Abstract

There is wide interest in understanding and leveraging the nonlinear plasmon-induced potentials of nanostructured materials. We investigate the electrical response produced by spin-polarized light across a large-area bottom-up assembled 2D plasmonic crystal. Numerical approximations of the Lorentz forces provide quantitative agreement with our experimentally-measured DC voltages. We show that the underlying mechanism of the spin-polarized voltages is a gradient force that arises from asymmetric, time-averaged hotspots, whose locations shift with the chirality of light. Finally, we formalize the role of spin-orbit interactions in the shifted intensity patterns and significantly advance our understanding of the physical phenomena, often related to the spin Hall effect of light.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photo-induced voltage in nano-porous gold thin film

Marjan Akbari, Masaru Onoda, and Teruya Ishihara
Opt. Express 23(2) 823-832 (2015)

Polarization dependence of transverse photo-induced voltage in gold thin film with random nanoholes

Marjan Akbari and Teruya Ishihara
Opt. Express 25(3) 2143-2152 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Luryi and S. Luryi, “Theory of the photon-drag effect in a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 38(1), 87–96 (1988).
    [Crossref] [PubMed]
  2. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8(1), 14–21 (1973).
    [Crossref]
  3. J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61(15), 10471–10477 (2000).
    [Crossref]
  4. A. D. Boardman and A. V. Zayats, “Nonlinear plasmonics,” Handb. Surf. Sci. 4, 329–347 (2014).
    [Crossref]
  5. Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
    [Crossref] [PubMed]
  6. M. Moocarme, B. Kusin, and L. T. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 645–648 (2014).
    [Crossref]
  7. S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
    [Crossref] [PubMed]
  8. M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
    [Crossref] [PubMed]
  9. S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
    [Crossref] [PubMed]
  10. W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
    [Crossref]
  11. M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103(18), 186801 (2009).
    [Crossref] [PubMed]
  12. N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
    [Crossref]
  13. T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103(10), 103906 (2009).
    [Crossref] [PubMed]
  14. M. Akbari, M. Onoda, and T. Ishihara, “Photo-induced voltage in nano-porous gold thin film,” Opt. Express 23(2), 823–832 (2015).
    [Crossref] [PubMed]
  15. H. Kurosawa and T. Ishihara, “Surface plasmon drag effect in a dielectrically modulated metallic thin film,” Opt. Express 20(2), 1561–1574 (2012).
    [Crossref] [PubMed]
  16. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  17. F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
    [Crossref] [PubMed]
  18. Q. Bai, “Manipulating photoinduced voltage in metasurface with circularly polarized light,” Opt. Express 23(4), 5348–5356 (2015).
    [Crossref] [PubMed]
  19. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
    [Crossref] [PubMed]
  20. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [Crossref]
  21. A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87(9), 091118 (2005).
    [Crossref]
  22. N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
    [Crossref]
  23. J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
    [Crossref] [PubMed]
  24. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
    [Crossref] [PubMed]
  25. A. Shaltout, J. Liu, A. Kildishev, and V. Shalaev, “Photonic spin Hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy,” Optica 2(10), 860 (2015).
    [Crossref]
  26. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
    [Crossref] [PubMed]
  27. T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
    [Crossref] [PubMed]
  28. K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
    [Crossref]
  29. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
    [Crossref] [PubMed]
  30. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
    [Crossref]
  31. P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss. 125, 117–132, discussion 195–219 (2004).
    [Crossref] [PubMed]
  32. M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly,” Adv. Funct. Mater. 15(8), 1329–1335 (2005).
    [Crossref]
  33. P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  34. M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
    [Crossref] [PubMed]
  35. K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
    [Crossref] [PubMed]
  36. T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
    [Crossref]
  37. S. A. Maier, Plasmonics Fundamentals and Applications (Springer, 2007).
  38. H. Kurosawa, T. Ishihara, N. Ikeda, D. Tsuya, M. Ochiai, and Y. Sugimoto, “Optical rectification effect due to surface plasmon polaritons at normal incidence in a nondiffraction regime,” Opt. Lett. 37(14), 2793–2795 (2012).
    [Crossref] [PubMed]
  39. N. Hermosa, A. M. Nugrowati, A. Aiello, and J. P. Woerdman, “Spin Hall effect of light in metallic reflection,” Opt. Lett. 36(16), 3200–3202 (2011).
    [Crossref] [PubMed]
  40. A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
    [Crossref] [PubMed]
  41. L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
    [Crossref] [PubMed]
  42. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
    [Crossref] [PubMed]
  43. I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A 86(4), 1–14 (2012).
    [Crossref]
  44. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
    [Crossref] [PubMed]
  45. A. Leksanyan and E. Brasselet, “Spin – orbit photonic interaction engineering of Bessel beams,” Optica 3, 167 (2016).
  46. H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward plasmon-induced photoexcitation of molecules,” J. Phys. Chem. Lett. 1(16), 2470–2487 (2010).
    [Crossref]
  47. M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
    [Crossref]
  48. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006).
    [Crossref] [PubMed]
  49. S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
    [Crossref] [PubMed]
  50. J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
    [Crossref] [PubMed]
  51. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
    [Crossref] [PubMed]
  52. J. P. Balthasar Mueller, K. Leosson, and F. Capasso, “Ultracompact metasurface in-line polarimeter,” Optica 3(1), 42–47 (2016).
    [Crossref]

