 560–563 (2009).
[Crossref]

2007 (1)

2006 (1)

1996 (1)

G. M. P. van Kempen, H. T. M. van der Voort, J. G. J. Bauman, and K. C. Strasters, “Comparing maximum likelihood estimation and constrained Tikhonov-Miller restoration,” IEEE. Eng. Med. Biol. 15(1), 76–83 (1996).
[Crossref]

1993 (1)

1964 (1)

Adar, F.

Aizpurua, J.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Banholzer, M. J.

M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
[Crossref] [PubMed]

Banszerus, L.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
[Crossref] [PubMed]

Bauman, J. G. J.

G. M. P. van Kempen, H. T. M. van der Voort, J. G. J. Bauman, and K. C. Strasters, “Comparing maximum likelihood estimation and constrained Tikhonov-Miller restoration,” IEEE. Eng. Med. Biol. 15(1), 76–83 (1996).
[Crossref]

Beschoten, B.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
[Crossref] [PubMed]

Bingliang Gao, B. G.

Carella, J. M.

Chen, L. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Chiu, L. D.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

Conchello, J. A.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Crawford, A. C.

Day, J. C. C.

Dong, Z. C.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Dosselmann, R.

R. Dosselmann and X. D. Yang, “Existing and emerging image quality metrics,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE, 2005), pp. 1906–1913.

Drögeler, M.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
[Crossref] [PubMed]

Duponchel, L.

M. Offroy, M. Moreau, S. Sobanska, P. Milanfar, and L. Duponchel, “Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization,” Sci. Rep. 5, 12303–12316 (2015).
[Crossref] [PubMed]

Everall, N.

Feng, X.

Fujii, S.

T. Ichimura, S. Fujii, P. Verma, T. Yano, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett. 102(18), 186101 (2009).
[Crossref] [PubMed]

Fujita, K.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

Gierlinger, N.

N. Gierlinger, T. Keplinger, and M. Harrington, “Imaging of plant cell walls by confocal Raman microscopy,” Nat. Protoc. 7(9), 1694–1708 (2012).
[Crossref] [PubMed]

Govil, A.

Harrington, M.

N. Gierlinger, T. Keplinger, and M. Harrington, “Imaging of plant cell walls by confocal Raman microscopy,” Nat. Protoc. 7(9), 1694–1708 (2012).
[Crossref] [PubMed]

Harris, J. L.

Harris, J. M.

Hashimoto, H.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

Hou, J. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Ichimura, T.

T. Ichimura, S. Fujii, P. Verma, T. Yano, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett. 102(18), 186101 (2009).
[Crossref] [PubMed]

Inouye, Y.

T. Ichimura, S. Fujii, P. Verma, T. Yano, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett. 102(18), 186101 (2009).
[Crossref] [PubMed]

Jiang, S.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Jiangyu Yu, J. Y.

Jin, W. Q.

B. H. Su and W. Q. Jin, “POCS-MPMAP based super-resolution image restoration,” Guangzi Xuebao 32(4), 502–504 (2009).

Kasai, A.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

Kawata, S.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

T. Ichimura, S. Fujii, P. Verma, T. Yano, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett. 102(18), 186101 (2009).
[Crossref] [PubMed]

Keplinger, T.

N. Gierlinger, T. Keplinger, and M. Harrington, “Imaging of plant cell walls by confocal Raman microscopy,” Nat. Protoc. 7(9), 1694–1708 (2012).
[Crossref] [PubMed]

Lapham, J.

Lee, E.

Liao, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Lichtman, J. W.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Liu, X. M.

Lu, J.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Luo, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Mamedov, S.

Mauri, F.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
[Crossref] [PubMed]

Milanfar, P.

M. Offroy, M. Moreau, S. Sobanska, P. Milanfar, and L. Duponchel, “Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization,” Sci. Rep. 5, 12303–12316 (2015).
[Crossref] [PubMed]

Millstone, J. E.

M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
[Crossref] [PubMed]

Min, W.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Mirkin, C. A.

M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
[Crossref] [PubMed]

Moreau, M.

M. Offroy, M. Moreau, S. Sobanska, P. Milanfar, and L. Duponchel, “Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization,” Sci. Rep. 5, 12303–12316 (2015).
[Crossref] [PubMed]

Morris, M. D.

Neumann, C.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
[Crossref] [PubMed]

Offroy, M.

