Abstract

Laser-induced Hertzian fractures on the exit surface of silica glass are found to result from metal surface-bound micro particles. Two types of metal micro-spheres are studied (stainless-steel and Al) using ultraviolet laser light. The fracture initiation probability curve as a function of fluence is obtained, resulting in an initiation threshold fluence of 11.1 ± 4.7 J/cm2 and 16.5 ± 4.5 J/cm2 for the SS and Al particles, accordingly. The modified damage density curve is calculated based on the fracture probability. The calculated momentum coupling coefficient linking incident laser fluence to the resulting plasma pressure is found to be similar for both particles: 32.6 ± 15.4 KN/J and 28.1 ± 10.4 KN/J for the SS and Al cases accordingly.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interference effects in laser-induced plasma emission from surface-bound metal micro-particles

Eyal Feigenbaum, Omer Malik, Alexander M. Rubenchik, and Manyalibo J. Matthews
Opt. Express 25(9) 9778-9792 (2017)

Damage on fused silica optics caused by laser ablation of surface-bound microparticles

Rajesh N. Raman, Stavros G. Demos, Nan Shen, Eyal Feigenbaum, Raluca A. Negres, Selim Elhadj, Alexander M. Rubenchik, and Manyalibo J. Matthews
Opt. Express 24(3) 2634-2647 (2016)

Effect of pad elastic modulus on polishing-induced subsurface damages distribution and laser-induced damage performance of fused silica optics

Xiang He, Chao Cai, Gang Wang, Heng Zhao, Lei Xie, Ying Huang, Dingyao Yan, and Ping Ma
Opt. Express 27(1) 265-281 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
    [Crossref] [PubMed]
  2. S. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002).
    [Crossref] [PubMed]
  3. B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J. L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
    [Crossref] [PubMed]
  4. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [Crossref]
  5. J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
    [Crossref] [PubMed]
  6. I. L. Bass, G. M. Guss, M. J. Nostrand, and P. L. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused Silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 7842202010.
  7. M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
    [Crossref]
  8. L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
    [Crossref]
  9. C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4), A859–A864 (2011).
    [Crossref] [PubMed]
  10. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3x (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
    [Crossref]
  11. R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
    [Crossref] [PubMed]
  12. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
    [Crossref]
  13. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
    [Crossref] [PubMed]
  14. C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
    [Crossref]
  15. E. Feigenbaum, S. Elhadj, and M. J. Matthews, “Light scattering from laser induced pit ensembles on high power laser optics,” Opt. Express 23(8), 10589–10597 (2015).
    [Crossref] [PubMed]
  16. S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, ”Study of laser interaction with aluminum contaminant on fused silica,” Laser-Induced Damage in Optical Materials 2005, Proc. of SPIE Vol. 5991 59910R.
  17. B. S. Luk’yanchuck, Laser Cleaning (World Scientific, 2002) Chap. 3.
  18. M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233 (2013).
    [Crossref]
  19. E. Feigenbaum, N. Nielsen, and M. J. Matthews, “Measurement of optical scattered power from laser-induced shallow pits on silica,” Appl. Opt. 54(28), 8554–8560 (2015).
    [Crossref] [PubMed]
  20. R. N. Raman, S. G. Demos, N. Shen, E. Feigenbaum, R. A. Negres, S. Elhadj, A. M. Rubenchik, and M. J. Matthews, “Damage on fused silica optics caused by laser ablation of surface-bound microparticles,” Opt. Express 24(3), 2634–2647 (2016).
    [Crossref] [PubMed]
  21. C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
    [Crossref] [PubMed]
  22. A. C. Fischer-Crips, Introduction to Contact Mechanics, 2nd ed. (Springer, 2007).
  23. K. L. Johnson, Contact Mechanics (Cambridge, 1985).
  24. J. A. Pryatel, W. H. Gourdin, S. C. Frieders, G. S. Ruble, and M. V. Monticelli, “Cleaning Practices for the National Ignition Facility (NIF),” Proc. SPIE 9237, 92372H (2014).
  25. M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 2003(5273), 325–333 (2003).
  26. S. M. Wiederhorn and B. R. Lawn, “Strength Degradation of Glass Resulting from Impact with Spheres,” J. Am. Ceram. Soc. 60(9-10), 451–458 (1977).
    [Crossref]
  27. R. A. Negres, D. A. Cross, Z. M. Liao, M. J. Matthews, and C. W. Carr, “Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation,” Opt. Express 22(4), 3824–3844 (2014).
    [Crossref] [PubMed]
  28. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
    [Crossref] [PubMed]
  29. D. A. Cross and C. W. Carr, “Analysis of 1ω bulk laser damage in KDP,” Appl. Opt. 50(22), D7–D11 (2011).
    [Crossref] [PubMed]
  30. M. J. Matthews and M. D. Feit, “Effect of Random Clustering on Surface Damage Density Estimates,” Proc. SPIE 6720, 67201J (2007).
    [Crossref]
  31. C. W. Carr, D. Cross, M. D. Feit, and J. D. Bude, “Using shaped pulses to probe energy deposition during laser-induced damage of SiO2 surfaces,” Proc. SPIE 7132, 71321C (2008).
  32. J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett. 95(13), 131105 (2009).
    [Crossref]
  33. N. P. Bansak and R. H. Doremus, Handbook of Glass Propoerties (Academic Press, FL, 1986).
  34. R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
    [Crossref]
  35. T. R. Wilshaw, “The Hertzian fracture test,” J. Phys. D Appl. Phys. 4(10), 1567–1581 (1971).
    [Crossref]
  36. N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
    [Crossref] [PubMed]

