Abstract

Distributed feedback lasers comprised of a reflection section and an active section have been proposed for high direct-modulation bandwidth. The reflection section has the same core layer as the active section so butt-joint re-growth is avoided. Without current injection the reflection section will be pumped to near transparency by the emission from the laser itself so high reflection (> 0.75) can still be achieved as confirmed by the simulation. Therefore a short (150 µm) active section can be used, which enables a low threshold current (~5 mA) and a high direct modulation bandwidth (>30 GHz) as demonstrated by the simulation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of DFB lasers with active distributed reflector

Gonghai Liu, Gongyuan Zhao, Junqiang Sun, Dingshan Gao, Qiaoyin Lu, and Weihua Guo
Opt. Express 26(23) 29784-29795 (2018)

Twin-mirror membrane distributed-reflector lasers using 20-μm-long active region on Si substrates

Erina Kanno, Koji Takeda, Takuro Fujii, Koichi Hasebe, Hidetaka Nishi, Tsuyoshi Yamamoto, Takaaki Kakitsuka, and Shinji Matsuo
Opt. Express 26(2) 1268-1277 (2018)

Modulation properties enhancement in a monolithic integrated two-section DFB laser utilizing side-mode injection locking method

Yunshan Zhang, Lianyan Li, Yating Zhou, Guowang Zhao, Yuechun Shi, Jilin Zheng, Zhike Zhang, Yu Liu, Linjie Zou, Yuke Zhou, Yinchao Du, and Xiangfei Chen
Opt. Express 25(22) 27595-27608 (2017)

References

  • View by:
  • |
  • |
  • |

  1. IEEE Standard for Ethernet (2012). IEEE Standard 802.3, http://standards.ieee.org/about/get/802/802.3.html .
  2. K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, S. Fujisaki, T. Kikawa, E. Nomoto, F. Hamano, M. Sawada, and T. Yuasa, “1.3-μm InGaAlAs directly modulated MQW RWG DFB lasers operating over 10 Gb/s and 100°C,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2004), paper ThD1.
  3. K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).
  4. K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, and T. Yamamoto, “40-Gb/s direct modulation of 1.3-μm semi-insulating buried-heterostructure AlGaInAs MQW DFB lasers,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2008), pp. 19–20.
    [Crossref]
  5. T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43 Gb/s 1.3 μm DFB laser for 40 km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
    [Crossref]
  6. W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
    [Crossref]
  7. K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “56-Gb/s direct modulation in InGaAlAs BH-DFB lasers at 55°C,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th3A.1.
    [Crossref]
  8. T. Yamamoto, A. Uetake, K. Otsubo, M. Matsuda, S. Okumura, S. Tomabechi, and M. Ekawa, “Uncooled 40-Gbps direct modulation of 1.3-µm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2010), pp. 193–194.
    [Crossref]
  9. T. Simoyama, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto, “50-Gbps Direct Modulation using 1.3-μm AlGaInAs MQW distribute-reflector lasers,” in Proc. ECOC (IEEE, 2012), paper P2.11.
    [Crossref]
  10. M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
    [Crossref]
  11. Q. Lu, A. Abdullaev, M. Nawrocka, W. H. Guo, J. O’Callaghan, and J. F. Donegan, “Slotted single mode lasers integrated with a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 25(6), 564–567 (2013).
    [Crossref]
  12. O. K. Kwon, Y. A. Leem, H. L. Dong, C. W. Lee, S. B. Yong, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in lambda/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
    [Crossref]
  13. B. S. Kim, Y. Chung, and J. S. Lee, “An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes,” IEEE J. Quantum Electron. 36(7), 787–794 (2000).
    [Crossref]
  14. L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
    [Crossref]
  15. W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
    [Crossref]
  16. G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed-feedback laser structures,” IEEE J. Quantum Electron. 36(6), 633–640 (2000).
    [Crossref]

2015 (1)

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

2013 (2)

Q. Lu, A. Abdullaev, M. Nawrocka, W. H. Guo, J. O’Callaghan, and J. F. Donegan, “Slotted single mode lasers integrated with a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 25(6), 564–567 (2013).
[Crossref]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

2012 (1)

2011 (2)

W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
[Crossref]

O. K. Kwon, Y. A. Leem, H. L. Dong, C. W. Lee, S. B. Yong, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in lambda/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

2007 (1)

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).