2016 (2)

2015 (6)

M. Akbari, M. Onoda, and T. Ishihara, “Photo-induced voltage in nano-porous gold thin film,” Opt. Express 23(2), 823–832 (2015).
[Crossref] [PubMed]

Q. Bai, “Manipulating photoinduced voltage in metasurface with circularly polarized light,” Opt. Express 23(4), 5348–5356 (2015).
[Crossref] [PubMed]

A. Shaltout, J. Liu, A. Kildishev, and V. Shalaev, “Photonic spin Hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy,” Optica 2(10), 860 (2015).
[Crossref]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

2014 (5)

M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
[Crossref] [PubMed]

M. Moocarme, B. Kusin, and L. T. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 645–648 (2014).
[Crossref]

A. D. Boardman and A. V. Zayats, “Nonlinear plasmonics,” Handb. Surf. Sci. 4, 329–347 (2014).
[Crossref]

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

2013 (4)

W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

2012 (4)

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A 86(4), 1–14 (2012).
[Crossref]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

H. Kurosawa and T. Ishihara, “Surface plasmon drag effect in a dielectrically modulated metallic thin film,” Opt. Express 20(2), 1561–1574 (2012).
[Crossref] [PubMed]

H. Kurosawa, T. Ishihara, N. Ikeda, D. Tsuya, M. Ochiai, and Y. Sugimoto, “Optical rectification effect due to surface plasmon polaritons at normal incidence in a nondiffraction regime,” Opt. Lett. 37(14), 2793–2795 (2012).
[Crossref] [PubMed]

2011 (6)

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

N. Hermosa, A. M. Nugrowati, A. Aiello, and J. P. Woerdman, “Spin Hall effect of light in metallic reflection,” Opt. Lett. 36(16), 3200–3202 (2011).
[Crossref] [PubMed]

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
[Crossref]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

2010 (3)

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
[Crossref] [PubMed]

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward plasmon-induced photoexcitation of molecules,” J. Phys. Chem. Lett. 1(16), 2470–2487 (2010).
[Crossref]

2009 (3)

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103(10), 103906 (2009).
[Crossref] [PubMed]

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103(18), 186801 (2009).
[Crossref] [PubMed]

2008 (1)

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

2006 (3)

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006).
[Crossref] [PubMed]

2005 (6)

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87(9), 091118 (2005).
[Crossref]

M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly,” Adv. Funct. Mater. 15(8), 1329–1335 (2005).
[Crossref]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

2004 (2)

P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss. 125, 117–132, discussion 195–219 (2004).
[Crossref] [PubMed]

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

2002 (1)

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

2000 (1)

J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61(15), 10471–10477 (2000).
[Crossref]

1992 (1)

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
[Crossref] [PubMed]

1988 (1)

S. Luryi and S. Luryi, “Theory of the photon-drag effect in a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 38(1), 87–96 (1988).
[Crossref] [PubMed]

1973 (1)

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8(1), 14–21 (1973).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abdelsalam, M.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Abdelsalam, M. E.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss. 125, 117–132, discussion 195–219 (2004).
[Crossref] [PubMed]

Adam, A. J.

