Abstract

We introduce a novel dual-beam interference lithography (IL) method that makes it possible to fabricate a concave grating with a large line spacing. A concave lens is placed between two point sources for spatial interference and a concave substrate to produce the grating pattern. The original positions of the two point sources are separated by the concave lens, which permits the IL method to fabricate a concave grating that bypasses the line spacing limitation of the conventional IL system. A concave grating with a line spacing of about 3.8 μm was fabricated and fitted inside a miniature spectrometer. The enlarged line spacing reduces the detector length by 66.5%, while keeping the resolution better than 1.5 nm over a wide spectral band (360 – 825 nm).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Holographic fabrication of large-constant concave gratings for wide-range flat-field spectrometers with the addition of a concave lens

Qian Zhou, Xinghui Li, Kai Ni, Rui Tian, and Jinchao Pang
Opt. Express 24(2) 732-738 (2016)

High-resolution compact spectrometer based on a custom-printed varied-line-spacing concave blazed grating

Jianwei Chen, Wang Chen, Guodong Zhang, Hui Lin, and Shih-Chi Chen
Opt. Express 25(11) 12446-12454 (2017)

Period-chirped gratings fabricated by laser interference lithography with a concave Lloyd’s mirror

Hanbit Kim, Hyunho Jung, Dong-Hyun Lee, Kyu Back Lee, and Heonsu Jeon
Appl. Opt. 55(2) 354-359 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Li, M. J. Deen, Q. Fang, and P. R. Selvaganapathy, “Design of a flat field concave-grating-based micro-Raman spectrometer for environmental applications,” Appl. Opt. 51(28), 6855–6863 (2012).
    [Crossref] [PubMed]
  2. S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
    [PubMed]
  3. R. Brunner, M. Burkhardt, K. Rudolf, and N. Correns, “Microspectrometer based on holographically recorded diffractive elements using supplementary holograms,” Opt. Express 16(16), 12239–12250 (2008).
    [Crossref] [PubMed]
  4. M. M. Mariani, P. J. Day, and V. Deckert, “Applications of modern micro-Raman spectroscopy for cell analyses,” Integr Biol (Camb) 2(2-3), 94–101 (2010).
    [Crossref] [PubMed]
  5. K. L. Wei, Z. Y. Wen, J. Guo, and S. B. Chen, “The design and experiment of multi-parameter water quality monitoring microsystem based on MOEMS microspectrometer,” Guangpuxue Yu Guangpu Fenxi 32(7), 2009–2014 (2012).
    [PubMed]
  6. E. A. Sokolova and M. N. Maleshin, “Ray path calculation inspectral instruments having stigmatic concave diffractiongratings,” Sov. J. Opt. Technol. 58(6), 346–348 (1990).
  7. Q. Zhou, J. Pang, X. Li, K. Ni, and R. Tian, “Improving the spectral resolution of flat-field concave grating miniature spectrometers by dividing a wide spectral band into two narrow ones,” Appl. Opt. 54(32), 9450–9455 (2015).
    [Crossref] [PubMed]
  8. Q. Zhou, J. Pang, X. Li, R. Tian, and K. Ni, “Concave grating miniature spectrometer with an expanded spectral band by using two entrance,” Chin. Opt. Lett. 13(11), 110501 (2015).
    [Crossref]
  9. Q. Zhou, X. Li, K. Ni, R. Tian, and J. Pang, “Holographic fabrication of large-constant concave gratings for wide-range flat-field spectrometers with the addition of a concave lens,” Opt. Express 24(2), 732–738 (2016).
    [Crossref] [PubMed]
  10. M. Duban, G. R. Lemaitre, and R. F. Malina, “Recording method for obtaining high-resolution holographic gratings through use of multimode deformable plane mirrors,” Appl. Opt. 37(16), 3438–3439 (1998).
    [Crossref] [PubMed]
  11. C. H. Ko, W. C. Liu, N. P. Chen, J. L. Shen, and J. S. Lin, “Double reflection in the concave reflective blazed grating,” Opt. Express 15(17), 10498–10503 (2007).
    [Crossref] [PubMed]
  12. Q. Zhou, L. J. Zeng, and L. F. Li, “Numerical simulation and experimental demonstration of error compensation between recording structure and use structure of flat-field holographic concave gratings,” Guangpuxue Yu Guangpu Fenxi 28(7), 1674–1678 (2008).
    [PubMed]
  13. E. Sokolova, “Holographic diffraction gratings for flat-field spectrometers,” J. Mod. Opt. 47(13), 2377–2389 (2000).
    [Crossref]
  14. M. Koike and T. Namioka, “Plane gratings for high-resolution grazing-incidence monochromators: holographic grating versus mechanically ruled varied-line-spacing grating,” Appl. Opt. 36(25), 6308–6318 (1997).
    [Crossref] [PubMed]
  15. H. Noda, T. Namioka, and M. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64(8), 1031–1036 (1974).
    [Crossref]
  16. E. Sokolova, B. Kruizinga, T. Valkenburg, and J. Schaarsberg, “Recording of concave diffraction gratings in counterpropagating beams using meniscus blanks,” J. Mod. Opt. 49(11), 1907–1917 (2002).
    [Crossref]
  17. E. Sokolova, “Simulation of mechanically ruled concave diffraction gratings by use of an original geometric theory,” Appl. Opt. 43(1), 20–28 (2004).
    [Crossref] [PubMed]
  18. P. Kong, Y. Tang, X. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33(1), 0105001 (2013).
    [Crossref]
  19. J. Zeng, Bayanheshig, and W Li, “Optimum design of miniature wide-waveband concave holographic grating monochromator,” Acta Opt. Sin. 32(2), 0222003 (2012).
    [Crossref]
  20. R. Brunner, M. Burkhardt, K. Rudolf, and N. Correns, “Microspectrometer based on holographically recorded diffractive elements using supplementary holograms,” Opt. Express 16(16), 12239–12250 (2008).
    [Crossref] [PubMed]
  21. E. Sokolova, “Simulation of mechanically ruled concave diffraction gratings by use of an original geometric theory,” Appl. Opt. 43(1), 20–28 (2004).
    [Crossref] [PubMed]
  22. I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
    [Crossref]
  23. High throughput compact spectrometer, Torus Series, http://oceanoptics.com .

