Abstract

Single-pixel cameras provide a means to perform imaging at wavelengths where pixelated detector arrays are expensive or limited. The image is reconstructed from measurements of the correlation between the scene and a series of masks. Although there has been much research in the field in recent years, the fact that the signal-to-noise ratio (SNR) scales poorly with increasing resolution has been one of the main limitations prohibiting the uptake of such systems. Microscanning is a technique that provides a final higher resolution image by combining multiple images of a lower resolution. Each of these low resolution images is subject to a sub-pixel sized lateral displacement. In this work we apply a digital microscanning approach to an infrared single-pixel camera. Our approach requires no additional hardware, but is achieved simply by using a modified set of masks. Compared to the conventional Hadamard based single-pixel imaging scheme, our proposed framework improves the SNR of reconstructed images by ∼ 50 % for the same acquisition time. In addition, this strategy also provides access to a stream of low-resolution ‘preview’ images throughout each high-resolution acquisition.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microscanning in Hadamard spectroscopy

Cristian Damian, Adrian Sima, Tiberius Vasile, and Daniela Coltuc
Appl. Opt. 56(18) 5211-5215 (2017)

Real-time imaging of methane gas leaks using a single-pixel camera

Graham M. Gibson, Baoqing Sun, Matthew P. Edgar, David B. Phillips, Nils Hempler, Gareth T. Maker, Graeme P. A. Malcolm, and Miles J. Padgett
Opt. Express 25(4) 2998-3005 (2017)

Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation

Huidong Dai, Guohua Gu, Weiji He, Ling Ye, Tianyi Mao, and Qian Chen
Opt. Express 24(23) 26080-26096 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Nasrollahi and T. B. Moeslund, “Super-resolution: a comprehensive survey,” Mach. Vision Appl. 25, 1423–1468 (2014).
    [Crossref]
  2. P. Milanfar, Super-Resolution Imaging (CRC, 2010), Ch. 1, pp. 2–4.
  3. R. C. Hardie, K. J. Barnard, and R. Ordonez, “Fast super-resolution with affine motion using an adaptive wiener filter and its application to airborne imaging,” Opt. Express 19, 26208–26231 (2011).
    [Crossref]
  4. R. C. Hardie and K. J. Barnard, “Fast super-resolution using an adaptive wiener filter with robustness to local motion,” Opt. Express 20, 21053–21073 (2012).
    [Crossref] [PubMed]
  5. M. Sun and K. Yu, “A sur-pixel scan method for super-resolution reconstruction,” Optik 124, 6905–6909 (2013).
    [Crossref]
  6. G. Carles, J. Downing, and A. R. Harvey, “Super-resolution imaging using a camera array,” Opt. Lett. 39, 1889–1892 (2014).
    [Crossref] [PubMed]
  7. P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Transactions on Graphics (TOG),  24, 745–755 (2005).
    [Crossref]
  8. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. Kelly, and B. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
    [Crossref]
  9. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  10. A. C. Sankaranarayanan, C. Studer, and R. G. Baraniuk, “Cs-muvi: Video compressive sensing for spatial-multiplexing cameras,” in Proceedings of IEEE International Conference on Computational Photography (IEEE2012), pp. 1–10.
  11. N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. W. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
    [Crossref]
  12. M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
    [Crossref] [PubMed]
  13. F. Ferri, D. Magatii, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. A 104, 253603 (2010).
  14. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
    [Crossref]
  15. K.-H. Luo, B.-Q. Huang, W.-M. Zheng, and L.-A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29, 074216 (2012).
    [Crossref]
  16. B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging Conference (Optical Society of America, 2013), paper CTu1C–4.
  17. M.-J. Sun, M.-F. Li, and L.-A. Wu, “Nonlocal imaging of a reflective object using positive and negative correlations,” Appl. Opt. 54, 7494–7499 (2015).
    [Crossref] [PubMed]
  18. S.-C. Song, M.-J. Sun, and L.-A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive-negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
    [Crossref]
  19. D. Shi, J. Huang, F. Wang, K. Cao, K. Yuan, S. Hu, and Y. Wang, “Enhancing resolution of single-pixel imaging system,” Opt. Rev. 22, 802–808 (2015).
    [Crossref]
  20. B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref] [PubMed]
  21. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Comm. 6, 6225(2015).
    [Crossref]
  22. E. J. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians (International Mathematical Union, 2006) 3, pp. 1433–1452.
  23. D. L. Donoho, “Compressed sensing,” IEEE T. Inform. Theory 52, 1289–1306 (2006).
    [Crossref]
  24. W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image coding,” in Proceedings of the IEEE (IEEE, 1969) 57, pp. 58–68.
  25. N. J. Sloane and M. Harwit, “Masks for Hadamard transform optics, and weighing designs,” Appl. Opt. 15, 107–114 (1976).
    [Crossref] [PubMed]
  26. L. Streeter, G. R. Burling-Claridge, M. J. Cree, and R. Knnemeyer, “Optical full Hadamard matrix multiplexing and noise effects,” Appl. Opt. 48, 2078–2085 (2009).
    [Crossref] [PubMed]
  27. W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A working person’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076–1097 (2001).
  28. N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson–lucy algorithm with total variation regularization for 3d confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).
    [Crossref] [PubMed]
  29. R. N. Bryan, Introduction to the Science of Medical Imaging (Cambridge University, 2009), Chap. 3, pp. 85–88.
  30. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
    [Crossref] [PubMed]