M. Offroy, M. Moreau, S. Sobanska, P. Milanfar, and L. Duponchel, “Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization,” Sci. Rep. 5, 12303–12316 (2015).
[Crossref] [PubMed]

Osberg, K. D.

M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
[Crossref] [PubMed]

Pallister, D. M.

Palonpon, A. F.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

Pastor, J. M.

Porter, M. D.

Qin, L.

M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
[Crossref] [PubMed]

Reichardt, S.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
[Crossref] [PubMed]

Rotkin, S. V.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
[Crossref] [PubMed]

Schaefer, J. J.

Schmitz, M.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
[Crossref] [PubMed]

Sil, S.

S. Sil and S. Umapathy, “Raman spectroscopy explores molecular structural signatures of hidden materials in depth: Universal Multiple Angle Raman Spectroscopy,” Sci. Rep. 4, 5308–5314 (2014).
[Crossref] [PubMed]

Smith, N. I.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

Sobanska, S.

M. Offroy, M. Moreau, S. Sobanska, P. Milanfar, and L. Duponchel, “Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization,” Sci. Rep. 5, 12303–12316 (2015).
[Crossref] [PubMed]

Stampfer, C.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
[Crossref] [PubMed]

Stone, N.

Strasters, K. C.

G. M. P. van Kempen, H. T. M. van der Voort, J. G. J. Bauman, and K. C. Strasters, “Comparing maximum likelihood estimation and constrained Tikhonov-Miller restoration,” IEEE. Eng. Med. Biol. 15(1), 76–83 (1996).
[Crossref]

Su, B. H.

B. H. Su and W. Q. Jin, “POCS-MPMAP based super-resolution image restoration,” Guangzi Xuebao 32(4), 502–504 (2009).

Taniguchi, T.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
[Crossref] [PubMed]

Tomba, J. P.

Umapathy, S.

S. Sil and S. Umapathy, “Raman spectroscopy explores molecular structural signatures of hidden materials in depth: Universal Multiple Angle Raman Spectroscopy,” Sci. Rep. 4, 5308–5314 (2014).
[Crossref] [PubMed]

van der Voort, H. T. M.

G. M. P. van Kempen, H. T. M. van der Voort, J. G. J. Bauman, and K. C. Strasters, “Comparing maximum likelihood estimation and constrained Tikhonov-Miller restoration,” IEEE. Eng. Med. Biol. 15(1), 76–83 (1996).
[Crossref]

van Kempen, G. M. P.

G. M. P. van Kempen, H. T. M. van der Voort, J. G. J. Bauman, and K. C. Strasters, “Comparing maximum likelihood estimation and constrained Tikhonov-Miller restoration,” IEEE. Eng. Med. Biol. 15(1), 76–83 (1996).
[Crossref]

Venezuela, P.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
[Crossref] [PubMed]

Verma, P.

T. Ichimura, S. Fujii, P. Verma, T. Yano, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett. 102(18), 186101 (2009).
[Crossref] [PubMed]

Watanabe, K.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
[Crossref] [PubMed]

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

Whitley, A.

Xianwei Hu, X. H.

Xie, X. S.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Yang, J. L.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Yang, X. D.

R. Dosselmann and X. D. Yang, “Existing and emerging image quality metrics,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE, 2005), pp. 1906–1913.

Yano, T.

T. Ichimura, S. Fujii, P. Verma, T. Yano, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett. 102(18), 186101 (2009).
[Crossref] [PubMed]

Zhang, C.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Zhang, L.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

L. Zhang, X. Feng, W. Zhang, and X. M. Liu, “Improving spatial resolution in fiber Raman distributed temperature sensor by using deconvolution algorithm,” Chin. Opt. Lett. 7(7), 560–563 (2009).
[Crossref]

Zhang, R.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Zhang, W.

Zhang, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Zhaowen Wang, Z. W.

Zhongning Shi, Z. S.

Zongxin Yu, Z. Y.