2016 (1)

2015 (2)

2013 (1)

P. Kong, Y. Tang, X. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33(1), 0105001 (2013).
[Crossref]

2012 (3)

J. Zeng, Bayanheshig, and W Li, “Optimum design of miniature wide-waveband concave holographic grating monochromator,” Acta Opt. Sin. 32(2), 0222003 (2012).
[Crossref]

K. L. Wei, Z. Y. Wen, J. Guo, and S. B. Chen, “The design and experiment of multi-parameter water quality monitoring microsystem based on MOEMS microspectrometer,” Guangpuxue Yu Guangpu Fenxi 32(7), 2009–2014 (2012).
[PubMed]

Z. Li, M. J. Deen, Q. Fang, and P. R. Selvaganapathy, “Design of a flat field concave-grating-based micro-Raman spectrometer for environmental applications,” Appl. Opt. 51(28), 6855–6863 (2012).
[Crossref] [PubMed]

2010 (1)

M. M. Mariani, P. J. Day, and V. Deckert, “Applications of modern micro-Raman spectroscopy for cell analyses,” Integr Biol (Camb) 2(2-3), 94–101 (2010).
[Crossref] [PubMed]

2008 (3)

2007 (1)

2006 (1)

S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
[PubMed]

2004 (2)

2002 (1)

E. Sokolova, B. Kruizinga, T. Valkenburg, and J. Schaarsberg, “Recording of concave diffraction gratings in counterpropagating beams using meniscus blanks,” J. Mod. Opt. 49(11), 1907–1917 (2002).
[Crossref]

2000 (1)

E. Sokolova, “Holographic diffraction gratings for flat-field spectrometers,” J. Mod. Opt. 47(13), 2377–2389 (2000).
[Crossref]

1998 (2)

M. Duban, G. R. Lemaitre, and R. F. Malina, “Recording method for obtaining high-resolution holographic gratings through use of multimode deformable plane mirrors,” Appl. Opt. 37(16), 3438–3439 (1998).
[Crossref] [PubMed]

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[Crossref]

1997 (1)

1990 (1)

E. A. Sokolova and M. N. Maleshin, “Ray path calculation inspectral instruments having stigmatic concave diffractiongratings,” Sov. J. Opt. Technol. 58(6), 346–348 (1990).

1974 (1)

Aubrecht, I.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[Crossref]

Bayanheshig,

J. Zeng, Bayanheshig, and W Li, “Optimum design of miniature wide-waveband concave holographic grating monochromator,” Acta Opt. Sin. 32(2), 0222003 (2012).
[Crossref]

Bayanheshig, X.

P. Kong, Y. Tang, X. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33(1), 0105001 (2013).
[Crossref]

Brunner, R.

Burkhardt, M.

Chen, N. P.

Chen, S. B.

K. L. Wei, Z. Y. Wen, J. Guo, and S. B. Chen, “The design and experiment of multi-parameter water quality monitoring microsystem based on MOEMS microspectrometer,” Guangpuxue Yu Guangpu Fenxi 32(7), 2009–2014 (2012).
[PubMed]

Correns, N.

Cui, J.

