Abstract

This experiment uses digital interferometry to reduce polarisation noise from a fiber interferometer to the level of double Rayleigh backscatter making precision fiber metrology systems robust for remote field applications. This is achieved with a measurement of the Jones matrix with interferometric sensitivity in real time, limited only by fibre length and processing bandwidth. This new approach leads to potentially new metrology applications and the ability to do ellipsometry without polarisation elements in the output field.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digitally enhanced homodyne interferometry

Andrew J. Sutton, Oliver Gerberding, Gerhard Heinzel, and Daniel A. Shaddock
Opt. Express 20(20) 22195-22207 (2012)

Homodyne digital interferometry for a sensitive fiber frequency reference

Silvie Ngo, Terry G. McRae, Malcolm B. Gray, and Daniel A. Shaddock
Opt. Express 22(15) 18168-18176 (2014)

Highspeed multiplexed heterodyne interferometry

Katharina-S. Isleif, Oliver Gerberding, Sina Köhlenbeck, Andrew Sutton, Benjamin Sheard, Stefan Goßler, Daniel Shaddock, Gerhard Heinzel, and Karsten Danzmann
Opt. Express 22(20) 24689-24696 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. T.-Y. Lam, M. B. Gray, D. A. Shaddock, D. E. McClelland, and J. H. Chow, “Subfrequency noise signal extraction in fiber-optic strain sensors using postprocessing,” Opt. Lett. 37, 2169–2171 (2012).
    [Crossref] [PubMed]
  2. M Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett. 35, 1665–1667 (2010).
    [Crossref] [PubMed]
  3. B. Culshaw and I. P. Giles, “Fibre optic gyroscopes,” Journal of Physics E: Scientific Instruments 16, 5 (1983).
    [Crossref]
  4. T. G. McRae, S. Ngo, D. A. Shaddock, M. T. L. Hsu, and M. B. Gray, “Digitally enhanced optical fiber frequency reference,” Opt. Lett. 39, 1752–1755 (2014).
    [Crossref] [PubMed]
  5. C. K Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D: Appl. Phys. 37R197–R216 (2004).
    [Crossref]
  6. A. D. Kersey, M.J. Marrone, and A. Dandridge, “Observation of input-polarisation-induced phase noise in interferometer fiber-optic sensors,” Opt. Lett. 13(10), 847–849 (1988).
    [Crossref] [PubMed]
  7. A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic Michelson interferometer,” Electron. Lett. 27, 518–520 (1991)
    [Crossref]
  8. L. A. Ferreira, J. L. Santos, and F. Farahi, “Polarization-induced noise in a fiber-optic Michelson interferometer with Faraday rotator mirror elements,” Appl. Opt. 34, 6399–6402 (1995).
    [Crossref] [PubMed]
  9. S. Ngo, T. G. McRae, M. B. Gray, and D. A. Shaddock, “Homodyne digital interferometry for a sensitive fiber frequency reference,” Opt. Express 22, 18168–18176 (2014).
    [Crossref] [PubMed]
  10. D. A. Shaddock, “Digitally enhanced heterodyne interferometry,” Opt. Lett. 32, 3355–3357 (2007).
    [Crossref] [PubMed]
  11. A. J. Sutton, O. Gerberding, G. Heinzel, and D. A. Shaddock, “Digitally enhanced homodyne interferometry,” Opt. Express 20, 22195–22207 (2012).
    [Crossref] [PubMed]
  12. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring-resonator gyro,” Appl. Opt. 25, 2606–2612 (1986).
    [Crossref] [PubMed]
  13. http://www.orbitslightwave.com
  14. S. Ngo, D. A. Shaddock, T. G. McRae, T. T-Y Lam, J. H. Chow, and M. B. Gray, “Suppressing Rayleigh backscatter and code noise from all-fiber digital interferometers,” Opt. Lett. 41, 84–87 (2016).
    [Crossref]
  15. T. G. McRae, S. Ngo, D. A. Shaddock, M. T. L. Hsu, and M. B. Gray, “Frequency stabilization for space-based missions using optical fiber interferometry,” Opt. Lett. 38, 278–280 (2013).
    [Crossref] [PubMed]

2016 (1)

2014 (2)

2013 (1)

2012 (2)

2010 (1)

2007 (1)

2004 (1)

C. K Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D: Appl. Phys. 37R197–R216 (2004).
[Crossref]

1995 (1)

1991 (1)

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic Michelson interferometer,” Electron. Lett. 27, 518–520 (1991)
[Crossref]

1988 (1)

1986 (1)

1983 (1)

B. Culshaw and I. P. Giles, “Fibre optic gyroscopes,” Journal of Physics E: Scientific Instruments 16, 5 (1983).
[Crossref]

Chow, J. H.

Culshaw, B.

B. Culshaw and I. P. Giles, “Fibre optic gyroscopes,” Journal of Physics E: Scientific Instruments 16, 5 (1983).
[Crossref]

Dandridge, A.

Davis, M. A.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic Michelson interferometer,” Electron. Lett. 27, 518–520 (1991)
[Crossref]

Eberle, T.

Farahi, F.

Ferreira, L. A.

Gerberding, O.

Giles, I. P.

B. Culshaw and I. P. Giles, “Fibre optic gyroscopes,” Journal of Physics E: Scientific Instruments 16, 5 (1983).
[Crossref]

Gray, M. B.

Heinzel, G.

Higashiguchi, M.

Hotate, K.

Hsu, M. T. L.

Iwatsuki, K.