2000 (2)

G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed-feedback laser structures,” IEEE J. Quantum Electron. 36(6), 633–640 (2000).
[Crossref]

B. S. Kim, Y. Chung, and J. S. Lee, “An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes,” IEEE J. Quantum Electron. 36(7), 787–794 (2000).
[Crossref]

1994 (1)

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[Crossref]

Abdullaev, A.

Q. Lu, A. Abdullaev, M. Nawrocka, W. H. Guo, J. O’Callaghan, and J. F. Donegan, “Slotted single mode lasers integrated with a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 25(6), 564–567 (2013).
[Crossref]

Aoki, M.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).

Byrne, D. C.

W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
[Crossref]

Carroll, J. E.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[Crossref]

Cassidy, D. T.

G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed-feedback laser structures,” IEEE J. Quantum Electron. 36(6), 633–640 (2000).
[Crossref]

Chung, Y.

B. S. Kim, Y. Chung, and J. S. Lee, “An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes,” IEEE J. Quantum Electron. 36(7), 787–794 (2000).
[Crossref]

Chung, Y. C.

O. K. Kwon, Y. A. Leem, H. L. Dong, C. W. Lee, S. B. Yong, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in lambda/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Corbett, B.

W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
[Crossref]

Donegan, J. F.

Q. Lu, A. Abdullaev, M. Nawrocka, W. H. Guo, J. O’Callaghan, and J. F. Donegan, “Slotted single mode lasers integrated with a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 25(6), 564–567 (2013).
[Crossref]

W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
[Crossref]

Dong, H. L.

O. K. Kwon, Y. A. Leem, H. L. Dong, C. W. Lee, S. B. Yong, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in lambda/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Ekawa, M.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

T. Simoyama, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto, “50-Gbps Direct Modulation using 1.3-μm AlGaInAs MQW distribute-reflector lasers,” in Proc. ECOC (IEEE, 2012), paper P2.11.
[Crossref]

T. Yamamoto, A. Uetake, K. Otsubo, M. Matsuda, S. Okumura, S. Tomabechi, and M. Ekawa, “Uncooled 40-Gbps direct modulation of 1.3-µm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2010), pp. 193–194.
[Crossref]

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, and T. Yamamoto, “40-Gb/s direct modulation of 1.3-μm semi-insulating buried-heterostructure AlGaInAs MQW DFB lasers,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2008), pp. 19–20.
[Crossref]

Fujisawa, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43 Gb/s 1.3 μm DFB laser for 40 km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
[Crossref]

Guo, W. H.

Q. Lu, A. Abdullaev, M. Nawrocka, W. H. Guo, J. O’Callaghan, and J. F. Donegan, “Slotted single mode lasers integrated with a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 25(6), 564–567 (2013).
[Crossref]

W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
[Crossref]

Ito, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Kano, F.

Kikawa, T.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).

Kim, B. S.

B. S. Kim, Y. Chung, and J. S. Lee, “An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes,” IEEE J. Quantum Electron. 36(7), 787–794 (2000).
[Crossref]

Kitatani, T.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).

Kobayashi, W.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43 Gb/s 1.3 μm DFB laser for 40 km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
[Crossref]

Kohtoku, M.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Kurosaki, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Kwon, O. K.

O. K. Kwon, Y. A. Leem, H. L. Dong, C. W. Lee, S. B. Yong, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in lambda/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Lee, C. W.

O. K. Kwon, Y. A. Leem, H. L. Dong, C. W. Lee, S. B. Yong, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in lambda/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Lee, J. S.

B. S. Kim, Y. Chung, and J. S. Lee, “An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes,” IEEE J. Quantum Electron. 36(7), 787–794 (2000).
[Crossref]

Leem, Y. A.

O. K. Kwon, Y. A. Leem, H. L. Dong, C. W. Lee, S. B. Yong, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in lambda/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Lu, Q.

Q. Lu, A. Abdullaev, M. Nawrocka, W. H. Guo, J. O’Callaghan, and J. F. Donegan, “Slotted single mode lasers integrated with a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 25(6), 564–567 (2013).
[Crossref]

W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
[Crossref]

Marcenac, D. D.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[Crossref]

Matsuda, M.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

T. Simoyama, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto, “50-Gbps Direct Modulation using 1.3-μm AlGaInAs MQW distribute-reflector lasers,” in Proc. ECOC (IEEE, 2012), paper P2.11.
[Crossref]

T. Yamamoto, A. Uetake, K. Otsubo, M. Matsuda, S. Okumura, S. Tomabechi, and M. Ekawa, “Uncooled 40-Gbps direct modulation of 1.3-µm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2010), pp. 193–194.
[Crossref]

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, and T. Yamamoto, “40-Gb/s direct modulation of 1.3-μm semi-insulating buried-heterostructure AlGaInAs MQW DFB lasers,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2008), pp. 19–20.
[Crossref]

Morrison, G. B.