P. Kong, Y. Tang, X. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33(1), 0105001 (2013).
[Crossref]

Day, P. J.

M. M. Mariani, P. J. Day, and V. Deckert, “Applications of modern micro-Raman spectroscopy for cell analyses,” Integr Biol (Camb) 2(2-3), 94–101 (2010).
[Crossref] [PubMed]

Deckert, V.

M. M. Mariani, P. J. Day, and V. Deckert, “Applications of modern micro-Raman spectroscopy for cell analyses,” Integr Biol (Camb) 2(2-3), 94–101 (2010).
[Crossref] [PubMed]

Deen, M. J.

Du, X. Q.

S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
[PubMed]

Duban, M.

Fang, Q.

Guo, J.

K. L. Wei, Z. Y. Wen, J. Guo, and S. B. Chen, “The design and experiment of multi-parameter water quality monitoring microsystem based on MOEMS microspectrometer,” Guangpuxue Yu Guangpu Fenxi 32(7), 2009–2014 (2012).
[PubMed]

Hu, S.

S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
[PubMed]

Ko, C. H.

Koike, M.

Kong, P.

P. Kong, Y. Tang, X. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33(1), 0105001 (2013).
[Crossref]

Koudela, I.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[Crossref]

Kruizinga, B.

E. Sokolova, B. Kruizinga, T. Valkenburg, and J. Schaarsberg, “Recording of concave diffraction gratings in counterpropagating beams using meniscus blanks,” J. Mod. Opt. 49(11), 1907–1917 (2002).
[Crossref]

Lemaitre, G. R.

Li, L. F.

Q. Zhou, L. J. Zeng, and L. F. Li, “Numerical simulation and experimental demonstration of error compensation between recording structure and use structure of flat-field holographic concave gratings,” Guangpuxue Yu Guangpu Fenxi 28(7), 1674–1678 (2008).
[PubMed]

Li, W

J. Zeng, Bayanheshig, and W Li, “Optimum design of miniature wide-waveband concave holographic grating monochromator,” Acta Opt. Sin. 32(2), 0222003 (2012).
[Crossref]

Li, W.

P. Kong, Y. Tang, X. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33(1), 0105001 (2013).
[Crossref]

Li, X.

Li, Z.

Liang, Y. Q.

S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
[PubMed]

Lin, J. S.

Liu, W. C.

Maleshin, M. N.

E. A. Sokolova and M. N. Maleshin, “Ray path calculation inspectral instruments having stigmatic concave diffractiongratings,” Sov. J. Opt. Technol. 58(6), 346–348 (1990).

Malina, R. F.

Mariani, M. M.

M. M. Mariani, P. J. Day, and V. Deckert, “Applications of modern micro-Raman spectroscopy for cell analyses,” Integr Biol (Camb) 2(2-3), 94–101 (2010).
[Crossref] [PubMed]

Miler, M.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[Crossref]

Namioka, T.

Ni, K.

Noda, H.

Pang, J.

Rudolf, K.

Schaarsberg, J.

E. Sokolova, B. Kruizinga, T. Valkenburg, and J. Schaarsberg, “Recording of concave diffraction gratings in counterpropagating beams using meniscus blanks,” J. Mod. Opt. 49(11), 1907–1917 (2002).
[Crossref]

Selvaganapathy, P. R.

Seya, M.

Shen, J. L.

Sokolova, E.

E. Sokolova, “Simulation of mechanically ruled concave diffraction gratings by use of an original geometric theory,” Appl. Opt. 43(1), 20–28 (2004).
[Crossref] [PubMed]

E. Sokolova, “Simulation of mechanically ruled concave diffraction gratings by use of an original geometric theory,” Appl. Opt. 43(1), 20–28 (2004).
[Crossref] [PubMed]

E. Sokolova, B. Kruizinga, T. Valkenburg, and J. Schaarsberg, “Recording of concave diffraction gratings in counterpropagating beams using meniscus blanks,” J. Mod. Opt. 49(11), 1907–1917 (2002).
[Crossref]

E. Sokolova, “Holographic diffraction gratings for flat-field spectrometers,” J. Mod. Opt. 47(13), 2377–2389 (2000).
[Crossref]

Sokolova, E. A.

E. A. Sokolova and M. N. Maleshin, “Ray path calculation inspectral instruments having stigmatic concave diffractiongratings,” Sov. J. Opt. Technol. 58(6), 346–348 (1990).

Tang, Y.

P. Kong, Y. Tang, X. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33(1), 0105001 (2013).
[Crossref]

Tian, R.

Valkenburg, T.

E. Sokolova, B. Kruizinga, T. Valkenburg, and J. Schaarsberg, “Recording of concave diffraction gratings in counterpropagating beams using meniscus blanks,” J. Mod. Opt. 49(11), 1907–1917 (2002).
[Crossref]

Wei, K. L.