2016 (1)

S.-C. Song, M.-J. Sun, and L.-A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive-negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
[Crossref]

2015 (4)

D. Shi, J. Huang, F. Wang, K. Cao, K. Yuan, S. Hu, and Y. Wang, “Enhancing resolution of single-pixel imaging system,” Opt. Rev. 22, 802–808 (2015).
[Crossref]

M.-J. Sun, M.-F. Li, and L.-A. Wu, “Nonlocal imaging of a reflective object using positive and negative correlations,” Appl. Opt. 54, 7494–7499 (2015).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Comm. 6, 6225(2015).
[Crossref]

2014 (3)

2013 (2)

M. Sun and K. Yu, “A sur-pixel scan method for super-resolution reconstruction,” Optik 124, 6905–6909 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

2012 (4)

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
[Crossref]

K.-H. Luo, B.-Q. Huang, W.-M. Zheng, and L.-A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[Crossref]

R. C. Hardie and K. J. Barnard, “Fast super-resolution using an adaptive wiener filter with robustness to local motion,” Opt. Express 20, 21053–21073 (2012).
[Crossref] [PubMed]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

F. Ferri, D. Magatii, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. A 104, 253603 (2010).

2009 (1)

2008 (2)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. Kelly, and B. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

2006 (2)

D. L. Donoho, “Compressed sensing,” IEEE T. Inform. Theory 52, 1289–1306 (2006).
[Crossref]

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson–lucy algorithm with total variation regularization for 3d confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).
[Crossref] [PubMed]

2005 (1)

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Transactions on Graphics (TOG),  24, 745–755 (2005).
[Crossref]

2001 (1)

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A working person’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076–1097 (2001).

1976 (1)

Andrews, H. C.

W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image coding,” in Proceedings of the IEEE (IEEE, 1969) 57, pp. 58–68.

Baraniuk, B. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. Kelly, and B. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Baraniuk, R. G.

A. C. Sankaranarayanan, C. Studer, and R. G. Baraniuk, “Cs-muvi: Video compressive sensing for spatial-multiplexing cameras,” in Proceedings of IEEE International Conference on Computational Photography (IEEE2012), pp. 1–10.

Barnard, K. J.

Blanc-Feraud, L.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson–lucy algorithm with total variation regularization for 3d confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).
[Crossref] [PubMed]

Bowman, A.

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging Conference (Optical Society of America, 2013), paper CTu1C–4.

Bowman, R. W.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. W. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging Conference (Optical Society of America, 2013), paper CTu1C–4.

Bryan, R. N.

R. N. Bryan, Introduction to the Science of Medical Imaging (Cambridge University, 2009), Chap. 3, pp. 85–88.

Burling-Claridge, G. R.

Candès, E. J.

E. J. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians (International Mathematical Union, 2006) 3, pp. 1433–1452.

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

Cao, K.

D. Shi, J. Huang, F. Wang, K. Cao, K. Yuan, S. Hu, and Y. Wang, “Enhancing resolution of single-pixel imaging system,” Opt. Rev. 22, 802–808 (2015).
[Crossref]

Carles, G.

Chen, B.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Transactions on Graphics (TOG),  24, 745–755 (2005).
[Crossref]

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

Cree, M. J.

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. Kelly, and B. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Dey, N.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson–lucy algorithm with total variation regularization for 3d confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).
[Crossref] [PubMed]

Donoho, D. L.

D. L. Donoho, “Compressed sensing,” IEEE T. Inform. Theory 52, 1289–1306 (2006).
[Crossref]

Downing, J.