2016 (1)

2015 (5)

C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
[Crossref] [PubMed]

E. Feigenbaum, N. Nielsen, and M. J. Matthews, “Measurement of optical scattered power from laser-induced shallow pits on silica,” Appl. Opt. 54(28), 8554–8560 (2015).
[Crossref] [PubMed]

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
[Crossref]

E. Feigenbaum, S. Elhadj, and M. J. Matthews, “Light scattering from laser induced pit ensembles on high power laser optics,” Opt. Express 23(8), 10589–10597 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (2)

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233 (2013).
[Crossref]

2012 (2)

2011 (3)

D. A. Cross and C. W. Carr, “Analysis of 1ω bulk laser damage in KDP,” Appl. Opt. 50(22), D7–D11 (2011).
[Crossref] [PubMed]

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4), A859–A864 (2011).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

2010 (3)

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. L. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused Silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 7842202010.

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

2009 (3)

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J. L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
[Crossref] [PubMed]

J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett. 95(13), 131105 (2009).
[Crossref]

2008 (1)

C. W. Carr, D. Cross, M. D. Feit, and J. D. Bude, “Using shaped pulses to probe energy deposition during laser-induced damage of SiO2 surfaces,” Proc. SPIE 7132, 71321C (2008).

2007 (2)

2006 (1)

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3x (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

2003 (1)

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 2003(5273), 325–333 (2003).

2002 (1)

1977 (1)

S. M. Wiederhorn and B. R. Lawn, “Strength Degradation of Glass Resulting from Impact with Spheres,” J. Am. Ceram. Soc. 60(9-10), 451–458 (1977).
[Crossref]

1971 (1)

T. R. Wilshaw, “The Hertzian fracture test,” J. Phys. D Appl. Phys. 4(10), 1567–1581 (1971).
[Crossref]

Abdulla, G. M.

Auerbach, J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 2003(5273), 325–333 (2003).

Auerbach, J. M.

Bass, I. L.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. L. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused Silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 7842202010.

Baxamusa, S.

Bertussi, B.

Bowers, M. W.

Bude, J.

Bude, J. D.

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233 (2013).
[Crossref]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

C. W. Carr, D. Cross, M. D. Feit, and J. D. Bude, “Using shaped pulses to probe energy deposition during laser-induced damage of SiO2 surfaces,” Proc. SPIE 7132, 71321C (2008).

Carr, C. W.

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

R. A. Negres, D. A. Cross, Z. M. Liao, M. J. Matthews, and C. W. Carr, “Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation,” Opt. Express 22(4), 3824–3844 (2014).
[Crossref] [PubMed]

R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
[Crossref] [PubMed]

D. A. Cross and C. W. Carr, “Analysis of 1ω bulk laser damage in KDP,” Appl. Opt. 50(22), D7–D11 (2011).
[Crossref] [PubMed]

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4), A859–A864 (2011).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

C. W. Carr, D. Cross, M. D. Feit, and J. D. Bude, “Using shaped pulses to probe energy deposition during laser-induced damage of SiO2 surfaces,” Proc. SPIE 7132, 71321C (2008).

Carr, W.

Chambonneau, M.

L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
[Crossref]

Cormont, P.

Courchinoux, R.