Appl. Spectrosc. (5)

Chin. Opt. Lett. (2)

Guangzi Xuebao (1)

B. H. Su and W. Q. Jin, “POCS-MPMAP based super-resolution image restoration,” Guangzi Xuebao 32(4), 502–504 (2009).

IEEE. Eng. Med. Biol. (1)

G. M. P. van Kempen, H. T. M. van der Voort, J. G. J. Bauman, and K. C. Strasters, “Comparing maximum likelihood estimation and constrained Tikhonov-Miller restoration,” IEEE. Eng. Med. Biol. 15(1), 76–83 (1996).
[Crossref]

J. Opt. Soc. Am. (1)

Nano Lett. (1)

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Nat. Commun. (2)

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
[Crossref] [PubMed]

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

Nat. Protoc. (2)

M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
[Crossref] [PubMed]

N. Gierlinger, T. Keplinger, and M. Harrington, “Imaging of plant cell walls by confocal Raman microscopy,” Nat. Protoc. 7(9), 1694–1708 (2012).
[Crossref] [PubMed]

Nature (1)

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

T. Ichimura, S. Fujii, P. Verma, T. Yano, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett. 102(18), 186101 (2009).
[Crossref] [PubMed]

Sci. Rep. (2)

M. Offroy, M. Moreau, S. Sobanska, P. Milanfar, and L. Duponchel, “Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization,” Sci. Rep. 5, 12303–12316 (2015).
[Crossref] [PubMed]

S. Sil and S. Umapathy, “Raman spectroscopy explores molecular structural signatures of hidden materials in depth: Universal Multiple Angle Raman Spectroscopy,” Sci. Rep. 4, 5308–5314 (2014).
[Crossref] [PubMed]

Other (4)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill,1968).

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific Publishing Co. Pte. Ltd., 1996).

R. Dosselmann and X. D. Yang, “Existing and emerging image quality metrics,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE, 2005), pp. 1906–1913.

Medda, and V. DeBrunner, “Color image quality index based on the UIQI. Image Analysis and Interpretation,” in Proceedings of IEEE Conference on Image Analysis and Interpretation (IEEE, 2006), pp. 213–217.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of CRM.
Fig. 2
Fig. 2 Super-resolution image restoration simulation results of quantization noise.
Fig. 3
Fig. 3 Super-resolution image restoration simulation results of a vertical bar with 250 nm period: (a) target image, (b) degraded image (SNR = 100 dB), (c) restored image, (d) representative cross-sectional line profiles taken along the dotted line in (b) and (c).
Fig. 4
Fig. 4 (a) microscopic observation image, (b) zoom-in the area shown in red area of (a), (c) design image from the area of the green square in (b), (d) Raman spectrum of point A in (c).
Fig. 5
Fig. 5 Homemade CRM system.
Fig. 6
Fig. 6 Super-resolution image restoration results of vertical bar with 520 nm period: (a) degraded image (mapping @520.7 cm−1), (b) restored image, (c) three-dimensional restored image, (d) representative cross-sectional line profiles taken along the dotted line in (a) (red) and (b) (blue).
Fig. 7
Fig. 7 Super-resolution image restoration results of vertical bar with 200 nm period: (a) degraded image (mapping @520.7 cm−1), (b) restored image, (c) three-dimensional restored image, (d) representative cross-sectional line profiles taken along the dotted line in (b).

Tables (2)

Tables Icon

Table 1 Simulation of Restored Image Quality Index

Tables Icon

Table 2 Restored Image Quality Index of Vertical Bar with Period 520 nm

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

h i (x,y)= | h 1 ( M 1 x, M 1 y) | 2 | h 2 (x+ M 2 x 2 ,y+ M 2 y 2 ) | 2 D( x 2 , y 2 )d x 2 d y 2
I d (x,y)= h i (x,y) 3 o f (x,y)+n( x,y )
f ij n+1 = f ij n exp{ β[ g ij ( h f n ) ij 1 ] h ij α f ij U( f n ) }
{ d kl = f ij f kl , (i,j)(k,l) U(f)= c ϕ( d kl ) U(f) / f ij = c ϕ( d kl ) / f ij
{ ϕ(d)= (d/γ ) 2 / [1+ (d/γ ) 2 ] ϕ(d)/f i j =2γd ( γ+ d 2 /γ ) 2
g(x,y)= I d (x,y)
h= h i (x,y)
I R (x,y)={ f(x,y), f(x,y)0 0, f(x,y)<0
{ MSE= 1 N×M i=1 N j=1 M [ f( i,j ) f ( i,j ) ] 2 PSNR=10 log 10 1 MSE =10 log 10 1 1 N×M i=1 N j=1 M [ f( i,j ) f ( i,j ) ] 2 ISNR=10 log 10 fg 2 f f 2 =PSN R f PSN R g
r( i,j )= u=m m v=m m F( iu,jv ) F ( iu,jv ) u=m m v=m m | F( iu,jv ) | 2 u=m m v=m m | F ( iu,jv ) | 2

Metrics