L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
[Crossref] [PubMed]

Aiello, A.

Akbari, M.

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Atwater, H. A.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Bai, Q.

Balthasar Mueller, J. P.

Bao, K.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Bartlett, P.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Bartlett, P. N.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss. 125, 117–132, discussion 195–219 (2004).
[Crossref] [PubMed]

Baumberg, J.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Baumberg, J. J.

N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006).
[Crossref] [PubMed]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss. 125, 117–132, discussion 195–219 (2004).
[Crossref] [PubMed]

Besteiro, L. V.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Bezares, F. J.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Bliokh, Y. P.

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Boardman, A. D.

A. D. Boardman and A. V. Zayats, “Nonlinear plasmonics,” Handb. Surf. Sci. 4, 329–347 (2014).
[Crossref]

Brasselet, E.

Bretner, I.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Brinsteiner, C.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Brok, J. M.

L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
[Crossref] [PubMed]

Brown, A. M.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Caldwell, J. D.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

Capasso, F.

Charlton, M. D. B.

Christopher, P.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Christry, R. W.

P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cintra, S.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

Cole, R.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Coppens, Z. J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Coyle, S.

P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss. 125, 117–132, discussion 195–219 (2004).
[Crossref] [PubMed]

Cronin, S. B.

W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

Domínguez-Juárez, J. L.

M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
[Crossref] [PubMed]

Dooghin, A. V.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
[Crossref] [PubMed]

Durach, M.

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103(18), 186801 (2009).
[Crossref] [PubMed]

Eroms, J.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Fehrenbacher, M.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Fernandez-Corbaton, I.

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A 86(4), 1–14 (2012).
[Crossref]

Ganichev, S. D.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Gippius, N. A.

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103(10), 103906 (2009).
[Crossref] [PubMed]

Glazov, M. M.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Goff, J. E.

J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61(15), 10471–10477 (2000).
[Crossref]

Gordon, J. P.

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8(1), 14–21 (1973).
[Crossref]

Gorodetski, Y.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Govorov, A. O.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Gu, L.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
[Crossref]

Håkanson, U.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Halas, N. J.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Hasman, E.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Hatano, T.

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103(10), 103906 (2009).
[Crossref] [PubMed]

Hermosa, N.

Hou, W.

W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

Ikeda, N.

Im, S. H.

M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly,” Adv. Funct. Mater. 15(8), 1329–1335 (2005).
[Crossref]

Ingram, D. B.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Ishihara, T.

Ivchenko, E. L.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Ji, X.

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Karch, J.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Kelf, T.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Kelf, T. A.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

Kildishev, A.

Kim, J.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

Kim, M. H.

M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly,” Adv. Funct. Mater. 15(8), 1329–1335 (2005).
[Crossref]

Kleiner, V.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Kubatkin, S.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Kundikova, N. D.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
[Crossref] [PubMed]

Kurosawa, H.

Kusin, B.

M. Moocarme, B. Kusin, and L. T. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 645–648 (2014).
[Crossref]

Lara-Avila, S.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Lee, J.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Lee, L. P.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

Lee, W. R.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

Leksanyan, A.

Leosson, K.

Li, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Liberman, V. S.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
[Crossref] [PubMed]

Linic, S.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Liu, G. L.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

Liu, J.

Lu, Y.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

Luryi, S.