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. Kelly, and B. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Edgar, M. P.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. W. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
[Crossref]

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging Conference (Optical Society of America, 2013), paper CTu1C–4.

Ferri, F.

F. Ferri, D. Magatii, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. A 104, 253603 (2010).

Garg, G.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Transactions on Graphics (TOG),  24, 745–755 (2005).
[Crossref]

Gatti, A.

F. Ferri, D. Magatii, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. A 104, 253603 (2010).

Gibson, G. M.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. W. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

Hardie, R. C.

Harvey, A. R.

Harwit, M.

Horowitz, M.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Transactions on Graphics (TOG),  24, 745–755 (2005).
[Crossref]

Hu, S.

D. Shi, J. Huang, F. Wang, K. Cao, K. Yuan, S. Hu, and Y. Wang, “Enhancing resolution of single-pixel imaging system,” Opt. Rev. 22, 802–808 (2015).
[Crossref]

Huang, B.-Q.

K.-H. Luo, B.-Q. Huang, W.-M. Zheng, and L.-A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[Crossref]

Huang, J.

D. Shi, J. Huang, F. Wang, K. Cao, K. Yuan, S. Hu, and Y. Wang, “Enhancing resolution of single-pixel imaging system,” Opt. Rev. 22, 802–808 (2015).
[Crossref]

Kam, Z.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson–lucy algorithm with total variation regularization for 3d confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).
[Crossref] [PubMed]

Kane, J.

W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image coding,” in Proceedings of the IEEE (IEEE, 1969) 57, pp. 58–68.

Kelly, K.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. Kelly, and B. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Knnemeyer, R.

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. Kelly, and B. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Lensch, H.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Transactions on Graphics (TOG),  24, 745–755 (2005).
[Crossref]

Levoy, M.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Transactions on Graphics (TOG),  24, 745–755 (2005).
[Crossref]

Li, M.-F.

Lugiato, L. A.

F. Ferri, D. Magatii, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. A 104, 253603 (2010).

Luo, K.-H.

K.-H. Luo, B.-Q. Huang, W.-M. Zheng, and L.-A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[Crossref]

Ma, X.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Comm. 6, 6225(2015).
[Crossref]

Magatii, D.

F. Ferri, D. Magatii, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. A 104, 253603 (2010).

Marschner, S. R.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Transactions on Graphics (TOG),  24, 745–755 (2005).
[Crossref]

Milanfar, P.

P. Milanfar, Super-Resolution Imaging (CRC, 2010), Ch. 1, pp. 2–4.

Mitchell, K. J.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. W. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

Moeslund, T. B.

K. Nasrollahi and T. B. Moeslund, “Super-resolution: a comprehensive survey,” Mach. Vision Appl. 25, 1423–1468 (2014).
[Crossref]

Nasrollahi, K.

K. Nasrollahi and T. B. Moeslund, “Super-resolution: a comprehensive survey,” Mach. Vision Appl. 25, 1423–1468 (2014).
[Crossref]

Olivo-Marin, J. C.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson–lucy algorithm with total variation regularization for 3d confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).
[Crossref] [PubMed]

Ordonez, R.

Padgett, M. J.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. W. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
[Crossref]

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging Conference (Optical Society of America, 2013), paper CTu1C–4.

Pratt, W. K.

W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image coding,” in Proceedings of the IEEE (IEEE, 1969) 57, pp. 58–68.

Radwell, N.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. W. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

Roux, P.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson–lucy algorithm with total variation regularization for 3d confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).
[Crossref] [PubMed]

Sankaranarayanan, A. C.

A. C. Sankaranarayanan, C. Studer, and R. G. Baraniuk, “Cs-muvi: Video compressive sensing for spatial-multiplexing cameras,” in Proceedings of IEEE International Conference on Computational Photography (IEEE2012), pp. 1–10.

Schaefer, L. H.

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A working person’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076–1097 (2001).

Sen, P.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Transactions on Graphics (TOG),  24, 745–755 (2005).
[Crossref]

Shapiro, J. H.

Shi, D.

D. Shi, J. Huang, F. Wang, K. Cao, K. Yuan, S. Hu, and Y. Wang, “Enhancing resolution of single-pixel imaging system,” Opt. Rev. 22, 802–808 (2015).
[Crossref]

Sloane, N. J.

Song, S.-C.

S.-C. Song, M.-J. Sun, and L.-A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive-negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
[Crossref]

Streeter, L.

Studer, C.