L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
[Crossref]

Cross, D.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

C. W. Carr, D. Cross, M. D. Feit, and J. D. Bude, “Using shaped pulses to probe energy deposition during laser-induced damage of SiO2 surfaces,” Proc. SPIE 7132, 71321C (2008).

Cross, D. A.

DeMange, P.

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

Demos, S.

Demos, S. G.

Diaz, R.

L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
[Crossref]

Dixit, S. N.

Donval, T.

L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
[Crossref]

Elhadj, S.

R. N. Raman, S. G. Demos, N. Shen, E. Feigenbaum, R. A. Negres, S. Elhadj, A. M. Rubenchik, and M. J. Matthews, “Damage on fused silica optics caused by laser ablation of surface-bound microparticles,” Opt. Express 24(3), 2634–2647 (2016).
[Crossref] [PubMed]

E. Feigenbaum, S. Elhadj, and M. J. Matthews, “Light scattering from laser induced pit ensembles on high power laser optics,” Opt. Express 23(8), 10589–10597 (2015).
[Crossref] [PubMed]

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

Erbert, G. V.

Feigenbaum, E.

Feit, M. D.

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

C. W. Carr, D. Cross, M. D. Feit, and J. D. Bude, “Using shaped pulses to probe energy deposition during laser-induced damage of SiO2 surfaces,” Proc. SPIE 7132, 71321C (2008).

M. J. Matthews and M. D. Feit, “Effect of Random Clustering on Surface Damage Density Estimates,” Proc. SPIE 6720, 67201J (2007).
[Crossref]

Feldman, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Ferriera, J. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3x (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Frieders, S. C.

J. A. Pryatel, W. H. Gourdin, S. C. Frieders, G. S. Ruble, and M. V. Monticelli, “Cleaning Practices for the National Ignition Facility (NIF),” Proc. SPIE 9237, 92372H (2014).

Fujimoto, J.

Gourdin, W. H.

J. A. Pryatel, W. H. Gourdin, S. C. Frieders, G. S. Ruble, and M. V. Monticelli, “Cleaning Practices for the National Ignition Facility (NIF),” Proc. SPIE 9237, 92372H (2014).

Guss, G.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Guss, G. M.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. L. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused Silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 7842202010.

Hackel, R. P.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 2003(5273), 325–333 (2003).

Harris, C. D.

Haupt, D. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3x (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Haynam, C. A.

Heestand, G. M.

Henesian, M. A.

Hermann, M. R.

Honig, J.

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233 (2013).
[Crossref]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 2003(5273), 325–333 (2003).

Hutcheon, I. D.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3x (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Jancaitis, K. S.

Kinney, J. H.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3x (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Lamaignère, L.

L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
[Crossref]

Laurence, T.

Laurence, T. A.

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Lawn, B. R.

S. M. Wiederhorn and B. R. Lawn, “Strength Degradation of Glass Resulting from Impact with Spheres,” J. Am. Ceram. Soc. 60(9-10), 451–458 (1977).
[Crossref]

Legros, P.

Liao, Z. M.

Lindsey, E. F.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3x (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Luthi, R. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 2003(5273), 325–333 (2003).

Ly, S.

Manes, K. R.

Marshall, C. D.

Matthews, M. J.

R. N. Raman, S. G. Demos, N. Shen, E. Feigenbaum, R. A. Negres, S. Elhadj, A. M. Rubenchik, and M. J. Matthews, “Damage on fused silica optics caused by laser ablation of surface-bound microparticles,” Opt. Express 24(3), 2634–2647 (2016).
[Crossref] [PubMed]

C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
[Crossref] [PubMed]

E. Feigenbaum, N. Nielsen, and M. J. Matthews, “Measurement of optical scattered power from laser-induced shallow pits on silica,” Appl. Opt. 54(28), 8554–8560 (2015).
[Crossref] [PubMed]

E. Feigenbaum, S. Elhadj, and M. J. Matthews, “Light scattering from laser induced pit ensembles on high power laser optics,” Opt. Express 23(8), 10589–10597 (2015).
[Crossref] [PubMed]

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

R. A. Negres, D. A. Cross, Z. M. Liao, M. J. Matthews, and C. W. Carr, “Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation,” Opt. Express 22(4), 3824–3844 (2014).
[Crossref] [PubMed]

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233 (2013).
[Crossref]

M. J. Matthews and M. D. Feit, “Effect of Random Clustering on Surface Damage Density Estimates,” Proc. SPIE 6720, 67201J (2007).
[Crossref]

Mehta, N. C.

Menapace, J.

Miller, P.