S. Luryi and S. Luryi, “Theory of the photon-drag effect in a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 38(1), 87–96 (1988).
[Crossref] [PubMed]

S. Luryi and S. Luryi, “Theory of the photon-drag effect in a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 38(1), 87–96 (1988).
[Crossref] [PubMed]

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Mahajan, S.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Mahnkopf, S.

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Mejia, Y. X.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

Melosh, N. A.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Molina-Terriza, G.

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A 86(4), 1–14 (2012).
[Crossref]

Moocarme, M.

M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
[Crossref] [PubMed]

M. Moocarme, B. Kusin, and L. T. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 645–648 (2014).
[Crossref]

Moskovits, M.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Mubeen, S.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Murakami, S.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Murakoshi, K.

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward plasmon-induced photoexcitation of molecules,” J. Phys. Chem. Lett. 1(16), 2470–2487 (2010).
[Crossref]

Nabika, H.

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward plasmon-induced photoexcitation of molecules,” J. Phys. Chem. Lett. 1(16), 2470–2487 (2010).
[Crossref]

Nagaosa, N.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Nagasawa, F.

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward plasmon-induced photoexcitation of molecules,” J. Phys. Chem. Lett. 1(16), 2470–2487 (2010).
[Crossref]

Netti, C. M.

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Noginov, M. A.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
[Crossref]

Noginova, N.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
[Crossref]

Nordlander, P.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Nori, F.

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Nugrowati, A. M.

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Ochiai, M.

Olbrich, P.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Onoda, M.

Padgett, M. J.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Park, O. O.

M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly,” Adv. Funct. Mater. 15(8), 1329–1335 (2005).
[Crossref]

Pelton, M.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

Perney, N. M. B.

Planken, P. C. M.

L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
[Crossref] [PubMed]

Polman, A.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Rho, J.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Rodríguez-Fortuño, F. J.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Rono, V.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

Rusina, A.

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103(18), 186801 (2009).
[Crossref] [PubMed]

Russell, A.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Russell, A. E.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

Schaich, W. L.

J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61(15), 10471–10477 (2000).
[Crossref]

Scherer, N. F.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

Schmalzbauer, M.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Shalaev, V.

Shaltout, A.

Sheldon, M. T.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Shitrit, N.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Singh, N.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Soimo, J.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
[Crossref]

Stockman, M. I.

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103(18), 186801 (2009).
[Crossref] [PubMed]

Stucky, G. D.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Sugawara, Y.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Sugimoto, Y.

Takase, M.

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward plasmon-induced photoexcitation of molecules,” J. Phys. Chem. Lett. 1(16), 2470–2487 (2010).
[Crossref]

Tarasenko, S. A.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Tikhodeev, S. G.

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103(10), 103906 (2009).
[Crossref] [PubMed]

Tsuya, D.

Urbach, H. P.

L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
[Crossref] [PubMed]

Valentine, J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

van de Groep, J.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Vengurlekar, A. S.

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87(9), 091118 (2005).
[Crossref]

Vigderman, L.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

Vuong, L. T.

M. Moocarme, B. Kusin, and L. T. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 645–648 (2014).
[Crossref]

M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
[Crossref] [PubMed]

L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
[Crossref] [PubMed]

Wang, F.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Wang, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Wang, Y.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Wei, H.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Weiss, D.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Woerdman, J. P.

Wurstbauer, U.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Xu, H.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Yakim, A. V.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
[Crossref]

Yakimova, R.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Yan, Z.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

Ye, Z.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Yin, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Zambrana-Puyalto, X.

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A 86(4), 1–14 (2012).
[Crossref]

Zayats, A. V.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

A. D. Boardman and A. V. Zayats, “Nonlinear plasmonics,” Handb. Surf. Sci. 4, 329–347 (2014).
[Crossref]

Zel’dovich, B. Y.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Zhang, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Zoorob, M. E.