A. C. Sankaranarayanan, C. Studer, and R. G. Baraniuk, “Cs-muvi: Video compressive sensing for spatial-multiplexing cameras,” in Proceedings of IEEE International Conference on Computational Photography (IEEE2012), pp. 1–10.

Sun, B.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
[Crossref]

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging Conference (Optical Society of America, 2013), paper CTu1C–4.

Sun, M.

M. Sun and K. Yu, “A sur-pixel scan method for super-resolution reconstruction,” Optik 124, 6905–6909 (2013).
[Crossref]

Sun, M.-J.

S.-C. Song, M.-J. Sun, and L.-A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive-negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
[Crossref]

M.-J. Sun, M.-F. Li, and L.-A. Wu, “Nonlocal imaging of a reflective object using positive and negative correlations,” Appl. Opt. 54, 7494–7499 (2015).
[Crossref] [PubMed]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. Kelly, and B. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Swedlow, J. R.

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A working person’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076–1097 (2001).

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. Kelly, and B. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Vittert, L. E.

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging Conference (Optical Society of America, 2013), paper CTu1C–4.

Wallace, W.

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A working person’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076–1097 (2001).

Wang, F.

D. Shi, J. Huang, F. Wang, K. Cao, K. Yuan, S. Hu, and Y. Wang, “Enhancing resolution of single-pixel imaging system,” Opt. Rev. 22, 802–808 (2015).
[Crossref]

Wang, Y.

D. Shi, J. Huang, F. Wang, K. Cao, K. Yuan, S. Hu, and Y. Wang, “Enhancing resolution of single-pixel imaging system,” Opt. Rev. 22, 802–808 (2015).
[Crossref]

Welsh, S. S.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
[Crossref]

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging Conference (Optical Society of America, 2013), paper CTu1C–4.

Wu, L.-A.

S.-C. Song, M.-J. Sun, and L.-A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive-negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
[Crossref]

M.-J. Sun, M.-F. Li, and L.-A. Wu, “Nonlocal imaging of a reflective object using positive and negative correlations,” Appl. Opt. 54, 7494–7499 (2015).
[Crossref] [PubMed]

K.-H. Luo, B.-Q. Huang, W.-M. Zheng, and L.-A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[Crossref]

Yu, K.

M. Sun and K. Yu, “A sur-pixel scan method for super-resolution reconstruction,” Optik 124, 6905–6909 (2013).
[Crossref]

Yuan, K.

D. Shi, J. Huang, F. Wang, K. Cao, K. Yuan, S. Hu, and Y. Wang, “Enhancing resolution of single-pixel imaging system,” Opt. Rev. 22, 802–808 (2015).
[Crossref]

Zerubia, J.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson–lucy algorithm with total variation regularization for 3d confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Comm. 6, 6225(2015).
[Crossref]

Zheng, W.-M.

K.-H. Luo, B.-Q. Huang, W.-M. Zheng, and L.-A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[Crossref]

Zhong, J.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Comm. 6, 6225(2015).
[Crossref]

Zimmer, C.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson–lucy algorithm with total variation regularization for 3d confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).
[Crossref] [PubMed]

ACM Transactions on Graphics (TOG) (1)

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” ACM Transactions on Graphics (TOG),  24, 745–755 (2005).
[Crossref]

Appl. Opt. (3)

Biotechniques (1)

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A working person’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076–1097 (2001).

Chin. Phys. Lett. (1)

K.-H. Luo, B.-Q. Huang, W.-M. Zheng, and L.-A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[Crossref]

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. Kelly, and B. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

IEEE T. Inform. Theory (1)

D. L. Donoho, “Compressed sensing,” IEEE T. Inform. Theory 52, 1289–1306 (2006).
[Crossref]

Mach. Vision Appl. (1)

K. Nasrollahi and T. B. Moeslund, “Super-resolution: a comprehensive survey,” Mach. Vision Appl. 25, 1423–1468 (2014).
[Crossref]

Microsc. Res. Tech. (1)

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson–lucy algorithm with total variation regularization for 3d confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).
[Crossref] [PubMed]

Nat. Comm. (1)

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Comm. 6, 6225(2015).
[Crossref]

Nat. Photonics (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

S.-C. Song, M.-J. Sun, and L.-A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive-negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Rev. (1)

D. Shi, J. Huang, F. Wang, K. Cao, K. Yuan, S. Hu, and Y. Wang, “Enhancing resolution of single-pixel imaging system,” Opt. Rev. 22, 802–808 (2015).
[Crossref]

Optica (1)

Optik (1)

M. Sun and K. Yu, “A sur-pixel scan method for super-resolution reconstruction,” Optik 124, 6905–6909 (2013).
[Crossref]

Phys. Rev. A (2)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

F. Ferri, D. Magatii, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. A 104, 253603 (2010).

Sci. Rep. (1)

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

Science (1)

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Other (6)

A. C. Sankaranarayanan, C. Studer, and R. G. Baraniuk, “Cs-muvi: Video compressive sensing for spatial-multiplexing cameras,” in Proceedings of IEEE International Conference on Computational Photography (IEEE2012), pp. 1–10.

