Abstract

We have experimentally demonstrated the feasibility of direct compression, or stretching and recompression of laser pulses in a very wide temporal time scale spanning 10’s fs to ~1 ps time with sub-mm thick cholesteric liquid crystal (CLC) cells. The mechanisms at work here are the strong dispersion at the photonic band-edges and nonlinear phase modulation associated with the non-resonant ultrafast molecular electronic optical nonlinearity. The observed pulse compression limit, spectral characteristics and intensity dependence of the compression are in good agreement with theoretical expectations and simulations based on a coupled-mode propagation model. Owing to the large degree of freedom to engineer the wavelength locations of CLC photonic bandgap and band-edges, these self-action all-optical processes can be realized with ultrafast lasers pulses in a very wide spectral region from the visible to near infrared, with potential applications in compact ultrafast photonic modulation devices/platforms.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Slowing sub-picosecond laser pulses with 0.55 mm-thick cholesteric liquid crystal

Chun-Wei Chen, Xuexue Guo, Xingjie Ni, Tsung-Hsien Lin, and Iam Choon Khoo
Opt. Mater. Express 7(6) 2005-2011 (2017)

Dispersion of 20 fs pulses through band edges of cholesteric liquid crystals

Maxim Neradovskiy, Adriana Scarangella, Aurélie Jullien, and Michel Mitov
Opt. Express 27(15) 21794-21809 (2019)

Enhanced optical nonlinearity near the photonic bandgap edges of a cholesteric liquid crystal

Jisoo Hwang, N. Y. Ha, H. J. Chang, Byoungchoo Park, and J. W. Wu
Opt. Lett. 29(22) 2644-2646 (2004)

References

  • View by:
  • |
  • |
  • |

  1. E. B. Treacy, “Optical Pulse Compression with Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [Crossref]
  2. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
    [Crossref] [PubMed]
  3. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
    [Crossref]
  4. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
    [Crossref]
  5. H. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46(6), 527–529 (1985).
    [Crossref]
  6. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76(10), 1627–1630 (1996).
    [Crossref] [PubMed]
  7. N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical Pulse Compression in Fiber Bragg Grating,” Phys. Rev. Lett. 79(23), 4566–4569 (1997).
    [Crossref]
  8. C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12(10), 104003 (2010).
    [Crossref]
  9. P. Millar, R. M. De La Rue, T. F. Krauss, J. S. Aitchison, N. G. R. Broderick, and D. J. Richardson, “Nonlinear propagation effects in an AlGaAs Bragg grating filter,” Opt. Lett. 24(10), 685–687 (1999).
    [Crossref] [PubMed]
  10. J. Thornes, P. Poon, and M. E. Anderson, “Single-iteration compression of femtosecond laser pulses,” J. Opt. Soc. Am. B 21(7), 1387–1390 (2004).
    [Crossref]
  11. M. Foster, A. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13(18), 6848–6855 (2005).
    [Crossref] [PubMed]
  12. P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
    [Crossref]
  13. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [Crossref]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  15. L. Song, S. Fu, Y. Liu, J. Zhou, V. G. Chigrinov, and I. C. Khoo, “Direct femtosecond pulse compression with miniature-sized Bragg cholesteric liquid crystal,” Opt. Lett. 38(23), 5040–5042 (2013).
    [Crossref] [PubMed]
  16. I. P. Ilchishin, L. N. Lisetski, and T. V. Mykytiuk, “Reversible phototuning of lasing frequency in dye doped cholesteric liquid crystal and ways to improve it,” Opt. Mater. Express 1(8), 1484 (2011).
    [Crossref]
  17. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, 1994).
  18. N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
    [Crossref] [PubMed]
  19. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
    [Crossref]
  20. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
    [Crossref]
  21. T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
    [Crossref]
  22. I. C. Khoo, “Nonlinear optics, active plasmonic and tunable metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
    [Crossref]
  23. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
    [Crossref]
  24. P. Palffy-muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. Desalvo, T. H. Wei, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of Third Order Optical Nonlinearities of Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
    [Crossref]
  25. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
  26. J. Hwang, N. Y. Ha, H. J. Chang, B. Park, and J. W. Wu, “Enhanced optical nonlinearity near the photonic bandgap edges of a cholesteric liquid crystal,” Opt. Lett. 29(22), 2644–2646 (2004).
    [Crossref] [PubMed]
  27. J. Hwang and J. W. Wu, “Determination of optical Kerr nonlinearity of a photonic bandgap structure by Z-scan measurement,” Opt. Lett. 30(8), 875–877 (2005).
    [Crossref] [PubMed]
  28. S. D. Jacobs, K. A. Cerqua, K. L. Marshall, A. Schmid, M. J. Guardalben, and K. J. Skerrett, “Liquid-crystal laser optics: design, fabrication and performance,” J. Opt. Soc. Am. B 5(9), 1962–1979 (1988).
    [Crossref]
  29. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of Ultrahigh Peak Power Pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
    [Crossref]