G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed-feedback laser structures,” IEEE J. Quantum Electron. 36(6), 633–640 (2000).
[Crossref]

Mukaikubo, M.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).

Nakahara, K.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).

Nawrocka, M.

Q. Lu, A. Abdullaev, M. Nawrocka, W. H. Guo, J. O’Callaghan, and J. F. Donegan, “Slotted single mode lasers integrated with a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 25(6), 564–567 (2013).
[Crossref]

Nowell, M. C.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[Crossref]

O’Callaghan, J.

Q. Lu, A. Abdullaev, M. Nawrocka, W. H. Guo, J. O’Callaghan, and J. F. Donegan, “Slotted single mode lasers integrated with a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 25(6), 564–567 (2013).
[Crossref]

Okumura, S.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

T. Simoyama, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto, “50-Gbps Direct Modulation using 1.3-μm AlGaInAs MQW distribute-reflector lasers,” in Proc. ECOC (IEEE, 2012), paper P2.11.
[Crossref]

T. Yamamoto, A. Uetake, K. Otsubo, M. Matsuda, S. Okumura, S. Tomabechi, and M. Ekawa, “Uncooled 40-Gbps direct modulation of 1.3-µm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2010), pp. 193–194.
[Crossref]

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, and T. Yamamoto, “40-Gb/s direct modulation of 1.3-μm semi-insulating buried-heterostructure AlGaInAs MQW DFB lasers,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2008), pp. 19–20.
[Crossref]

Otsubo, K.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, and T. Yamamoto, “40-Gb/s direct modulation of 1.3-μm semi-insulating buried-heterostructure AlGaInAs MQW DFB lasers,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2008), pp. 19–20.
[Crossref]

T. Yamamoto, A. Uetake, K. Otsubo, M. Matsuda, S. Okumura, S. Tomabechi, and M. Ekawa, “Uncooled 40-Gbps direct modulation of 1.3-µm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2010), pp. 193–194.
[Crossref]

Plumb, R. G. S.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[Crossref]

Sanjoh, H.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Shibata, Y.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Shinoda, K.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).

Simoyama, T.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

T. Simoyama, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto, “50-Gbps Direct Modulation using 1.3-μm AlGaInAs MQW distribute-reflector lasers,” in Proc. ECOC (IEEE, 2012), paper P2.11.
[Crossref]

Tadokoro, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43 Gb/s 1.3 μm DFB laser for 40 km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
[Crossref]

Takabayashi, K.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

Takada, K.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, and T. Yamamoto, “40-Gb/s direct modulation of 1.3-μm semi-insulating buried-heterostructure AlGaInAs MQW DFB lasers,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2008), pp. 19–20.
[Crossref]

Taniguchi, T.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).

Tomabechi, S.

T. Yamamoto, A. Uetake, K. Otsubo, M. Matsuda, S. Okumura, S. Tomabechi, and M. Ekawa, “Uncooled 40-Gbps direct modulation of 1.3-µm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2010), pp. 193–194.
[Crossref]

Tsuchiya, T.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).

Uetake, A.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

T. Simoyama, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto, “50-Gbps Direct Modulation using 1.3-μm AlGaInAs MQW distribute-reflector lasers,” in Proc. ECOC (IEEE, 2012), paper P2.11.
[Crossref]

T. Yamamoto, A. Uetake, K. Otsubo, M. Matsuda, S. Okumura, S. Tomabechi, and M. Ekawa, “Uncooled 40-Gbps direct modulation of 1.3-µm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2010), pp. 193–194.
[Crossref]

Yamamoto, T.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

T. Simoyama, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto, “50-Gbps Direct Modulation using 1.3-μm AlGaInAs MQW distribute-reflector lasers,” in Proc. ECOC (IEEE, 2012), paper P2.11.
[Crossref]

T. Yamamoto, A. Uetake, K. Otsubo, M. Matsuda, S. Okumura, S. Tomabechi, and M. Ekawa, “Uncooled 40-Gbps direct modulation of 1.3-µm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2010), pp. 193–194.
[Crossref]

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, and T. Yamamoto, “40-Gb/s direct modulation of 1.3-μm semi-insulating buried-heterostructure AlGaInAs MQW DFB lasers,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2008), pp. 19–20.
[Crossref]

Yamanaka, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43 Gb/s 1.3 μm DFB laser for 40 km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
[Crossref]

Yong, S. B.