P. Milanfar, Super-Resolution Imaging (CRC, 2010), Ch. 1, pp. 2–4.

W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image coding,” in Proceedings of the IEEE (IEEE, 1969) 57, pp. 58–68.

E. J. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians (International Mathematical Union, 2006) 3, pp. 1433–1452.

B. Sun, M. P. Edgar, R. W. Bowman, L. E. Vittert, S. S. Welsh, A. Bowman, and M. J. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging Conference (Optical Society of America, 2013), paper CTu1C–4.

R. N. Bryan, Introduction to the Science of Medical Imaging (Cambridge University, 2009), Chap. 3, pp. 85–88.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental set-up. A heat reflector lamp illuminates the object, which is a 100mm × 100mm grey-scale target located at a distance of ∼ 0.5 m from the imaging system. A 50 mm camera lens collects the reflected near-infrared light and images the object onto a high-speed digital micro-mirror device (DMD). The DMD is placed at the image plane and applies rapidly changing binary masks to the transmitted image. An InGaAs detector measures the total intensity transmitted through the masks. An analogue-to-digital converter (ADC), triggered by the synchronisation TTL signals from the DMD, acquires and transfers the light intensities data to a computer for image reconstruction.
Fig. 2
Fig. 2 The complete microscanning method. (a) Binary object to be imaged. (b) A set of low-resolution (LR) Hadamard masks is displayed four times, with a lateral shift in x and/or y of half a pixel width applied between each mask set. (c) This operation yields four low-resolution ‘preview’ images, each of which contains different spatial information. (d) This allows a high-resolution (HR) image to be reconstructed by co-registering each image in its laterally shifted location on a higher resolution grid.
Fig. 3
Fig. 3 Schematics of two microscanning strategies. (a) Complete microscanning. (b) Quarter microscanning.
Fig. 4
Fig. 4 Experimental images of a modified USAF resolution test chart. Images reconstructed using (a) complete microscanning (CM), (b) quarter microscanning (QM), (c) normal high-resolution (NHR) method, (d) NHR method convolved (NHRC) with kernel K, and (e) low-resolution (LR) method. In (e) a 64×64 pixel image has been interpolated upto a 128 ×128 pixel image for comparison. The data for (a)–(d) are obtained in 2 seconds, (e) is obtained in 0.5 seconds. The experimentally measured SNR and magnified view of high frequency feature is quoted beneath each image. (f) Greyscale distribution highlighted by the solid blue line. (f) Greyscale distribution highlighted by the dashed blue line.
Fig. 5
Fig. 5 Experimental images of two different objects. (a–e) Images of letters with different sizes obtained using different methods. The experimentally measured SNR quoted beneath each image is computed using the highlighted feature (solid red box) and background (dashed red box). We acknowledge University of Glasgow and Beihang University for the permission to use their names.
Fig. 6
Fig. 6 Comparison of images obtained in a high noise situation. (a–b) Images obtained using NHR. (c–d) Images shown in (a–b) are NHR convolved (NHRC) with kernel K. (e–f) Images obtained under identical conditions using CM. The measured SNR (using the same features and background as before) is quoted beneath each image, demonstrating the superior performance of CM in this situation. We acknowledge University of Glasgow and Beihang University for the permission to use its name as experimental subjects.
Fig. 7
Fig. 7 Comparison of images obtained using QM with different gains. (a) 40 dB gain. (d) 50 dB gain. Experimentally measured SNR (using the same features and background as before) is quoted beneath each image. We acknowledge University of Glasgow and Beihang University for the permission to use its name as experimental subjects.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S p = i j ( M p , i j D i j ) ,
I = p = 1 n ( M p S p ) .
I c e n t r a l = 1 4 ( I r e d + I g r e e n + I b l u e + I p u r p l e ) ,
K = 1 16 [ 1 2 1 2 4 2 1 2 1 ]
S N R = ( I f I b ) / ( ( σ f + σ b ) / 2 ) ,

Metrics