2014 (1)

I. C. Khoo, “Nonlinear optics, active plasmonic and tunable metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
[Crossref]

2013 (1)

2011 (1)

2010 (4)

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12(10), 104003 (2010).
[Crossref]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

2009 (1)

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

2008 (1)

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

2007 (1)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

2005 (2)

2004 (3)

1999 (1)

1997 (1)

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical Pulse Compression in Fiber Bragg Grating,” Phys. Rev. Lett. 79(23), 4566–4569 (1997).
[Crossref]

1996 (2)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76(10), 1627–1630 (1996).
[Crossref] [PubMed]

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

1991 (1)

P. Palffy-muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. Desalvo, T. H. Wei, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of Third Order Optical Nonlinearities of Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

1988 (2)

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of Ultrahigh Peak Power Pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
[Crossref]

S. D. Jacobs, K. A. Cerqua, K. L. Marshall, A. Schmid, M. J. Guardalben, and K. J. Skerrett, “Liquid-crystal laser optics: design, fabrication and performance,” J. Opt. Soc. Am. B 5(9), 1962–1979 (1988).
[Crossref]

1985 (1)

H. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46(6), 527–529 (1985).
[Crossref]

1984 (1)

1980 (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

1969 (1)

E. B. Treacy, “Optical Pulse Compression with Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Aitchison, J. S.

Anderson, M. E.

Bado, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of Ultrahigh Peak Power Pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
[Crossref]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Bricker, R. L.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Broderick, N. G. R.

P. Millar, R. M. De La Rue, T. F. Krauss, J. S. Aitchison, N. G. R. Broderick, and D. J. Richardson, “Nonlinear propagation effects in an AlGaAs Bragg grating filter,” Opt. Lett. 24(10), 685–687 (1999).
[Crossref] [PubMed]

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical Pulse Compression in Fiber Bragg Grating,” Phys. Rev. Lett. 79(23), 4566–4569 (1997).
[Crossref]

Bunning, T. J.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Cao, Q.

Cerqua, K. A.

Chang, H. J.

Chigrinov, V. G.

Christodoulides, D. N.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Colman, P.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Combrié, S.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

De La Rue, R. M.

De Rossi, A.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

de Sterke, C. M.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76(10), 1627–1630 (1996).
[Crossref] [PubMed]

de Sterke, M.

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12(10), 104003 (2010).
[Crossref]

Desalvo, J. R.

P. Palffy-muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. Desalvo, T. H. Wei, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of Third Order Optical Nonlinearities of Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Eggleton, B. J.

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12(10), 104003 (2010).
[Crossref]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76(10), 1627–1630 (1996).
[Crossref] [PubMed]

Fork, R. L.

Foster, M.

Fu, S.

Gaeta, A.

Gordon, J. P.

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
[Crossref] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Green, L.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Guardalben, M. J.

Ha, N. Y.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

J. Hwang, N. Y. Ha, H. J. Chang, B. Park, and J. W. Wu, “Enhanced optical nonlinearity near the photonic bandgap edges of a cholesteric liquid crystal,” Opt. Lett. 29(22), 2644–2646 (2004).
[Crossref] [PubMed]

Hagan, D. J.