Zoth, C.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Zubarev, E. R.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

ACS Nano (2)

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly,” Adv. Funct. Mater. 15(8), 1329–1335 (2005).
[Crossref]

Appl. Phys. Lett. (1)

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87(9), 091118 (2005).
[Crossref]

Electrochem. Commun. (1)

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

Faraday Discuss. (1)

P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss. 125, 117–132, discussion 195–219 (2004).
[Crossref] [PubMed]

Handb. Surf. Sci. (1)

A. D. Boardman and A. V. Zayats, “Nonlinear plasmonics,” Handb. Surf. Sci. 4, 329–347 (2014).
[Crossref]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

J. Phys. Chem. Lett. (1)

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward plasmon-induced photoexcitation of molecules,” J. Phys. Chem. Lett. 1(16), 2470–2487 (2010).
[Crossref]

Nano Lett. (5)

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

New J. Phys. (1)

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

M. Moocarme, B. Kusin, and L. T. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 645–648 (2014).
[Crossref]

Optica (3)

Phys. Rep. (1)

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

Phys. Rev. A (3)

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8(1), 14–21 (1973).
[Crossref]

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
[Crossref] [PubMed]

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A 86(4), 1–14 (2012).
[Crossref]

Phys. Rev. B (4)

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61(15), 10471–10477 (2000).
[Crossref]

P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. Luryi and S. Luryi, “Theory of the photon-drag effect in a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 38(1), 87–96 (1988).
[Crossref] [PubMed]

Phys. Rev. Lett. (10)

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103(10), 103906 (2009).
[Crossref] [PubMed]

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103(18), 186801 (2009).
[Crossref] [PubMed]

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
[Crossref] [PubMed]

Science (3)

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the sample setup, where the angle of incidence, θAOI, in X-Z plane. The sample area is 3 mm in the x-direction, and 14 mm the y-direction, transverse to the plane of incidence. The voltage is measured along the y–axis of the sample. (b) Schematic drawing of the nanovoid surface. (c) SEM and (d) AFM images of the nanovoids. The nanovoids have a median depth of 90 nm, a corresponding rim diameter of 430 nm, and a lattice constant of 600 nm

Fig. 2
Fig. 2

a) Experimentally-measured reflection spectra of CPL from nanovoid sample. The dashed line and shaded area show the SPP dispersion from numerical simulations corresponding to a nanovoid depth of 90 ± 15 nm. The boxed area represents the spectral and angular region where the TPIV is measured. (b) Contour plots of the numerically calculated (i & iii) experimentally measured (ii & iv) TPIV for RCP (i & ii) and LCP (iii & iv). The dashed line in each plot represents the spectral location of the peak TPIV in the numerical calculations.

Fig. 3
Fig. 3

(a) Experimental (data points) and numerically calculated (solid lines) TPIV. (b) The GF (solid line) and SF (dashed line) contributions to the TPIV for both LCP (blue) and RCP (red). All data is taken at a θAOI of 30°.

Fig. 4
Fig. 4

(a & b) Contour plot of the E-field normal to the surface of a unit cell with lattice constant of 600 nm when illuminated with (a) LCP and (b) RCP near the plasmon resonance (538 nm) for an θAOI of 30°. The inset plots are the corresponding contour plots of the light-induced forces produced on the surface of a nanovoid unit cell. The arrows indicate the direction and logarithmic-scaled magnitude of the local net force produced at the base of the arrow on a positive test charge. (c & d) The normalized z-component of field intensity along the rim of a circular aperture according to Eq. (3) (red) and numerically calculated (black) for (c) LCP and (d) RCP. The azimuthal angle represents the angular position around the rim of each structure starting from the x-axis, which is in the plane of illumination.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F= α R 4 | E | 2 + α I 2 Im{ E j * E j },
TPIV= 1 e * 1 Vol F y ( r ) dr* L,
Δ ± = ξ e ik( ξ ξ ) [ ρ A ±( i ϕ m l ρ A ) ]d ξ e i( m l ±1 )ϕ
  E p =cos(   θ AOI ) Δ ± +sin(   θ AOI ) A,
A = H( ρ  a (1+ cos 2 ( ϕ ) tan 2 (   θ AOI )) ),

Metrics