O. K. Kwon, Y. A. Leem, H. L. Dong, C. W. Lee, S. B. Yong, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in lambda/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Yu, S. F.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[Crossref]

Zhang, L. M.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[Crossref]

IEEE J. Quantum Electron. (4)

O. K. Kwon, Y. A. Leem, H. L. Dong, C. W. Lee, S. B. Yong, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in lambda/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

B. S. Kim, Y. Chung, and J. S. Lee, “An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes,” IEEE J. Quantum Electron. 36(7), 787–794 (2000).
[Crossref]

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[Crossref]

G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed-feedback laser structures,” IEEE J. Quantum Electron. 36(6), 633–640 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
[Crossref]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).

Q. Lu, A. Abdullaev, M. Nawrocka, W. H. Guo, J. O’Callaghan, and J. F. Donegan, “Slotted single mode lasers integrated with a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 25(6), 564–567 (2013).
[Crossref]

J. Lightwave Technol. (1)

Other (6)

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, and T. Yamamoto, “40-Gb/s direct modulation of 1.3-μm semi-insulating buried-heterostructure AlGaInAs MQW DFB lasers,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2008), pp. 19–20.
[Crossref]

IEEE Standard for Ethernet (2012). IEEE Standard 802.3, http://standards.ieee.org/about/get/802/802.3.html .

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, S. Fujisaki, T. Kikawa, E. Nomoto, F. Hamano, M. Sawada, and T. Yuasa, “1.3-μm InGaAlAs directly modulated MQW RWG DFB lasers operating over 10 Gb/s and 100°C,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2004), paper ThD1.

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “56-Gb/s direct modulation in InGaAlAs BH-DFB lasers at 55°C,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th3A.1.
[Crossref]

T. Yamamoto, A. Uetake, K. Otsubo, M. Matsuda, S. Okumura, S. Tomabechi, and M. Ekawa, “Uncooled 40-Gbps direct modulation of 1.3-µm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure,” in Proceedings of IEEE Conference on Semiconductor Laser (IEEE, 2010), pp. 193–194.
[Crossref]

T. Simoyama, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto, “50-Gbps Direct Modulation using 1.3-μm AlGaInAs MQW distribute-reflector lasers,” in Proc. ECOC (IEEE, 2012), paper P2.11.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the proposed laser structure.
Fig. 2
Fig. 2 Schematic diagram of the time domain modeling.
Fig. 3
Fig. 3 Longitudinal distribution of the carrier (a) and photon (b) density for various values of the λ/4-phase shift position as represented by rp.
Fig. 4
Fig. 4 L-I curve (a) and emission spectra (b) of the λ/4-phase shifted two-section DFB laser at the injection current of 80 mA.
Fig. 5
Fig. 5 Peak reflectivity of the reflection section with different lengths for different currents injected into the active section.
Fig. 6
Fig. 6 EO response of the λ/4-phase shifted two-section DFB laser under different current injections.
Fig. 7
Fig. 7 25 Gb/s and 40 Gb/s eye diagrams of the λ/4-phase shifted two-section DFB laser.

Tables (1)

Tables Icon

Table 1 Parameters of the DFB laser used in the simulation.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

f r Γdg/dn DWL ( IIth )
E( x,y,z,t )=ϕ( x,y )[ F( z,t ) e i β 0 z +R( z,t ) e i β 0 z ] e i ω 0 t
1 c g F( z,t ) t + F( z,t ) z =( Giδ )F( z,t )+iKR( z,t )+ s f ( z,t ) 1 c g R( z,t ) t R( z,t ) z =( Giδ )R( z,t )+i K * R( z,t )+ s r ( z,t )
[ F( z+Δz,t ) R(zΔz,t) ]=[ sech( γΔz ) itanh( γΔz ) itanh( γΔz ) sech( γΔz ) ] [ exp{ ( Giδ )Δz } 0 0 exp{ ( Giδ )Δz } ][ F( z,tΔt ) R( z,tΔt ) ]
G( z,t )= Γaln( N( z,t )/ N 0 ) 2( 1+εP ) α 2
δ= ω 0 c ( n eff,0 +Δn ) π Λ
Δn= λ 0 4π Γ α m aln(N( z,t )/ N 0 )
dN dt = J e d act ANB N 2 C N 3 c g aln( N( z,t )/ N 0 )P 1+εP
F(z=0)= r L R(z=0) R(z=L)= r R F(z=L)

Metrics