Kersey, A. D.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic Michelson interferometer,” Electron. Lett. 27, 518–520 (1991)
[Crossref]

A. D. Kersey, M.J. Marrone, and A. Dandridge, “Observation of input-polarisation-induced phase noise in interferometer fiber-optic sensors,” Opt. Lett. 13(10), 847–849 (1988).
[Crossref] [PubMed]

Kirkendall, C. K

C. K Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D: Appl. Phys. 37R197–R216 (2004).
[Crossref]

Lam, T. T.-Y.

Lam, T. T-Y

Marrone, M. J.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic Michelson interferometer,” Electron. Lett. 27, 518–520 (1991)
[Crossref]

Marrone, M.J.

McClelland, D. E.

McRae, T. G.

Mehmet, M

Ngo, S.

Santos, J. L.

Schnabel, R.

Shaddock, D. A.

Steinlechner, S.

Sutton, A. J.

Vahlbruch, H.

Appl. Opt. (2)

Electron. Lett. (1)

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic Michelson interferometer,” Electron. Lett. 27, 518–520 (1991)
[Crossref]

J. Phys. D: Appl. Phys. (1)

C. K Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D: Appl. Phys. 37R197–R216 (2004).
[Crossref]

Journal of Physics E: Scientific Instruments (1)

B. Culshaw and I. P. Giles, “Fibre optic gyroscopes,” Journal of Physics E: Scientific Instruments 16, 5 (1983).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

Other (1)

http://www.orbitslightwave.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Simplified architecture of the experiment. PBC: polarising beam combiner, 3 dB: 50/50 fibre coupler, P: fibre polarisation adjustment paddles, T: low back reflection fibre termination,10 km; 10 km single mode fibre, AOM (40 MHz, 80 MHz): acousto-optic modulator with 40 MHz, 80 MHz resonant frequency, C1, C2: independent 4-level FPGA generated QPSK logic, τlosig: digital delay lines coded into the FPGA to decode the LO and signal paths respectively, PD1, 2: photodetector1, 2, ϕIF1,2: recovered phase noise from interferometer 1, 2.
Fig. 2
Fig. 2 (i): Tracking the phase evolution of each interferometer, IF1 (red dashed line) and IF2 (magenta), as the polarisation drifts over the course of 10 minutes. (ii): Tracking the total phase evolution and the phase evolution of the matrix elements of the difference between the two interferometers of the above plot. Δa (red), Δb (green), Δc (violet) and Δd (blue). Note the independent polarisation matrix elements (Δa and Δd) have less phase noise than the cross coupled components (Δb and Δc). (iii): Enlarged section of (ii) around 100 s clearly showing recovery of the 38 mHz signal.
Fig. 3
Fig. 3 (i) IF1: Tracking the normalised amplitude changes as the polarisation for IF1 drifts over 10 minutes. a1 (red), b1 (green), c1 (violet), d1 (blue) and IF1 (black). (ii) IF2: The polarisation for IF2 is manually adjusted in real time as the data for the above plot is recorded. a2 (red), b2 (green), c2 (violet), d2 (blue) and IF2 (black).
Fig. 4
Fig. 4 Traces νIF1 and νa1 respectively show the total frequency noise for the determinant and the matrix element “a” of (for example) the forward interferometer path and look the same on this scale over much of the frequency range. However for the subtraction between the two interferometer paths there is a clear difference in the polarisation noise of the matrix elements νa1−a2 and the determinant νIF1IF2. Note that this plot is normalised to 1 Hz, with a measurement time of 600 s and a bandwidth of 1/600 Hz. Therefore the applied 200 Hz signal deviation at 38 mHz is scaled to give 5000 Hz / Hz. Shaded areas represent polarisation suppression and the spectra have been averaged above 100 mHz (dashed lines).
Fig. 5
Fig. 5 (i): Averaged traces for the six hour data run. Traces νIF1 and νa1 respectively show the total frequency noise for the determinant and the matrix element “a” of (for example) the forward interferometer path. The 2 Hz phase ramp to frequency shift the code noise has been overlaid from the original (unfiltered) data. Subtraction of common mode noise between the two interferometer paths is shown for Jones matrix element a: Δνa1−a2 and for the determinant of the two interferometer paths (νIF1IF2). (ii): Original (unfiltered) data at low frequency showing a noise floor of 10 Hz / Hz and the 30 mHz FM signal with a peak deviation of 20 Hz. The yellow shaded region illustrates the polarisation noise.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[ E xo E yo ] = [ a b c d ] [ E xi E yi ] .
A = β e i ϕ A = β e i ϕ [ a b c d ] .
A 1 = 1 a d b c [ d b c a ] = e i 2 ϕ β 2 1 a d b c [ d b c a ] .
a d = b c = β 2 e i 2 ϕ .
a C 1 ( τ sig ) and C 1 ( τ LO ) b C 2 ( τ sig ) and C 1 ( τ LO ) c C 1 ( τ sig ) and C 2 ( τ LO ) d C 2 ( τ sig ) and C 2 ( τ LO ) .
Im ( det A ) = Re ( a ) Im ( d ) + Im ( a ) Re ( d ) Re ( b ) Im ( c ) Im ( b ) Re ( c )
Re ( det A ) = Re ( a ) Re ( d ) + Im ( b ) Im ( c ) Im ( a ) Im ( d ) Re ( b ) Re ( c ) .
ϕ = 1 2 arctan ( Im ( det A ) Re ( det A ) ) .

Metrics