P. Palffy-muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. Desalvo, T. H. Wei, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of Third Order Optical Nonlinearities of Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Husko, C.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Hwang, J.

Ibsen, M.

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical Pulse Compression in Fiber Bragg Grating,” Phys. Rev. Lett. 79(23), 4566–4569 (1997).
[Crossref]

Ilchishin, I. P.

Ishikawa, K.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

Jacobs, S. D.

Jeong, S. M.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

Joannopoulos, J. D.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).

Khoo, I. C.

I. C. Khoo, “Nonlinear optics, active plasmonic and tunable metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
[Crossref]

L. Song, S. Fu, Y. Liu, J. Zhou, V. G. Chigrinov, and I. C. Khoo, “Direct femtosecond pulse compression with miniature-sized Bragg cholesteric liquid crystal,” Opt. Lett. 38(23), 5040–5042 (2013).
[Crossref] [PubMed]

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Krauss, T. F.

Krug, P. A.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76(10), 1627–1630 (1996).
[Crossref] [PubMed]

Laming, R. I.

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical Pulse Compression in Fiber Bragg Grating,” Phys. Rev. Lett. 79(23), 4566–4569 (1997).
[Crossref]

Lee, M. A.

P. Palffy-muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. Desalvo, T. H. Wei, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of Third Order Optical Nonlinearities of Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Li, L.

P. Palffy-muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. Desalvo, T. H. Wei, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of Third Order Optical Nonlinearities of Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Li, Q.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Lisetski, L. N.

Liu, Y.

Maine, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of Ultrahigh Peak Power Pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
[Crossref]

Marshall, K. L.

Martinez, O. E.

Millar, P.

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Monat, C.

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12(10), 104003 (2010).
[Crossref]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Mourou, G.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of Ultrahigh Peak Power Pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
[Crossref]

Mykytiuk, T. V.

Natarajan, L. V.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Nishimura, S.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Ohtsuka, Y.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

Palffy-muhoray, P.

P. Palffy-muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. Desalvo, T. H. Wei, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of Third Order Optical Nonlinearities of Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Park, B.

Pessot, M.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of Ultrahigh Peak Power Pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
[Crossref]

Poon, P.

Richardson, D. J.

P. Millar, R. M. De La Rue, T. F. Krauss, J. S. Aitchison, N. G. R. Broderick, and D. J. Richardson, “Nonlinear propagation effects in an AlGaAs Bragg grating filter,” Opt. Lett. 24(10), 685–687 (1999).
[Crossref] [PubMed]

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical Pulse Compression in Fiber Bragg Grating,” Phys. Rev. Lett. 79(23), 4566–4569 (1997).
[Crossref]

Sagnes, I.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Salamo, G. J.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Schmid, A.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Sheik-Bahae, M.

P. Palffy-muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. Desalvo, T. H. Wei, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of Third Order Optical Nonlinearities of Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Sipe, J. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76(10), 1627–1630 (1996).
[Crossref] [PubMed]

Skerrett, K. J.

Slusher, R. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76(10), 1627–1630 (1996).
[Crossref] [PubMed]

Soljacic, M.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).

Song, L.

Stegeman, G. I.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Strickland, D.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of Ultrahigh Peak Power Pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
[Crossref]

Suzaki, G.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Tabiryan, N. V.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Takanishi, Y.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

Takezoe, H.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

Taverner, D.

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical Pulse Compression in Fiber Bragg Grating,” Phys. Rev. Lett. 79(23), 4566–4569 (1997).
[Crossref]

Thornes, J.

Treacy, E. B.

E. B. Treacy, “Optical Pulse Compression with Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Trebino, R.

Van Stryland, E. W.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

P. Palffy-muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. Desalvo, T. H. Wei, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of Third Order Optical Nonlinearities of Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Wei, T. H.

P. Palffy-muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. Desalvo, T. H. Wei, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of Third Order Optical Nonlinearities of Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

White, T. J.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Winful, H.

H. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46(6), 527–529 (1985).
[Crossref]

Wong, C. W.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Wu, J. W.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Yuan, H. J.