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Minoshima, K.

Monticelli, M.

Monticelli, M. V.

J. A. Pryatel, W. H. Gourdin, S. C. Frieders, G. S. Ruble, and M. V. Monticelli, “Cleaning Practices for the National Ignition Facility (NIF),” Proc. SPIE 9237, 92372H (2014).

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Moses, E.

Murray, J. R.

Negres, R. A.

Nielsen, N.

Norton, M. A.

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4), A859–A864 (2011).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Nostrand, M. C.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 2003(5273), 325–333 (2003).

Nostrand, M. J.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. L. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused Silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 7842202010.

Orth, C. D.

Palmier, S.

Patterson, R.

Phipps, C. R.

J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett. 95(13), 131105 (2009).
[Crossref]

Pryatel, J. A.

J. A. Pryatel, W. H. Gourdin, S. C. Frieders, G. S. Ruble, and M. V. Monticelli, “Cleaning Practices for the National Ignition Facility (NIF),” Proc. SPIE 9237, 92372H (2014).

Raman, R. N.

R. N. Raman, S. G. Demos, N. Shen, E. Feigenbaum, R. A. Negres, S. Elhadj, A. M. Rubenchik, and M. J. Matthews, “Damage on fused silica optics caused by laser ablation of surface-bound microparticles,” Opt. Express 24(3), 2634–2647 (2016).
[Crossref] [PubMed]

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Rubenchik, A. M.

Ruble, G. S.

J. A. Pryatel, W. H. Gourdin, S. C. Frieders, G. S. Ruble, and M. V. Monticelli, “Cleaning Practices for the National Ignition Facility (NIF),” Proc. SPIE 9237, 92372H (2014).

Rullier, J. L.

Sacks, R. A.

Sell, W. D.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 2003(5273), 325–333 (2003).

Settgast, R. R.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

Shaw, M. J.

Shen, N.

R. N. Raman, S. G. Demos, N. Shen, E. Feigenbaum, R. A. Negres, S. Elhadj, A. M. Rubenchik, and M. J. Matthews, “Damage on fused silica optics caused by laser ablation of surface-bound microparticles,” Opt. Express 24(3), 2634–2647 (2016).
[Crossref] [PubMed]

C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
[Crossref] [PubMed]

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233 (2013).
[Crossref]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Sinko, J. E.

J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett. 95(13), 131105 (2009).
[Crossref]

Soules, T. F.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

Spaeth, M.

Staggs, M.

Stanley, J. A.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 2003(5273), 325–333 (2003).

Steele, W.

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Stolken, J. S.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

Suratwala, T.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

Sutton, S. B.

Van Wonterghem, B. M.

Vickers, J. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 2003(5273), 325–333 (2003).

Vignes, R. M.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

Wegner, P. J.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 2003(5273), 325–333 (2003).

Wegner, P. L.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. L. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused Silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 7842202010.

Weiland, T. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 2003(5273), 325–333 (2003).

White, R. K.

Widmayer, C. C.

Wiederhorn, S. M.

S. M. Wiederhorn and B. R. Lawn, “Strength Degradation of Glass Resulting from Impact with Spheres,” J. Am. Ceram. Soc. 60(9-10), 451–458 (1977).
[Crossref]

Williams, W. H.

Wilshaw, T. R.

T. R. Wilshaw, “The Hertzian fracture test,” J. Phys. D Appl. Phys. 4(10), 1567–1581 (1971).
[Crossref]

Wong, J.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3x (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Wong, L.

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

Yang, S. T.

Adv. Eng. Mater. (1)

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett. 95(13), 131105 (2009).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

J. Am. Ceram. Soc. (3)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013).
[Crossref]

S. M. Wiederhorn and B. R. Lawn, “Strength Degradation of Glass Resulting from Impact with Spheres,” J. Am. Ceram. Soc. 60(9-10), 451–458 (1977).
[Crossref]

J. Non-Cryst. Solids (1)

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3x (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

T. R. Wilshaw, “The Hertzian fracture test,” J. Phys. D Appl. Phys. 4(10), 1567–1581 (1971).
[Crossref]

Opt. Express (10)

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4), A859–A864 (2011).
[Crossref] [PubMed]

R. A. Negres, D. A. Cross, Z. M. Liao, M. J. Matthews, and C. W. Carr, “Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation,” Opt. Express 22(4), 3824–3844 (2014).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[Crossref] [PubMed]

R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
[Crossref] [PubMed]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

S. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002).
[Crossref] [PubMed]

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J. L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
[Crossref] [PubMed]

E. Feigenbaum, S. Elhadj, and M. J. Matthews, “Light scattering from laser induced pit ensembles on high power laser optics,” Opt. Express 23(8), 10589–10597 (2015).
[Crossref] [PubMed]

R. N. Raman, S. G. Demos, N. Shen, E. Feigenbaum, R. A. Negres, S. Elhadj, A. M. Rubenchik, and M. J. Matthews, “Damage on fused silica optics caused by laser ablation of surface-bound microparticles,” Opt. Express 24(3), 2634–2647 (2016).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

Proc. SPIE (6)

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. L. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused Silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 7842202010.

L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
[Crossref]

M. J. Matthews and M. D. Feit, “Effect of Random Clustering on Surface Damage Density Estimates,” Proc. SPIE 6720, 67201J (2007).
[Crossref]

C. W. Carr, D. Cross, M. D. Feit, and J. D. Bude, “Using shaped pulses to probe energy deposition during laser-induced damage of SiO2 surfaces,” Proc. SPIE 7132, 71321C (2008).

J. A. Pryatel, W. H. Gourdin, S. C. Frieders, G. S. Ruble, and M. V. Monticelli, “Cleaning Practices for the National Ignition Facility (NIF),” Proc. SPIE 9237, 92372H (2014).

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 2003(5273), 325–333 (2003).

Other (5)

N. P. Bansak and R. H. Doremus, Handbook of Glass Propoerties (Academic Press, FL, 1986).

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, ”Study of laser interaction with aluminum contaminant on fused silica,” Laser-Induced Damage in Optical Materials 2005, Proc. of SPIE Vol. 5991 59910R.

B. S. Luk’yanchuck, Laser Cleaning (World Scientific, 2002) Chap. 3.

A. C. Fischer-Crips, Introduction to Contact Mechanics, 2nd ed. (Springer, 2007).

K. L. Johnson, Contact Mechanics (Cambridge, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Damage morphology initiated by 40 μm diameter stainless-steel (SS) particles on the exit surface of a cleaned silica sample after a 5 ns ultraviolet laser pulse (λ = 351 nm): (a) the particles’ positions before the shot (red circles – proportional to their size) and the identified damage positions after the shot (blue crosses) are overlaid on the beam fluence distribution (grayscale). (b) Two microscope images before and after the shot of a representative sample section. The identified damage artifacts are classified into three groups: Hertzian fractures (‘H’), classic damage sites (‘CD’), and other small artifacts such as LSPs (‘S’). Enlarged example for each artifact type is brought in the lower left (all on the same length scale). The red arrows, on both the before and after images, point to the locations of the particles before the shot.
Fig. 2
Fig. 2 Hertzian fracture initiation probability calculation: (a) Counts in fluence bins of: exit surface particles before the laser shot (black); Hertzian fractures (red) and classic damage sites (green) identified after the laser shot. The inset zooms in on the 10-25 J/cm2 fluence range. (b) The Hertzian fracture initiation probability as a function of fluence: data (red stars) and curve fit (red dashed); the probability error to probability ratio (blue crosses, right y-axis). The orange highlighted region is of the data used for the fit (Ferror/F<5%).
Fig. 3
Fig. 3 Particle-less and modified damage density curve (ρϕ): (a) good data (blue stars) and fit (dashed black) of ρϕ for the experiment cleaned silica sample, based on the reference patch (patch without particles). (b) the reference ρϕ shown in Fig. 3(a) in semi-log scale (dashed black) and when modified by presence of metal particles in density of 10 & 100 per cm2. (c) with/without particles for AMP treated silica.
Fig. 4
Fig. 4 Damage created by Al particles on the exit surface of silica: (a) Two microscope images of before and after the shot of a representative sample section. The key is given in Fig. 1(b). (b) The Hertzian fracture initiation probability as a function of fluence – same key as in Fig. 2(b). (c) Modified damage density curve (ρϕ) for AMP treated silica: without particles (black dashed), and with Al / SS particles (green / red)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F( ϕ i )= 1 2 ( 1+tanh( ϕ i ϕ 0 σ ϕ ) )
ρ ϕ ( ϕ i )= ρ ϕ ref ( ϕ i )+ ρ part F part ( ϕ i )
p= C m Tϕ= C m * ϕ
PR= 4 3 a 3 E *
p 0 = 3 π A E * a
C m * = 3A E * π 1 ϕ TH a

Metrics