K. L. Wei, Z. Y. Wen, J. Guo, and S. B. Chen, “The design and experiment of multi-parameter water quality monitoring microsystem based on MOEMS microspectrometer,” Guangpuxue Yu Guangpu Fenxi 32(7), 2009–2014 (2012).
[PubMed]

Wen, Z. Y.

K. L. Wei, Z. Y. Wen, J. Guo, and S. B. Chen, “The design and experiment of multi-parameter water quality monitoring microsystem based on MOEMS microspectrometer,” Guangpuxue Yu Guangpu Fenxi 32(7), 2009–2014 (2012).
[PubMed]

S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
[PubMed]

Zeng, J.

J. Zeng, Bayanheshig, and W Li, “Optimum design of miniature wide-waveband concave holographic grating monochromator,” Acta Opt. Sin. 32(2), 0222003 (2012).
[Crossref]

Zeng, L. J.

Q. Zhou, L. J. Zeng, and L. F. Li, “Numerical simulation and experimental demonstration of error compensation between recording structure and use structure of flat-field holographic concave gratings,” Guangpuxue Yu Guangpu Fenxi 28(7), 1674–1678 (2008).
[PubMed]

Zhang, B.

S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
[PubMed]

Zhou, Q.

Acta Opt. Sin. (2)

P. Kong, Y. Tang, X. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33(1), 0105001 (2013).
[Crossref]

J. Zeng, Bayanheshig, and W Li, “Optimum design of miniature wide-waveband concave holographic grating monochromator,” Acta Opt. Sin. 32(2), 0222003 (2012).
[Crossref]

Appl. Opt. (6)

Chin. Opt. Lett. (1)

Guangpuxue Yu Guangpu Fenxi (3)

K. L. Wei, Z. Y. Wen, J. Guo, and S. B. Chen, “The design and experiment of multi-parameter water quality monitoring microsystem based on MOEMS microspectrometer,” Guangpuxue Yu Guangpu Fenxi 32(7), 2009–2014 (2012).
[PubMed]

S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
[PubMed]

Q. Zhou, L. J. Zeng, and L. F. Li, “Numerical simulation and experimental demonstration of error compensation between recording structure and use structure of flat-field holographic concave gratings,” Guangpuxue Yu Guangpu Fenxi 28(7), 1674–1678 (2008).
[PubMed]

Integr Biol (Camb) (1)

M. M. Mariani, P. J. Day, and V. Deckert, “Applications of modern micro-Raman spectroscopy for cell analyses,” Integr Biol (Camb) 2(2-3), 94–101 (2010).
[Crossref] [PubMed]

J. Mod. Opt. (3)

E. Sokolova, “Holographic diffraction gratings for flat-field spectrometers,” J. Mod. Opt. 47(13), 2377–2389 (2000).
[Crossref]

E. Sokolova, B. Kruizinga, T. Valkenburg, and J. Schaarsberg, “Recording of concave diffraction gratings in counterpropagating beams using meniscus blanks,” J. Mod. Opt. 49(11), 1907–1917 (2002).
[Crossref]

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (4)

Sov. J. Opt. Technol. (1)

E. A. Sokolova and M. N. Maleshin, “Ray path calculation inspectral instruments having stigmatic concave diffractiongratings,” Sov. J. Opt. Technol. 58(6), 346–348 (1990).

Other (1)

High throughput compact spectrometer, Torus Series, http://oceanoptics.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Recording points and optical path of a concave grating type spectrometer.
Fig. 2
Fig. 2 Dual-beam interference lithography is used to produce concave gratings. (a) The conventional setup (b) The improved setup. C and D are all located in the meridional plane XOY. P is an arbitrary point in the grating.
Fig. 3
Fig. 3 (a) The setup for the dual-beam IL system simulation (b) The experimental setup.
Fig. 4
Fig. 4 A photo of the fabricated concave grating.
Fig. 5
Fig. 5 Experimental setup for testing the concave grating fabricated using our method.
Fig. 6
Fig. 6 Spot diagram of the wavelengths from the simulation.
Fig. 7
Fig. 7 Measured spectrum for different laser light sources.

Tables (2)

Tables Icon

Table 1 Optimized parameters of the spectrometer.

Tables Icon

Table 2 Experimental and simulated resolutions.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d = λ | sin θ C sin θ D |
F = A P + P B + k m λ
F i j k = M i j k ( r A , θ A , r B , θ B , r H , θ H ) + m λ λ 0 H i j k ( r C , θ C , r D , θ D )
I = ( λ 1 λ 2 F i j k 2 d λ )

Metrics