P. Palffy-muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. Desalvo, T. H. Wei, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of Third Order Optical Nonlinearities of Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Zhou, J.

Adv. Funct. Mater. (1)

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Adv. Opt. Photonics (1)

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Appl. Phys. Lett. (2)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

H. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46(6), 527–529 (1985).
[Crossref]

IEEE J. Quantum Electron. (2)

E. B. Treacy, “Optical Pulse Compression with Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of Ultrahigh Peak Power Pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
[Crossref]

J. Appl. Phys. (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

J. Opt. (1)

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12(10), 104003 (2010).
[Crossref]

J. Opt. Soc. Am. B (2)

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

P. Palffy-muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. Desalvo, T. H. Wei, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of Third Order Optical Nonlinearities of Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Nat. Mater. (2)

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7(1), 43–47 (2008).
[Crossref] [PubMed]

Nat. Photonics (3)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. Express (1)

Phys. Rev. Lett. (3)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76(10), 1627–1630 (1996).
[Crossref] [PubMed]

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical Pulse Compression in Fiber Bragg Grating,” Phys. Rev. Lett. 79(23), 4566–4569 (1997).
[Crossref]

Prog. Quantum Electron. (1)

I. C. Khoo, “Nonlinear optics, active plasmonic and tunable metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
[Crossref]

Other (2)

P. G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, 1994).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic depiction of a cholesteric liquid crystal cell (CLC) for femtoseconds laser pulse compression or stretching, caused by nonlinear phase modulation and dispersion at the band edge (b) Plots of the propagation wave vector k (normalized to the cholesteric spiral wave vector q = 2π/P) and group velocity as a function of the frequency (normalized to c/q) in the vicinity of the CLC photonic bandgap), using a representative values for the optical dielectric anisotropy Δε = 3, and ne = 1.585; note the dramatic changes in group velocity for laser wavelength located near the band edges (red dotted lines).
Fig. 2
Fig. 2 Schematic of experimental setup comprising a fundamental oscillator that emits pulse train of 40 fs laser pulses, a laser pulse width modulator, input/output optics surrounding CLC sample, and diagnostic instruments. M: Mirror; BS: Beam splitter; G: grating; λ/4: quarter wave plate to convert laser polarization from linear to circular, and vice versa; S: spectrometer; F: filter to remove the fundamental input lasers: D: ultrafast detector. Note the bulkiness of the (meter size) conventional pulse width modulator compared to the 0.5 mm thick CLC cell.
Fig. 3
Fig. 3 (a) The Transmission spectra of the 500-μm thick CLC sample at low light level illumination showing a typical photonic transmission bandgap centered at ~800nm; dotted line indicates the location of the laser wavelength. (b) The transmission spectrum as a function of input laser Intensity (laser wavelength: 777 nm, pulse duration 847 fs) depicting an increasing function corresponding to the shift of the photonic bandgap towards the long-wavelength region.
Fig. 4
Fig. 4 (a) Pulse duration measurements for an input 847 fs pulse (open circles) showing compression to 286 fs (open squares). Theoretical simulations using the measured n2 value of 10−13 cm2/W and the birefringence Δn = 0.096 for the CLC are shown in dotted and continuous lines. Laser intensity: 125 MW/cm2.; wavelength: 777 nm. (b) Measured and simulated intensity dependence of the pulse compression. (c) Experimental and simulation results of the spectrum of the input and compressed laser pulses at an input laser intensity of 100 MW/cm2.
Fig. 5
Fig. 5 Pulse stretching and re-compression of a 100 fs laser pulse (wavelength: 780 nm) with two tandem 550-μm thick CLC cells. Upper trace: Input laser pulse. Middle trace: Temporal profile of laser pulse after the 1st cell. Bottom trace: Temporal profile of laser pulse after the 2nd cell. Small side lobes noise is likely due to high order dispersion from the thick CLC cells.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n = n a v + Δ n cos ( 2 π z / Λ ) + n 2 | E ± C P | 2
1 v g E ± C P t = E ± C P z + i δ E ± C P + i κ E C P i γ ( | E ± C P | 2 + 2 | E C P | 2 ) E ± C P

Metrics